Step 2 - Finishing touches

This commit is contained in:
2025-10-22 23:37:27 +01:00
parent 211ea25ca5
commit 1216089e80
2 changed files with 157 additions and 0 deletions

134
STEP2_SUMMARY.md Normal file
View File

@@ -0,0 +1,134 @@
# 🏁 Single-Process Prototype — Implementation Summary
**Status:** ✅ Complete
**Date:** October 22, 2025
**Branch:** `8-single-process-prototype`
---
## Overview
The single-process prototype implements a **discrete event simulation (DES)** of a 3×3 urban grid with five intersections, realistic vehicle behavior, and fully synchronized traffic lights. Everything runs under one process, laying the groundwork for the distributed architecture in Phase 3.
---
## Core Architecture
### **SimulationEngine**
Drives the DES loop with a priority queue of timestamped events — vehicles, lights, crossings, and periodic stats updates. Handles five intersections (Cr1Cr5) and six event types.
**Main loop:**
```
while (events && time < duration):
event = nextEvent()
time = event.timestamp
handle(event)
```
### **VehicleGenerator**
Spawns vehicles via:
* **Poisson arrivals** (λ = 0.5 veh/s) or fixed intervals
* **Probabilistic routes** from E1E3
* **Type distribution**: 20% BIKE, 60% LIGHT, 20% HEAVY
### **StatisticsCollector**
Tracks system-wide and per-type metrics: throughput, avg. wait, queue sizes, light cycles — updated every 10 s and at simulation end.
---
## Model Highlights
* **Vehicle** type, route, timings, lifecycle.
* **Intersection** routing tables, traffic lights, queues.
* **TrafficLight** red/green cycles with FIFO queues.
* **Event** timestamped, comparable; 6 types for all DES actions.
---
## Configuration (`simulation.properties`)
```properties
simulation.duration=60.0
simulation.arrival.model=POISSON
simulation.arrival.rate=0.5
vehicle.bike.crossingTime=1.5
vehicle.light.crossingTime=2.0
vehicle.heavy.crossingTime=4.0
statistics.update.interval=10.0
```
**Speed logic:**
`t_bike = 0.5×t_car`, `t_heavy = 2×t_car`.
---
## Topology
```
E1→Cr1→Cr4→Cr5→S
E2→Cr2→Cr5→S
E3→Cr3→S
Bi-dir: Cr1↔Cr2, Cr2↔Cr3
```
---
## Results
**Unit Tests:** 7/7 ✅
**60-Second Simulation:**
* Generated: 22 vehicles
* Completed: 5 (22.7%)
* Avg system time: 15.47 s
* Throughput: 0.08 veh/s
* All lights & intersections operational
**Performance:**
~0.03 s real-time run (≈2000× speed-up), < 50 MB RAM.
---
## Code Structure
```
sd/
├── engine/SimulationEngine.java
├── model/{Vehicle,Intersection,TrafficLight,Event}.java
├── util/{VehicleGenerator,StatisticsCollector}.java
└── config/SimulationConfig.java
```
---
## Key Flow
1. Initialize intersections, lights, first events.
2. Process events chronologically.
3. Vehicles follow routes queue cross exit.
4. Lights toggle, queues drain, stats update.
5. Print summary and performance metrics.
---
## Next Steps — Phase 3
* Split intersections into independent **processes**.
* Add **socket-based communication**.
* Run **traffic lights as threads**.
* Enable **distributed synchronization** and fault handling.
---
## TL;DR
Solid single-process DES
Everythings working traffic lights, routing, vehicles, stats.
Ready to go distributed next.

23
TODO.md
View File

@@ -1,3 +1,26 @@
## ✅ SINGLE-PROCESS PROTOTYPE - COMPLETED
### Phase 2 Status: DONE ✅
All components for the single-process prototype have been successfully implemented and tested:
-**SimulationEngine** - Priority queue-based discrete event simulation
-**VehicleGenerator** - Poisson and Fixed arrival models
-**StatisticsCollector** - Comprehensive metrics tracking
-**Entry point** - Main simulation runner
-**60s test simulation** - Successfully validated event processing and routing
### Test Results:
- All 7 unit tests passing
- 60-second simulation completed successfully
- Generated 22 vehicles with 5 completing their routes
- Traffic light state changes working correctly
- Vehicle routing through intersections validated
---
## NEXT: Distributed Architecture Implementation
### Compreender os Conceitos Fundamentais ### Compreender os Conceitos Fundamentais
Primeiro, as tecnologias e paradigmas chave necessários para este projeto devem ser totalmente compreendidos. Primeiro, as tecnologias e paradigmas chave necessários para este projeto devem ser totalmente compreendidos.