Merge pull request #24 from davidalves04/dev

Dev
This commit is contained in:
David Alves
2025-10-27 23:04:15 +00:00
committed by GitHub
9 changed files with 480 additions and 35 deletions

61
.github/workflows/maven.yml vendored Normal file
View File

@@ -0,0 +1,61 @@
name: Java CI with Maven
on:
push:
branches: [ "main" ]
tags:
- 'v*.*.*'
pull_request:
branches: [ "main" ]
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Set up JDK 17
uses: actions/setup-java@v4
with:
java-version: '17'
distribution: 'temurin'
cache: maven
- name: Build with Maven
run: mvn -B package
working-directory: main
- name: Upload built JAR
uses: actions/upload-artifact@v4
with:
name: package
path: main/target/*.jar
- name: Generate dependency graph
run: mvn -B -f main/pom.xml com.github.ferstl:depgraph-maven-plugin:4.0.1:graph
- name: Upload dependency graph artifact
uses: actions/upload-artifact@v4
with:
name: dependency-graph
path: main/target/**
publish-release:
runs-on: ubuntu-latest
needs: [build]
if: startsWith(github.ref, 'refs/tags/')
permissions:
contents: write
steps:
- name: Download built JAR
uses: actions/download-artifact@v4
with:
name: package
path: main/target/
- name: Create GitHub Release
uses: softprops/action-gh-release@v2
with:
files: main/target/*.jar

134
STEP2_SUMMARY.md Normal file
View File

@@ -0,0 +1,134 @@
# 🏁 Single-Process Prototype — Implementation Summary
**Status:** ✅ Complete
**Date:** October 22, 2025
**Branch:** `8-single-process-prototype`
---
## Overview
The single-process prototype implements a **discrete event simulation (DES)** of a 3×3 urban grid with five intersections, realistic vehicle behavior, and fully synchronized traffic lights. Everything runs under one process, laying the groundwork for the distributed architecture in Phase 3.
---
## Core Architecture
### **SimulationEngine**
Drives the DES loop with a priority queue of timestamped events — vehicles, lights, crossings, and periodic stats updates. Handles five intersections (Cr1Cr5) and six event types.
**Main loop:**
```
while (events && time < duration):
event = nextEvent()
time = event.timestamp
handle(event)
```
### **VehicleGenerator**
Spawns vehicles via:
* **Poisson arrivals** (λ = 0.5 veh/s) or fixed intervals
* **Probabilistic routes** from E1E3
* **Type distribution**: 20% BIKE, 60% LIGHT, 20% HEAVY
### **StatisticsCollector**
Tracks system-wide and per-type metrics: throughput, avg. wait, queue sizes, light cycles — updated every 10 s and at simulation end.
---
## Model Highlights
* **Vehicle** type, route, timings, lifecycle.
* **Intersection** routing tables, traffic lights, queues.
* **TrafficLight** red/green cycles with FIFO queues.
* **Event** timestamped, comparable; 6 types for all DES actions.
---
## Configuration (`simulation.properties`)
```properties
simulation.duration=60.0
simulation.arrival.model=POISSON
simulation.arrival.rate=0.5
vehicle.bike.crossingTime=1.5
vehicle.light.crossingTime=2.0
vehicle.heavy.crossingTime=4.0
statistics.update.interval=10.0
```
**Speed logic:**
`t_bike = 0.5×t_car`, `t_heavy = 2×t_car`.
---
## Topology
```
E1→Cr1→Cr4→Cr5→S
E2→Cr2→Cr5→S
E3→Cr3→S
Bi-dir: Cr1↔Cr2, Cr2↔Cr3
```
---
## Results
**Unit Tests:** 7/7 ✅
**60-Second Simulation:**
* Generated: 22 vehicles
* Completed: 5 (22.7%)
* Avg system time: 15.47 s
* Throughput: 0.08 veh/s
* All lights & intersections operational
**Performance:**
~0.03 s real-time run (≈2000× speed-up), < 50 MB RAM.
---
## Code Structure
```
sd/
├── engine/SimulationEngine.java
├── model/{Vehicle,Intersection,TrafficLight,Event}.java
├── util/{VehicleGenerator,StatisticsCollector}.java
└── config/SimulationConfig.java
```
---
## Key Flow
1. Initialize intersections, lights, first events.
2. Process events chronologically.
3. Vehicles follow routes queue cross exit.
4. Lights toggle, queues drain, stats update.
5. Print summary and performance metrics.
---
## Next Steps — Phase 3
* Split intersections into independent **processes**.
* Add **socket-based communication**.
* Run **traffic lights as threads**.
* Enable **distributed synchronization** and fault handling.
---
## TL;DR
Solid single-process DES
Everythings working traffic lights, routing, vehicles, stats.
Ready to go distributed next.

27
TODO.md
View File

@@ -1,3 +1,26 @@
## ✅ SINGLE-PROCESS PROTOTYPE - COMPLETED
### Phase 2 Status: DONE ✅
All components for the single-process prototype have been successfully implemented and tested:
-**SimulationEngine** - Priority queue-based discrete event simulation
-**VehicleGenerator** - Poisson and Fixed arrival models
-**StatisticsCollector** - Comprehensive metrics tracking
-**Entry point** - Main simulation runner
-**60s test simulation** - Successfully validated event processing and routing
### Test Results:
- All 7 unit tests passing
- 60-second simulation completed successfully
- Generated 22 vehicles with 5 completing their routes
- Traffic light state changes working correctly
- Vehicle routing through intersections validated
---
## NEXT: Distributed Architecture Implementation
### Compreender os Conceitos Fundamentais
Primeiro, as tecnologias e paradigmas chave necessários para este projeto devem ser totalmente compreendidos.
@@ -16,7 +39,7 @@ Primeiro, as tecnologias e paradigmas chave necessários para este projeto devem
- Uma **lista de eventos** central, frequentemente uma fila de prioridades, será necessária para armazenar eventos futuros, ordenados pelo seu timestamp. O ciclo principal da simulação retira o próximo evento da lista, processa-o e adiciona quaisquer novos eventos que resultem dele.
- **Processo de Poisson:** Para o modelo "mais realista" de chegadas de veículos, é especificado um processo de Poisson. A principal conclusão é que o tempo _entre_ chegadas consecutivas de veículos segue uma **distribuição exponencial**. Em Java, este intervalo pode ser gerado usando `Math.log(1 - Math.random()) / -lambda`, onde `lambda` (λi) é a taxa de chegada especificada.
- **Processo de Poisson:** Para o modelo 'mais realista' de chegadas de veículos, é especificado um processo de Poisson. A principal conclusão é que o tempo _entre_ chegadas consecutivas de veículos segue uma **distribuição exponencial**. Em Java, este intervalo pode ser gerado usando `Math.log(1 - Math.random()) / -lambda`, onde `lambda` (λi) é a taxa de chegada especificada.
---
@@ -172,4 +195,4 @@ Assim que o sistema completo estiver a funcionar, as experiências exigidas pela
- **Debugging:** Debugging de sistemas distribuídos podem ser difíceis. Uma framework de logging (como Log4j 2 ou SLF4J) pode ser usada para registar eventos//alterações de estado nos diferentes processos.
- **Configuração:** Valores como endereços IP, números de porta ou parâmetros da simulação não devem ser "hardcoded". Um ficheiro de configuração (ex: um ficheiro `.properties` ou `.json`) torna a aplicação mais fácil de executar e testar.
- **Configuração:** Valores como endereços IP, números de porta ou parâmetros da simulação não devem ser "hardcoded". Um ficheiro de configuração (ex: um ficheiro `.properties` ou `.json`) torna a aplicação mais fácil de executar e testar.

View File

@@ -42,6 +42,26 @@
<mainClass>sd.Entry</mainClass>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>3.5.2</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass>sd.Entry</mainClass>
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>

View File

@@ -31,7 +31,7 @@ public class SimulationConfig {
* (por exemplo quando executado a partir do classpath/jar),
* faz fallback para carregar a partir do classpath usando o ClassLoader.
*/
IOException lastException = null;
IOException lastException = null; //FIXME: melhorar esta parte para reportar erros de forma mais clara
try {
try (InputStream input = new FileInputStream(filePath)) {

View File

@@ -264,32 +264,19 @@ public class SimulationEngine {
*/
private void processEvent(Event event) {
switch (event.getType()) {
case VEHICLE_GENERATION:
handleVehicleGeneration();
break;
case VEHICLE_GENERATION -> handleVehicleGeneration();
case VEHICLE_ARRIVAL:
handleVehicleArrival(event);
break;
case VEHICLE_ARRIVAL -> handleVehicleArrival(event);
case TRAFFIC_LIGHT_CHANGE:
handleTrafficLightChange(event);
break;
case TRAFFIC_LIGHT_CHANGE -> handleTrafficLightChange(event);
case CROSSING_START:
handleCrossingStart(event);
break;
case CROSSING_START -> handleCrossingStart(event);
case CROSSING_END:
handleCrossingEnd(event);
break;
case CROSSING_END -> handleCrossingEnd(event);
case STATISTICS_UPDATE:
handleStatisticsUpdate();
break;
case STATISTICS_UPDATE -> handleStatisticsUpdate();
default:
System.err.println("Unknown event type: " + event.getType());
default -> System.err.println("Unknown event type: " + event.getType());
}
}
@@ -386,7 +373,7 @@ public class SimulationEngine {
* @param vehicle The vehicle to process.
* @param intersection The intersection where the vehicle is.
*/
private void tryProcessVehicle(Vehicle vehicle, Intersection intersection) {
private void tryProcessVehicle(Vehicle vehicle, Intersection intersection) { //FIXME
// Find the direction (and light) this vehicle is queued at
// This logic is a bit flawed: it just finds the *first* non-empty queue
// A better approach would be to get the light from the vehicle's route
@@ -591,16 +578,12 @@ public class SimulationEngine {
* @return The crossing time in seconds.
*/
private double getCrossingTime(VehicleType type) {
switch (type) {
case BIKE:
return config.getBikeVehicleCrossingTime();
case LIGHT:
return config.getLightVehicleCrossingTime();
case HEAVY:
return config.getHeavyVehicleCrossingTime();
default:
return 2.0; // Default fallback
}
return switch (type) {
case BIKE -> config.getBikeVehicleCrossingTime();
case LIGHT -> config.getLightVehicleCrossingTime();
case HEAVY -> config.getHeavyVehicleCrossingTime();
default -> 2.0;
}; // Default fallback
}
/**

View File

@@ -0,0 +1,41 @@
package sd.protocol;
import java.io.Serializable;
import sd.model.MessageType; // Assuming MessageType is in sd.model or sd.protocol
/**
* Interface defining the contract for all messages exchanged in the simulator.
* Ensures that any message can be identified and routed.
* * This interface extends Serializable to allow objects that implement it
* to be sent over Sockets (ObjectOutputStream).
*
*/
public interface MessageProtocol extends Serializable {
/**
* Returns the type of the message, indicating its purpose.
* @return The MessageType (e.g., VEHICLE_TRANSFER, STATS_UPDATE).
*/
MessageType getType();
/**
* Returns the data object (payload) that this message carries.
* The type of object will depend on the MessageType.
* * - If getType() == VEHICLE_TRANSFER, the payload will be a {@link sd.model.Vehicle} object.
* - If getType() == STATS_UPDATE, the payload will be a statistics object.
* * @return The data object (payload), which must also be Serializable.
*/
Object getPayload();
/**
* Returns the ID of the node (Process) that sent this message.
* @return String (e.g., "Cr1", "Cr5", "S").
*/
String getSourceNode();
/**
* Returns the ID of the destination node (Process) for this message.
* @return String (e.g., "Cr2", "DashboardServer").
*/
String getDestinationNode();
}

View File

@@ -0,0 +1,183 @@
package sd.protocol;
import java.io.Closeable;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.net.ConnectException;
import java.net.Socket;
import java.net.SocketTimeoutException;
import java.net.UnknownHostException;
import java.util.concurrent.TimeUnit;
/**
* Wrapper class that simplifies communication via Sockets.
* Includes connection retry logic for robustness.
*/
public class SocketConnection implements Closeable {
private final Socket socket;
private final ObjectOutputStream outputStream;
private final ObjectInputStream inputStream;
// --- Configuration for Retry Logic ---
/** Maximum number of connection attempts. */
private static final int MAX_RETRIES = 5;
/** Delay between retry attempts in milliseconds. */
private static final long RETRY_DELAY_MS = 1000;
/**
* Constructor for the "Client" (who initiates the connection).
* Tries to connect to a process that is already listening (Server).
* Includes retry logic in case of initial connection failure.
*
* @param host The host address (e.g., "localhost" from your simulation.properties)
* @param port The port (e.g., 8001 from your simulation.properties)
* @throws IOException If connection fails after all retries.
* @throws UnknownHostException If the host is not found (this error usually doesn't need retry).
* @throws InterruptedException If the thread is interrupted while waiting between retries.
*/
public SocketConnection(String host, int port) throws IOException, UnknownHostException, InterruptedException {
Socket tempSocket = null;
IOException lastException = null;
System.out.printf("[SocketConnection] Attempting to connect to %s:%d...%n", host, port);
// --- Retry Loop ---
for (int attempt = 1; attempt <= MAX_RETRIES; attempt++) {
try {
// Try to establish the connection
tempSocket = new Socket(host, port);
// If successful, break out of the retry loop
System.out.printf("[SocketConnection] Connected successfully on attempt %d.%n", attempt);
lastException = null; // Clear last error on success
break;
} catch (ConnectException | SocketTimeoutException e) {
// These are common errors indicating the server might not be ready.
lastException = e;
System.out.printf("[SocketConnection] Attempt %d/%d failed: %s. Retrying in %d ms...%n",
attempt, MAX_RETRIES, e.getMessage(), RETRY_DELAY_MS);
if (attempt < MAX_RETRIES) {
// Wait before the next attempt
TimeUnit.MILLISECONDS.sleep(RETRY_DELAY_MS);
}
} catch (IOException e) {
// Other IOExceptions might be more permanent, but we retry anyway.
lastException = e;
System.out.printf("[SocketConnection] Attempt %d/%d failed with IOException: %s. Retrying in %d ms...%n",
attempt, MAX_RETRIES, e.getMessage(), RETRY_DELAY_MS);
if (attempt < MAX_RETRIES) {
TimeUnit.MILLISECONDS.sleep(RETRY_DELAY_MS);
}
}
} // --- End of Retry Loop ---
// If after all retries tempSocket is still null, it means connection failed permanently.
if (tempSocket == null) {
System.err.printf("[SocketConnection] Failed to connect to %s:%d after %d attempts.%n", host, port, MAX_RETRIES);
if (lastException != null) {
throw lastException; // Throw the last exception encountered
} else {
// Should not happen if loop ran, but as a fallback
throw new IOException("Failed to connect after " + MAX_RETRIES + " attempts, reason unknown.");
}
}
// If connection was successful, assign to final variable and create streams
this.socket = tempSocket;
try {
// IMPORTANT: The order is crucial. OutputStream first.
this.outputStream = new ObjectOutputStream(socket.getOutputStream());
this.inputStream = new ObjectInputStream(socket.getInputStream());
} catch (IOException e) {
// If stream creation fails even after successful socket connection, clean up.
System.err.println("[SocketConnection] Failed to create streams after connection: " + e.getMessage());
try { socket.close(); } catch (IOException closeEx) { /* ignore */ }
throw e; // Re-throw the stream creation exception
}
}
/**
* Constructor for the "Server" (who accepts the connection).
* Receives a Socket that has already been accepted by a ServerSocket.
* No retry logic needed here as the connection is already established.
*
* @param acceptedSocket The Socket returned by serverSocket.accept().
* @throws IOException If stream creation fails.
*/
public SocketConnection(Socket acceptedSocket) throws IOException {
this.socket = acceptedSocket;
// IMPORTANT: The order is crucial. OutputStream first.
this.outputStream = new ObjectOutputStream(socket.getOutputStream());
this.inputStream = new ObjectInputStream(socket.getInputStream());
System.out.printf("[SocketConnection] Connection accepted from %s:%d.%n",
acceptedSocket.getInetAddress().getHostAddress(), acceptedSocket.getPort());
}
/**
* Sends (serializes) a MessageProtocol object over the socket.
*
* @param message The "envelope" (which contains the Vehicle) to be sent.
* @throws IOException If writing to the stream fails or socket is not connected.
*/
public void sendMessage(MessageProtocol message) throws IOException {
if (!isConnected()) {
throw new IOException("Socket is not connected.");
}
synchronized (outputStream) {
outputStream.writeObject(message);
outputStream.flush(); // Ensures the message is sent immediately.
}
}
/**
* Tries to read (deserialize) a MessageProtocol object from the socket.
* This call is "blocked" until an object is received.
*
* @return The "envelope" (MessageProtocol) that was received.
* @throws IOException If the connection is lost, the stream is corrupted, or socket is not connected.
* @throws ClassNotFoundException If the received object is unknown.
*/
public MessageProtocol receiveMessage() throws IOException, ClassNotFoundException {
if (!isConnected()) {
throw new IOException("Socket is not connected.");
}
synchronized (inputStream) {
return (MessageProtocol) inputStream.readObject();
}
}
/**
* Closes the socket and all streams (Input and Output).
* It is called automatically if you use 'try-with-resources'.
*/
@Override
public void close() throws IOException {
System.out.printf("[SocketConnection] Closing connection to %s:%d.%n",
socket != null ? socket.getInetAddress().getHostAddress() : "N/A",
socket != null ? socket.getPort() : -1);
try {
if (inputStream != null) inputStream.close();
} catch (IOException e) { /* ignore */ }
try {
if (outputStream != null) outputStream.close();
} catch (IOException e) { /* ignore */ }
if (socket != null && !socket.isClosed()) {
socket.close();
}
}
/**
* @return true if the socket is still connected and not closed.
*/
public boolean isConnected() {
return socket != null && socket.isConnected() && !socket.isClosed();
}
}

View File

@@ -43,7 +43,7 @@ class SimulationTest {
assertEquals("TEST1", vehicle.getId());
assertNotNull(vehicle.getType());
assertNotNull(vehicle.getRoute());
assertTrue(vehicle.getRoute().size() > 0);
assertTrue(!vehicle.getRoute().isEmpty());
}
@Test