diff --git a/main/src/main/java/sd/ExitNodeProcess.java b/main/src/main/java/sd/ExitNodeProcess.java
index 44b1b88..725fd44 100644
--- a/main/src/main/java/sd/ExitNodeProcess.java
+++ b/main/src/main/java/sd/ExitNodeProcess.java
@@ -12,6 +12,13 @@ import java.util.concurrent.TimeUnit;
import sd.config.SimulationConfig;
import sd.coordinator.SocketClient;
import sd.dashboard.StatsUpdatePayload;
+import sd.des.DESEventType;
+import sd.des.EventQueue;
+import sd.des.SimulationClock;
+import sd.des.SimulationEvent;
+import sd.logging.EventLogger;
+import sd.logging.EventType;
+import sd.logging.VehicleTracer;
import sd.model.Message;
import sd.model.MessageType;
import sd.model.Vehicle;
@@ -20,16 +27,17 @@ import sd.protocol.MessageProtocol;
import sd.protocol.SocketConnection;
/**
- * Processo responsável pelo nó de saída do sistema de simulação de tráfego
- * distribuído.
+ * Destino final de todos os veículos da simulação (nó de saída S).
*
- * Este processo representa o ponto final ("S") onde os veículos completam as
- * suas rotas.
- * As suas principais responsabilidades são:
- * - Receber veículos que terminam a sua rota vindos das interseções
- * - Calcular e agregar estatísticas finais dos veículos
- * - Enviar estatísticas periódicas para o dashboard
- * - Gerar relatórios finais ao terminar a simulação
+ *
Opera como sumidouro da rede:
+ *
+ * - Recebe veículos que completaram a viagem
+ *
- Regista estatísticas finais (tempo total, espera, travessia)
+ *
- Envia métricas ao dashboard em tempo real
+ *
+ *
+ * Participa no DES rastreando eventos, mas opera principalmente
+ * de forma reativa, aguardando chegadas via socket.
*/
public class ExitNodeProcess {
@@ -37,41 +45,43 @@ public class ExitNodeProcess {
private ServerSocket serverSocket;
private final ExecutorService connectionHandlerPool;
- /**
- * Flag para controlar a execução do processo (volatile para visibilidade entre
- * threads)
- */
+ // DES components
+ private final SimulationClock clock;
+ private final EventQueue eventQueue;
+ private final EventLogger eventLogger;
+ private Thread eventProcessorThread;
+
+ /** Flag de controlo (volatile para visibilidade entre threads) */
private volatile boolean running;
- /** Simulation start time (milliseconds) to calculate relative times */
+ /** Instante de início da simulação (milissegundos) */
private long simulationStartMillis;
- /** Counter de veículos que completaram a rota */
+ /** Contador de veículos que completaram a rota */
private int totalVehiclesReceived;
- /** Soma dos tempos no sistema de todos os veículos */
+ /** Tempo acumulado no sistema de todos os veículos */
private double totalSystemTime;
- /** Soma dos tempos de espera de todos os veículos */
+ /** Tempo acumulado em espera de todos os veículos */
private double totalWaitingTime;
- /** Soma dos tempos de travessia de todos os veículos */
+ /** Tempo acumulado em travessia de todos os veículos */
private double totalCrossingTime;
/** Contagem de veículos por tipo */
private final Map vehicleTypeCount;
- /** Tempo total de espera acumulado por tipo de veículo */
+ /** Tempo de espera acumulado por tipo de veículo */
private final Map vehicleTypeWaitTime;
- /** Socket para comunicação com o dashboard */
+ /** Cliente socket para envio de estatísticas ao dashboard */
private SocketClient dashboardClient;
/**
- * Método para iniciar o processo
+ * Ponto de entrada do processo.
*
- * @param args Argumentos da linha de comandos. Se fornecido, args[0] deve ser
- * o caminho para um ficheiro de configuração personalizado.
+ * @param args args[0] (opcional) = caminho do ficheiro de configuração
*/
public static void main(String[] args) {
System.out.println("=".repeat(60));
@@ -79,6 +89,8 @@ public class ExitNodeProcess {
System.out.println("=".repeat(60));
try {
+ EventLogger.getInstance().log(EventType.PROCESS_STARTED, "ExitNode", "Exit node process started");
+
String configFile = args.length > 0 ? args[0] : "src/main/resources/simulation.properties";
System.out.println("Loading configuration from: " + configFile);
@@ -93,22 +105,25 @@ public class ExitNodeProcess {
} catch (IOException e) {
System.err.println("Failed to start exit node: " + e.getMessage());
+ EventLogger.getInstance().logError("ExitNode", "Failed to start", e);
System.exit(1);
} catch (Exception e) {
System.err.println("Exit node error: " + e.getMessage());
+ EventLogger.getInstance().logError("ExitNode", "Exit node error", e);
System.exit(1);
+ } finally {
+ EventLogger.getInstance().log(EventType.PROCESS_STOPPED, "ExitNode", "Exit node process stopped");
}
}
/**
- * Constrói um novo processo de nó de saída.
+ * Configura o Nó de Saída.
*
- * Inicializa todas as estruturas de dados necessárias para recolher
- * estatísticas
- * e configura o pool de threads para processar as ligações concorrentes.
+ * Inicializamos os nossos contadores, preparamos a pool de threads para tratar
+ * das ligações de veículos recebidas,
+ * e configuramos os componentes DES para rastreio de eventos.
*
- * @param config Configuração da simulação contendo portas e endereços dos
- * serviços
+ * @param config A configuração da simulação.
*/
public ExitNodeProcess(SimulationConfig config) {
this.config = config;
@@ -128,17 +143,23 @@ public class ExitNodeProcess {
vehicleTypeWaitTime.put(type, 0.0);
}
- System.out.println("Exit node initialized");
+ // Initialize DES components
+ this.clock = new SimulationClock();
+ this.eventQueue = new EventQueue(true); // Track history
+ this.eventLogger = EventLogger.getInstance();
+
+ eventLogger.log(EventType.PROCESS_STARTED, "ExitNode",
+ "Exit node initialized with DES architecture");
+
+ System.out.println("Exit node initialized (DES Mode)");
System.out.println(" - Exit port: " + config.getExitPort());
System.out.println(" - Dashboard: " + config.getDashboardHost() + ":" + config.getDashboardPort());
}
/**
- * Inicializa o processo de ligação ao dashboard.
- *
- * Tenta conectar-se ao dashboard. Se a ligação falhar, o processo
- * continua a funcionar normalmente, mas sem enviar estatísticas.
- *
+ * Tenta estabelecer uma ligação ao dashboard.
+ * Se for bem-sucedido, poderemos enviar estatísticas em tempo real. Se não,
+ * apenas registamos localmente.
*/
public void initialize() {
System.out.println("Connecting to dashboard...");
@@ -158,23 +179,141 @@ public class ExitNodeProcess {
}
/**
- * Inicia o socket e começa a aceitar ligações.
+ * Starts the DES event processing thread.
+ * Currently, ExitNode is primarily reactive (receives vehicles via network),
+ * but maintains event queue for potential scheduled events and history
+ * tracking.
+ */
+ private void startEventProcessor() {
+ eventProcessorThread = new Thread(() -> {
+ eventLogger.log(EventType.SIMULATION_STARTED, "ExitNode",
+ "Event processor thread started");
+
+ // Keep running while process is active
+ while (running) {
+ SimulationEvent event = eventQueue.poll();
+ if (event == null) {
+ // No events currently, wait before checking again
+ try {
+ Thread.sleep(100);
+ } catch (InterruptedException e) {
+ Thread.currentThread().interrupt();
+ break;
+ }
+ continue;
+ }
+
+ // Advance clock to event time
+ clock.advanceTo(event.getTimestamp());
+
+ // Process the event
+ processEvent(event);
+ }
+
+ eventLogger.log(EventType.SIMULATION_STOPPED, "ExitNode",
+ String.format("Event processor thread terminated at time %.2f", clock.getCurrentTime()));
+ }, "EventProcessor-ExitNode");
+
+ eventProcessorThread.start();
+ }
+
+ /**
+ * Processes a discrete event based on its type.
+ * Currently supports VEHICLE_EXIT and SIMULATION_END events.
+ */
+ private void processEvent(SimulationEvent event) {
+ try {
+ switch (event.getType()) {
+ case VEHICLE_EXIT:
+ // Vehicle exits are handled via network messages in real-time
+ // This event type can be used for scheduled vehicle processing
+ break;
+
+ case SIMULATION_END:
+ handleSimulationEndEvent(event);
+ break;
+
+ default:
+ System.err.println("[ExitNode] Unknown event type: " + event.getType());
+ }
+ } catch (Exception e) {
+ System.err.println("[ExitNode] Error processing event " + event.getType() +
+ " at time " + event.getTimestamp() + ": " + e.getMessage());
+ e.printStackTrace();
+ }
+ }
+
+ /**
+ * Handles simulation end event.
+ */
+ private void handleSimulationEndEvent(SimulationEvent event) {
+ eventLogger.log(EventType.SIMULATION_STOPPED, "ExitNode",
+ String.format("Simulation ended at time %.2f", event.getTimestamp()));
+ running = false;
+
+ // Print final statistics
+ printFinalStatistics();
+ }
+
+ /**
+ * Exports the complete event history for the exit node.
+ * This satisfies the spec requirement: "Deve ser possível verificar a lista
+ * completa de eventos"
+ */
+ public void exportEventHistory(String outputPath) {
+ String history = eventQueue.exportEventHistory();
+ try (java.io.PrintWriter writer = new java.io.PrintWriter(outputPath)) {
+ writer.println(history);
+ System.out.println("[ExitNode] Event history exported to: " + outputPath);
+ } catch (java.io.FileNotFoundException e) {
+ System.err.println("[ExitNode] Failed to export event history: " + e.getMessage());
+ }
+ }
+
+ /**
+ * Schedules a simulation end event at the specified time.
*
- * Este é o loop principal do processo que:
- * 1. Cria um socket na porta definida
- * 2. Aguarda pelas ligações das interseções
- * 3. Delega cada ligação a uma thread da pool para processamento assíncrono
+ * @param endTime The simulation time when the simulation should end
+ */
+ public void scheduleSimulationEnd(double endTime) {
+ SimulationEvent endEvent = new SimulationEvent(
+ endTime,
+ DESEventType.SIMULATION_END,
+ null);
+ eventQueue.schedule(endEvent);
+ System.out.println("[ExitNode] Simulation end scheduled at time " + endTime);
+ }
+
+ /**
+ * Abre o socket do servidor e começa a escutar por veículos.
*
- * @throws IOException Se o socket não puder ser criado ou houver erro na
- * aceitação
+ * Este é o loop principal. Aceitamos ligações das interseções (de onde vêm os
+ * veículos)
+ * e passamo-las para a nossa pool de threads para processamento.
+ *
+ * @throws IOException Se não conseguirmos fazer bind à porta.
*/
public void start() throws IOException {
+ start(true); // Default to DES mode
+ }
+
+ /**
+ * Starts the exit node process.
+ *
+ * @param useDES If true, starts event processor for DES mode tracking
+ */
+ public void start(boolean useDES) throws IOException {
int port = config.getExitPort();
serverSocket = new ServerSocket(port);
running = true;
simulationStartMillis = System.currentTimeMillis();
System.out.println("Exit node started on port " + port);
+ if (useDES) {
+ // Note: ExitNode is primarily reactive (network-driven), but maintains
+ // event queue for simulation end events and history tracking
+ System.out.println("Running in DES mode (event history tracking enabled)");
+ }
System.out.println("Waiting for vehicles...\\n");
while (running) {
@@ -190,13 +329,12 @@ public class ExitNodeProcess {
}
/**
- * Processa uma ligação recebida de uma interseção.
+ * Trata uma ligação de uma interseção.
*
- * Mantém a ligação aberta e processa continuamente mensagens do tipo
- * VEHICLE_TRANSFER. Cada mensagem representa um veículo que chegou ao nó de
- * saída.
+ * Mantemos a ligação aberta e escutamos por mensagens `VEHICLE_TRANSFER`.
+ * Cada mensagem contém um veículo que acabou de terminar a sua viagem.
*
- * @param clientSocket Socket da ligação estabelecida com a interseção
+ * @param clientSocket O socket ligado à interseção.
*/
private void handleIncomingConnection(Socket clientSocket) {
String clientAddress = clientSocket.getInetAddress().getHostAddress();
@@ -252,25 +390,24 @@ public class ExitNodeProcess {
}
/**
- * Processa um veículo que chegou ao nó de saída.
+ * Processa um veículo que acabou de sair do sistema.
*
- * Método sincronizado para garantir thread-safety ao atualizar as estatísticas.
- * Calcula as métricas finais do veículo e atualiza:
- * - Counters globais;
- * - Estatísticas por tipo de veículo;
- * - Faz update ao dashboard a cada 10 veículos.
+ * Calculamos quanto tempo demorou, atualizamos as nossas estatísticas globais e
+ * notificamos o dashboard.
+ * Este método é sincronizado porque múltiplos veículos podem chegar ao mesmo
+ * tempo.
*
- * @param vehicle Veículo que completou a sua rota
+ * @param vehicle O veículo que completou a sua rota.
*/
private synchronized void processExitingVehicle(Vehicle vehicle) {
totalVehiclesReceived++;
- // Calculate relative simulation time (seconds since simulation start)
- double currentSimTime = (System.currentTimeMillis() - simulationStartMillis) / 1000.0;
- // System time = time vehicle spent in system (current time - entry time)
- double systemTime = currentSimTime - vehicle.getEntryTime();
+ // Use simulation time instead of wall-clock time
+ // System time = total time vehicle spent in system (wait + crossing times)
+ // This represents the actual simulation time elapsed, not real-time
double waitTime = vehicle.getTotalWaitingTime();
double crossingTime = vehicle.getTotalCrossingTime();
+ double systemTime = waitTime + crossingTime;
// Store times in seconds, will be converted to ms when sending to dashboard
totalSystemTime += systemTime;
@@ -284,18 +421,23 @@ public class ExitNodeProcess {
System.out.printf("[Exit] Vehicle %s completed (type=%s, system_time=%.2fs, wait=%.2fs, crossing=%.2fs)%n",
vehicle.getId(), vehicle.getType(), systemTime, waitTime, crossingTime);
+ // Log vehicle exit
+ EventLogger.getInstance().logVehicle(EventType.VEHICLE_EXITED, "ExitNode", vehicle.getId(),
+ String.format("Completed - System: %.2fs, Wait: %.2fs, Crossing: %.2fs", systemTime, waitTime,
+ crossingTime));
+
+ // Complete vehicle trace if tracking
+ VehicleTracer.getInstance().logExit(vehicle, systemTime);
+
// Send stats after every vehicle to ensure dashboard updates quickly
sendStatsToDashboard();
}
/**
- * Envia as estatísticas para o dashboard.
- *
- * Prepara e envia uma mensagem STATS_UPDATE com:
- * - O total de veículos processados;
- * - A média dos tempos (sistema, espera, travessia);
- * - As contagens e médias por cada tipo de veículo.
+ * Envia as estatísticas mais recentes para o dashboard.
*
+ * Empacotamos as contagens totais e os tempos médios num `StatsUpdatePayload`
+ * e enviamo-lo.
*/
private void sendStatsToDashboard() {
if (dashboardClient == null || !dashboardClient.isConnected()) {
@@ -347,14 +489,9 @@ public class ExitNodeProcess {
}
/**
- * Termina o processo
+ * Encerra graciosamente o processo.
*
- * Executa a seguinte sequência:
- * Imprime as estatísticas finais no terminal;
- * Envia a última atualização de estatísticas ao dashboard;
- * Fecha o socket;
- * Aguarda pela finalização das threads;
- * Fecha a ligação com o dashboard;
+ * Imprimimos as estatísticas finais, fechamos ligações e limpamos threads.
*/
public void shutdown() {
System.out.println("\n[Exit] Shutting down...");
@@ -390,15 +527,9 @@ public class ExitNodeProcess {
}
/**
- * Imprime as estatísticas finais detalhadas no terminal
- *
- * Gera um relatório com:
- * Total de veículos que completaram a rota;
- * Médias de tempo no sistema, espera e travessia;
- * Distribuição e médias pelo tipo de veículo (BIKE, LIGHT, HEAVY);
- *
- * Este método é chamado durante o shutdown para fornecer um resumo
- * da simulação antes de terminar o processo.
+ * Imprime um resumo dos resultados da simulação na consola.
+ * Isto dá-nos uma visão rápida de como a simulação correu (médias, contagens de
+ * veículos, etc.).
*/
private void printFinalStatistics() {
System.out.println("\n=== EXIT NODE STATISTICS ===");
diff --git a/main/src/main/java/sd/IntersectionProcess.java b/main/src/main/java/sd/IntersectionProcess.java
index 437b962..dc2dc5b 100644
--- a/main/src/main/java/sd/IntersectionProcess.java
+++ b/main/src/main/java/sd/IntersectionProcess.java
@@ -16,21 +16,36 @@ import java.util.concurrent.locks.ReentrantLock;
import sd.config.SimulationConfig;
import sd.coordinator.SocketClient;
import sd.dashboard.StatsUpdatePayload;
-import sd.engine.TrafficLightThread;
+import sd.des.DESEventType;
+import sd.des.EventQueue;
+import sd.des.SimulationClock;
+import sd.des.SimulationEvent;
+import sd.des.TrafficLightEvent;
+import sd.logging.EventLogger;
import sd.model.Intersection;
import sd.model.Message;
import sd.model.MessageType;
import sd.model.TrafficLight;
+import sd.model.TrafficLightState;
import sd.model.Vehicle;
import sd.protocol.MessageProtocol;
import sd.protocol.SocketConnection;
import sd.serialization.SerializationException;
/**
- * Main class for an Intersection Process in the distributed traffic simulation.
- * * Each IntersectionProcess runs as an independent Java application (JVM
- * instance)
- * representing one of the five intersections (Cr1-Cr5) in the network.
+ * Representa uma única interseção na nossa simulação de tráfego distribuída.
+ *
+ * Esta classe opera como um processo independente (uma aplicação Java autónoma)
+ * e é responsável por:
+ * 1. Gerir os semáforos e a sua temporização.
+ * 2. Processar as chegadas e partidas de veículos.
+ * 3. Comunicar com outras interseções e com o dashboard.
+ *
+ * Utiliza uma abordagem de Simulação de Eventos Discretos (DES), onde as
+ * mudanças de estado (como semáforos a mudar para verde)
+ * são agendadas como eventos numa fila de prioridade, em vez de depender de
+ * loops contínuos ou threads em espera.
+ * Isto garante uma temporização precisa e uma execução eficiente.
*/
public class IntersectionProcess {
@@ -46,25 +61,31 @@ public class IntersectionProcess {
private final ExecutorService connectionHandlerPool;
- private final ExecutorService trafficLightPool;
-
private ScheduledExecutorService statsExecutor;
private ScheduledExecutorService departureExecutor;
- private volatile boolean running; // Quando uma thread escreve um valor volatile, todas as outras
- // threads veem a mudança imediatamente.
+ private volatile boolean running;
+ /** Escala temporal para visualização: tempo_real = tempo_simulado * escala */
+ private double timeScale;
+
+ /** Relógio central da simulação */
+ private final SimulationClock clock;
+ /** Fila de eventos discretos agendados */
+ private final EventQueue eventQueue;
+ /** Sistema de registo de eventos */
+ private final EventLogger eventLogger;
+ /** Thread dedicada ao processamento sequencial de eventos DES */
+ private Thread eventProcessorThread;
- // Traffic Light Coordination
/**
- * Lock to ensure mutual exclusion between traffic lights.
- * Only one traffic light can be green at any given time within this
- * intersection.
+ * Lock para exclusão mútua entre semáforos.
+ * Garante que apenas um semáforo pode estar verde de cada vez nesta interseção.
*/
private final Lock trafficCoordinationLock;
/**
- * Tracks which direction currently has the green light.
- * null means no direction is currently green (all are red).
+ * Regista qual direção tem atualmente o sinal verde.
+ * {@code null} significa que todos os semáforos estão vermelhos.
*/
private volatile String currentGreenDirection;
@@ -73,11 +94,11 @@ public class IntersectionProcess {
private volatile int totalDepartures = 0;
/**
- * Constructs a new IntersectionProcess.
- *
- * @param intersectionId The ID of this intersection (e.g., "Cr1").
- * @param configFilePath Path to the simulation.properties file.
- * @throws IOException If configuration cannot be loaded.
+ * Inicializa o processo da interseção.
+ *
+ * @param intersectionId O identificador único para esta interseção (ex: "Cr1").
+ * @param configFilePath O caminho para o ficheiro de configuração.
+ * @throws IOException Se houver algum problema ao ler a configuração.
*/
public IntersectionProcess(String intersectionId, String configFilePath) throws IOException {
this.intersectionId = intersectionId;
@@ -85,18 +106,327 @@ public class IntersectionProcess {
this.intersection = new Intersection(intersectionId);
this.outgoingConnections = new HashMap<>();
this.connectionHandlerPool = Executors.newCachedThreadPool();
- this.trafficLightPool = Executors.newFixedThreadPool(4); // Max 4 directions
this.statsExecutor = Executors.newSingleThreadScheduledExecutor();
this.departureExecutor = Executors.newScheduledThreadPool(4);
this.running = false;
this.trafficCoordinationLock = new ReentrantLock(true); // Fair lock to prevent starvation
this.currentGreenDirection = null;
+ this.timeScale = config.getTimeScale();
+
+ // Initialize DES components
+ this.clock = new SimulationClock();
+ this.eventQueue = new EventQueue(true); // Track history for debugging
+ this.eventLogger = EventLogger.getInstance();
+
+ eventLogger.log(sd.logging.EventType.PROCESS_STARTED, intersectionId,
+ "Intersection process initialized with DES architecture");
System.out.println("=".repeat(60));
- System.out.println("INTERSECTION PROCESS: " + intersectionId);
+ System.out.println("INTERSECTION PROCESS: " + intersectionId + " (DES Mode)");
System.out.println("=".repeat(60));
}
+ /**
+ * Inicia o ciclo de processamento de eventos.
+ *
+ * Esta thread é o coração do modelo DES para esta interseção. Retira eventos da
+ * fila
+ * e executa-os por ordem cronológica. Enquanto a thread principal trata das
+ * operações de I/O de rede (receção de veículos),
+ * esta thread trata da lógica da simulação (semáforos, travessias de veículos).
+ */
+ private void startEventProcessor() {
+ eventProcessorThread = new Thread(() -> {
+ eventLogger.log(sd.logging.EventType.SIMULATION_STARTED, intersectionId,
+ "Event processor thread started");
+
+ // Keep running while the process is active
+ double lastTime = 0.0;
+ while (running) {
+ SimulationEvent event = eventQueue.poll();
+ if (event == null) {
+ // No events currently, wait a bit before checking again
+ try {
+ Thread.sleep(50); // Short sleep to avoid busy-waiting
+ } catch (InterruptedException e) {
+ Thread.currentThread().interrupt();
+ break;
+ }
+ continue;
+ }
+
+ // Apply time scaling for visualization
+ if (timeScale > 0) {
+ double simTimeDelta = event.getTimestamp() - lastTime;
+ long realDelayMs = (long) (simTimeDelta * timeScale * 1000);
+ if (realDelayMs > 0) {
+ try {
+ Thread.sleep(realDelayMs);
+ } catch (InterruptedException e) {
+ Thread.currentThread().interrupt();
+ break;
+ }
+ }
+ lastTime = event.getTimestamp();
+ }
+
+ // Advance clock to event time
+ clock.advanceTo(event.getTimestamp());
+
+ // Process the event
+ processEvent(event);
+ }
+
+ eventLogger.log(sd.logging.EventType.SIMULATION_STOPPED, intersectionId,
+ String.format("Event processor thread terminated at time %.2f", clock.getCurrentTime()));
+ }, "EventProcessor-" + intersectionId);
+
+ eventProcessorThread.start();
+ }
+
+ /**
+ * Processa um evento da fila de simulação.
+ * Cada tipo de evento é encaminhado para o seu tratador específico.
+ *
+ * @param event o evento a processar
+ */
+ private void processEvent(SimulationEvent event) {
+ try {
+ switch (event.getType()) {
+ case TRAFFIC_LIGHT_CHANGE:
+ handleTrafficLightChangeEvent(event);
+ break;
+
+ case VEHICLE_ARRIVAL:
+ // Vehicle arrivals are still handled via network messages
+ // This event type is for internal scheduling if needed
+ break;
+
+ case VEHICLE_CROSSING_START:
+ handleVehicleCrossingStartEvent(event);
+ break;
+
+ case VEHICLE_CROSSING_END:
+ handleVehicleCrossingEndEvent(event);
+ break;
+
+ case SIMULATION_END:
+ handleSimulationEndEvent(event);
+ break;
+
+ default:
+ System.err.println("[" + intersectionId + "] Unknown event type: " + event.getType());
+ }
+ } catch (Exception e) {
+ System.err.println("[" + intersectionId + "] Error processing event " + event.getType() +
+ " at time " + event.getTimestamp() + ": " + e.getMessage());
+ e.printStackTrace();
+ }
+ }
+
+ /**
+ * Trata da mudança dos semáforos.
+ *
+ * Quando um semáforo muda de estado, registamos o evento, atualizamos o modelo
+ * e, se tiver mudado para VERDE,
+ * verificamos imediatamente se há veículos à espera para atravessar.
+ * Também agendamos aqui o *próximo* evento de mudança, mantendo o ciclo ativo.
+ */
+ private void handleTrafficLightChangeEvent(SimulationEvent event) {
+ TrafficLightEvent tlEvent = (TrafficLightEvent) event.getPayload();
+ TrafficLight light = tlEvent.getLight();
+ String direction = tlEvent.getDirection();
+
+ // Toggle state
+ TrafficLightState oldState = light.getState();
+ TrafficLightState newState = (oldState == TrafficLightState.GREEN) ? TrafficLightState.RED
+ : TrafficLightState.GREEN;
+
+ light.changeState(newState);
+
+ sd.logging.EventType logEventType = (newState == TrafficLightState.GREEN)
+ ? sd.logging.EventType.LIGHT_CHANGED_GREEN
+ : sd.logging.EventType.LIGHT_CHANGED_RED;
+
+ eventLogger.log(logEventType, intersectionId,
+ String.format("Direction %s changed to %s at time %.2f",
+ direction, newState, event.getTimestamp()));
+
+ // If light turned GREEN, process queued vehicles
+ if (newState == TrafficLightState.GREEN) {
+ processQueuedVehiclesForLight(light, event.getTimestamp());
+ }
+
+ // Schedule next state change
+ double nextChangeTime = event.getTimestamp() +
+ (newState == TrafficLightState.GREEN ? light.getGreenTime() : light.getRedTime());
+
+ SimulationEvent nextEvent = new SimulationEvent(
+ nextChangeTime,
+ DESEventType.TRAFFIC_LIGHT_CHANGE,
+ tlEvent);
+ eventQueue.schedule(nextEvent);
+ }
+
+ /**
+ * Processa a fila de veículos quando um semáforo fica verde.
+ *
+ * Para cada veículo na fila:
+ *
+ * - Calcula o tempo de travessia com base no tipo de veículo
+ * - Verifica se cabe na duração restante do sinal verde
+ * - Agenda o evento de partida do veículo
+ *
+ *
+ * Os veículos que não couberem no tempo verde ficam à espera do próximo ciclo.
+ *
+ * @param light o semáforo que acabou de ficar verde
+ * @param currentTime o tempo atual da simulação em segundos
+ */
+ private void processQueuedVehiclesForLight(TrafficLight light, double currentTime) {
+ double greenDuration = light.getGreenTime();
+ double timeOffset = 0.0;
+
+ int queueSize = light.getQueueSize();
+ System.out.printf("[%s] Processing queue for %s (GREEN for %.2fs, queue size: %d, currentTime=%.2f)%n",
+ intersectionId, light.getId(), greenDuration, queueSize, currentTime);
+
+ // Process vehicles while queue not empty and within green light duration
+ while (light.getQueueSize() > 0) {
+ // Calculate crossing time for next vehicle (peek at queue size to estimate)
+ // We'll use LIGHT vehicle as default for estimation
+ double crossingTime = config.getLightVehicleCrossingTime();
+
+ // Check if another vehicle can fit in remaining green time
+ if (timeOffset + crossingTime > greenDuration) {
+ break; // No more vehicles can cross this green phase
+ }
+
+ // Remove vehicle from queue
+ Vehicle vehicle = light.removeVehicle();
+ if (vehicle == null)
+ break;
+
+ // Get actual crossing time for this vehicle
+ crossingTime = getCrossingTimeForVehicle(vehicle);
+
+ // Schedule crossing
+ double crossingStartTime = currentTime + timeOffset;
+ scheduleVehicleCrossing(vehicle, crossingStartTime, crossingTime);
+
+ // Update offset for next vehicle
+ timeOffset += crossingTime;
+
+ System.out.printf("[%s] Scheduled vehicle %s to cross at t=%.2f (duration=%.2fs)%n",
+ intersectionId, vehicle.getId(), crossingStartTime, crossingTime);
+ }
+ }
+
+ /**
+ * Agenda a travessia e partida de um veículo.
+ * Cria um evento de fim de travessia agendado para o tempo correto.
+ *
+ * @param vehicle o veículo que vai atravessar
+ * @param startTime quando a travessia começa (segundos de simulação)
+ * @param crossingDuration quanto tempo demora a atravessar (segundos)
+ */
+ private void scheduleVehicleCrossing(Vehicle vehicle, double startTime, double crossingDuration) {
+ // Schedule crossing end (when vehicle departs)
+ double departureTime = startTime + crossingDuration;
+
+ // Create event with vehicle as payload
+ SimulationEvent departureEvent = new SimulationEvent(
+ departureTime,
+ DESEventType.VEHICLE_CROSSING_END,
+ vehicle);
+ eventQueue.schedule(departureEvent);
+
+ eventLogger.log(sd.logging.EventType.VEHICLE_QUEUED, intersectionId,
+ String.format("Vehicle %s crossing scheduled: %.2fs to %.2fs",
+ vehicle.getId(), startTime, departureTime));
+ }
+
+ /**
+ * Calcula o tempo de travessia com base no tipo de veículo.
+ * Bicicletas são mais rápidas, veículos pesados mais lentos.
+ *
+ * @param vehicle o veículo para calcular o tempo
+ * @return tempo de travessia em segundos
+ */
+ private double getCrossingTimeForVehicle(Vehicle vehicle) {
+ return switch (vehicle.getType()) {
+ case BIKE -> config.getBikeVehicleCrossingTime();
+ case LIGHT -> config.getLightVehicleCrossingTime();
+ case HEAVY -> config.getHeavyVehicleCrossingTime();
+ default -> config.getLightVehicleCrossingTime();
+ };
+ }
+
+ /**
+ * Trata o evento de início de travessia de um veículo.
+ * (Implementação futura - atualmente apenas regista o evento)
+ *
+ * @param event o evento de início de travessia
+ */
+ private void handleVehicleCrossingStartEvent(SimulationEvent event) {
+ // Implementation will depend on how vehicle crossing is modeled
+ // For now, log the event
+ eventLogger.log(sd.logging.EventType.VEHICLE_DEPARTED, intersectionId,
+ "Vehicle crossing started at time " + event.getTimestamp());
+ }
+
+ /**
+ * Trata o fim da travessia de um veículo pela interseção.
+ * Atualiza estatísticas, regista o tempo de travessia e envia o veículo
+ * para o próximo destino na sua rota.
+ *
+ * @param event evento contendo o veículo que terminou a travessia
+ */
+ private void handleVehicleCrossingEndEvent(SimulationEvent event) {
+ Vehicle vehicle = (Vehicle) event.getPayload();
+
+ // Add crossing time to vehicle stats
+ double crossingTime = getCrossingTimeForVehicle(vehicle);
+ vehicle.addCrossingTime(crossingTime);
+
+ // Update intersection statistics
+ intersection.incrementVehiclesSent();
+
+ // Send vehicle to next destination
+ sendVehicleToNextDestination(vehicle);
+
+ eventLogger.log(sd.logging.EventType.VEHICLE_DEPARTED, intersectionId,
+ String.format("Vehicle %s departed at time %.2f", vehicle.getId(), event.getTimestamp()));
+ }
+
+ /**
+ * Trata o evento de fim da simulação.
+ * Define a flag de execução como falsa para terminar o processamento.
+ *
+ * @param event o evento de fim de simulação
+ */
+ private void handleSimulationEndEvent(SimulationEvent event) {
+ eventLogger.log(sd.logging.EventType.SIMULATION_STOPPED, intersectionId,
+ String.format("Simulation ended at time %.2f", event.getTimestamp()));
+ running = false;
+ }
+
+ /**
+ * Exporta o histórico completo de eventos para um ficheiro.
+ * Útil para análise posterior e debugging da simulação.
+ *
+ * @param outputPath caminho do ficheiro onde guardar o histórico
+ */
+ public void exportEventHistory(String outputPath) {
+ String history = eventQueue.exportEventHistory();
+ try (java.io.PrintWriter writer = new java.io.PrintWriter(outputPath)) {
+ writer.println(history);
+ System.out.println("[" + intersectionId + "] Event history exported to: " + outputPath);
+ } catch (java.io.FileNotFoundException e) {
+ System.err.println("[" + intersectionId + "] Failed to export event history: " + e.getMessage());
+ }
+ }
+
// Main entry point for running an intersection process
public static void main(String[] args) {
if (args.length < 1) {
@@ -139,7 +469,7 @@ public class IntersectionProcess {
}
/**
- * Establishes connection to the dashboard server for statistics reporting.
+ * Estabelece ligação ao servidor do dashboard para reportar estatísticas.
*/
private void connectToDashboard() {
try {
@@ -163,10 +493,9 @@ public class IntersectionProcess {
}
/**
- * Creates traffic lights for this intersection based on its physical
- * connections.
- * Each intersection has different number and directions of traffic lights
- * according to the network topology.
+ * Cria os semáforos para esta interseção com base nas suas ligações físicas.
+ * Cada interseção tem um número e direções de semáforos diferentes de acordo
+ * com a topologia da rede.
*/
private void createTrafficLights() {
System.out.println("\n[" + intersectionId + "] Creating traffic lights...");
@@ -226,10 +555,11 @@ public class IntersectionProcess {
}
/**
- * Requests permission for a traffic light to turn green.
- * Blocks until permission is granted (no other light is green).
+ * Solicita permissão para um semáforo ficar verde.
+ * Bloqueia até que a permissão seja concedida (nenhum outro semáforo está
+ * verde).
*
- * @param direction The direction requesting green light
+ * @param direction A direção que solicita o sinal verde
*/
public void requestGreenLight(String direction) {
trafficCoordinationLock.lock();
@@ -237,9 +567,10 @@ public class IntersectionProcess {
}
/**
- * Releases the green light permission, allowing another light to turn green.
+ * Liberta a permissão de sinal verde, permitindo que outro semáforo fique
+ * verde.
*
- * @param direction The direction releasing green light
+ * @param direction A direção que liberta o sinal verde
*/
public void releaseGreenLight(String direction) {
if (direction.equals(currentGreenDirection)) {
@@ -249,25 +580,49 @@ public class IntersectionProcess {
}
/**
- * Starts all traffic light threads.
+ * Modo DES: Agenda os eventos iniciais de mudança de semáforo.
+ * Isto substitui a antiga abordagem baseada em threads startTrafficLights().
*/
- private void startTrafficLights() {
- System.out.println("\n[" + intersectionId + "] Starting traffic light threads...");
+ private void scheduleInitialTrafficLightEvents() {
+ System.out.println("\n[" + intersectionId + "] Scheduling initial traffic light events (DES mode)...");
+
+ double currentTime = clock.getCurrentTime();
+ System.out.printf("[%s] Initial clock time: %.2f%n", intersectionId, currentTime);
for (TrafficLight light : intersection.getTrafficLights()) {
+ String direction = light.getDirection();
- TrafficLightThread lightTask = new TrafficLightThread(light, this, config);
+ // Set initial state (first light starts green, others red)
+ boolean isFirstLight = intersection.getTrafficLights().indexOf(light) == 0;
+ TrafficLightState initialState = isFirstLight ? TrafficLightState.GREEN : TrafficLightState.RED;
+ light.changeState(initialState);
- trafficLightPool.submit(lightTask);
+ // Schedule first state change
+ double firstChangeTime = currentTime +
+ (initialState == TrafficLightState.GREEN ? light.getGreenTime() : light.getRedTime());
- System.out.println(" Started thread for: " + light.getDirection());
+ TrafficLightEvent tlEvent = new TrafficLightEvent(light, direction, intersectionId);
+ SimulationEvent event = new SimulationEvent(
+ firstChangeTime,
+ DESEventType.TRAFFIC_LIGHT_CHANGE,
+ tlEvent);
+ eventQueue.schedule(event);
+
+ System.out.println(" Scheduled first event for direction " + direction +
+ " (initial: " + initialState + ", change at t=" + firstChangeTime + ")");
+
+ eventLogger.log(
+ initialState == TrafficLightState.GREEN ? sd.logging.EventType.LIGHT_CHANGED_GREEN
+ : sd.logging.EventType.LIGHT_CHANGED_RED,
+ intersectionId,
+ "Direction " + direction + " initialized to " + initialState);
}
}
/**
- * Sends a vehicle to its next destination via socket connection.
+ * Envia um veículo para o seu próximo destino via ligação socket.
*
- * @param vehicle The vehicle that has crossed this intersection.
+ * @param vehicle O veículo que atravessou esta interseção.
*/
public void sendVehicleToNextDestination(Vehicle vehicle) {
String nextDestination = vehicle.getCurrentDestination();
@@ -281,7 +636,6 @@ public class IntersectionProcess {
default -> multiplier = 1.0;
}
double travelTime = baseTime * multiplier;
- long travelTimeMs = (long) (travelTime * 1000);
System.out.printf("[%s] Vehicle %s departing to %s. Travel time: %.2fs%n",
intersectionId, vehicle.getId(), nextDestination, travelTime);
@@ -289,41 +643,46 @@ public class IntersectionProcess {
// Record departure immediately as it leaves the intersection
recordVehicleDeparture();
- // Schedule the arrival at the next node
- departureExecutor.schedule(() -> {
- try {
- // Get or create connection to next destination
- SocketConnection connection = getOrCreateConnection(nextDestination);
-
- // Create and send message using Message class
- MessageProtocol message = new Message(
- MessageType.VEHICLE_TRANSFER,
- intersectionId,
- nextDestination,
- vehicle,
- System.currentTimeMillis());
-
- connection.sendMessage(message);
-
- System.out.println("[" + intersectionId + "] Vehicle " + vehicle.getId() +
- " arrived at " + nextDestination + " (msg sent)");
-
- // Note: vehicle route is advanced when it arrives at the next intersection
-
- } catch (IOException | InterruptedException e) {
- System.err.println("[" + intersectionId + "] Failed to send vehicle " +
- vehicle.getId() + " to " + nextDestination + ": " + e.getMessage());
- }
- }, travelTimeMs, TimeUnit.MILLISECONDS);
+ // In DES mode, send immediately (no real-time delay)
+ sendVehicleImmediately(vehicle, nextDestination);
}
/**
- * Gets an existing connection to a destination or creates a new one.
+ * Envia imediatamente um veículo para o seu destino via rede.
+ */
+ private void sendVehicleImmediately(Vehicle vehicle, String nextDestination) {
+ try {
+ // Get or create connection to next destination
+ SocketConnection connection = getOrCreateConnection(nextDestination);
+
+ // Create and send message using Message class
+ MessageProtocol message = new Message(
+ MessageType.VEHICLE_TRANSFER,
+ intersectionId,
+ nextDestination,
+ vehicle,
+ System.currentTimeMillis());
+
+ connection.sendMessage(message);
+
+ System.out.println("[" + intersectionId + "] Vehicle " + vehicle.getId() +
+ " arrived at " + nextDestination + " (msg sent)");
+
+ // Note: vehicle route is advanced when it arrives at the next intersection
+
+ } catch (IOException | InterruptedException e) {
+ System.err.println("[" + intersectionId + "] Failed to send vehicle " +
+ vehicle.getId() + " to " + nextDestination + ": " + e.getMessage());
+ }
+ }
+
+ /**
+ * Obtém uma ligação existente para um destino ou cria uma nova.
*
- * @param destinationId The ID of the destination node.
- * @return The SocketConnection to that destination.
- * @throws IOException If connection cannot be established.
- * @throws InterruptedException If connection attempt is interrupted.
+ * @param destinationId O ID do nó de destino.
+ * @return A SocketConnection para esse destino.
+ * @throws IOException Se a ligação não puder ser estabelecida.
+ * @throws InterruptedException Se a tentativa de ligação for interrompida.
*/
private synchronized SocketConnection getOrCreateConnection(String destinationId)
throws IOException, InterruptedException {
@@ -343,10 +702,10 @@ public class IntersectionProcess {
}
/**
- * Gets the host address for a destination node from configuration.
+ * Obtém o endereço host para um nó de destino a partir da configuração.
*
- * @param destinationId The destination node ID.
- * @return The host address.
+ * @param destinationId O ID do nó de destino.
+ * @return O endereço host.
*/
private String getHostForDestination(String destinationId) {
if (destinationId.equals("S")) {
@@ -357,10 +716,10 @@ public class IntersectionProcess {
}
/**
- * Gets the port number for a destination node from configuration.
+ * Obtém o número da porta para um nó de destino a partir da configuração.
*
- * @param destinationId The destination node ID.
- * @return The port number.
+ * @param destinationId O ID do nó de destino.
+ * @return O número da porta.
*/
private int getPortForDestination(String destinationId) {
if (destinationId.equals("S")) {
@@ -371,10 +730,10 @@ public class IntersectionProcess {
}
/**
- * Starts the server socket and begins accepting incoming connections.
- * This is the main listening loop of the process.
+ * Inicia o socket do servidor e começa a aceitar ligações recebidas.
+ * Este é o loop principal de escuta do processo.
*
- * @throws IOException If the server socket cannot be created.
+ * @throws IOException Se o socket do servidor não puder ser criado.
*/
public void start() throws IOException {
int port = config.getIntersectionPort(intersectionId);
@@ -383,8 +742,10 @@ public class IntersectionProcess {
System.out.println("\n[" + intersectionId + "] Server started on port " + port);
- // Start traffic light threads when running is true
- startTrafficLights();
+ // DES Mode: Schedule initial events and start event processor
+ scheduleInitialTrafficLightEvents();
+ startEventProcessor();
+ System.out.println("[" + intersectionId + "] Running in DES mode");
// Start stats updater
statsExecutor.scheduleAtFixedRate(this::sendStatsToDashboard, 1, 1, TimeUnit.SECONDS);
@@ -429,10 +790,10 @@ public class IntersectionProcess {
}
/**
- * Handles an incoming connection from another process.
- * Continuously listens for vehicle transfer messages.
+ * Trata uma ligação recebida de outro processo.
+ * Escuta continuamente mensagens de transferência de veículos.
*
- * @param clientSocket The accepted socket connection.
+ * @param clientSocket A ligação socket aceite.
*/
private void handleIncomingConnection(Socket clientSocket) {
try {
@@ -486,6 +847,10 @@ public class IntersectionProcess {
// Add vehicle to appropriate queue
intersection.receiveVehicle(vehicle);
+ // Log queue status after adding vehicle
+ System.out.printf("[%s] Vehicle %s queued. Total queue size: %d%n",
+ intersectionId, vehicle.getId(), intersection.getTotalQueueSize());
+
// Record arrival for statistics
recordVehicleArrival();
} else if (message.getType() == MessageType.SHUTDOWN) {
@@ -550,9 +915,7 @@ public class IntersectionProcess {
}
// 2. Shutdown thread pools with force
- if (trafficLightPool != null && !trafficLightPool.isShutdown()) {
- trafficLightPool.shutdownNow();
- }
+
if (connectionHandlerPool != null && !connectionHandlerPool.isShutdown()) {
connectionHandlerPool.shutdownNow();
}
@@ -565,9 +928,7 @@ public class IntersectionProcess {
// 3. Wait briefly for termination (don't block forever)
try {
- if (trafficLightPool != null) {
- trafficLightPool.awaitTermination(1, TimeUnit.SECONDS);
- }
+
if (connectionHandlerPool != null) {
connectionHandlerPool.awaitTermination(1, TimeUnit.SECONDS);
}
diff --git a/main/src/main/java/sd/aggregator/AggregatorClient.java b/main/src/main/java/sd/aggregator/AggregatorClient.java
new file mode 100644
index 0000000..e69de29
diff --git a/main/src/main/java/sd/aggregator/AggregatorServer.java b/main/src/main/java/sd/aggregator/AggregatorServer.java
new file mode 100644
index 0000000..e69de29
diff --git a/main/src/main/java/sd/analysis/MultiRunAnalyzer.java b/main/src/main/java/sd/analysis/MultiRunAnalyzer.java
new file mode 100644
index 0000000..cb927f6
--- /dev/null
+++ b/main/src/main/java/sd/analysis/MultiRunAnalyzer.java
@@ -0,0 +1,223 @@
+package sd.analysis;
+
+import java.io.BufferedWriter;
+import java.io.FileWriter;
+import java.io.IOException;
+import java.io.PrintWriter;
+import java.text.SimpleDateFormat;
+import java.util.*;
+
+import sd.model.VehicleType;
+
+/**
+ * Executes multiple simulation runs and aggregates results.
+ * Calculates statistical measures including mean, standard deviation,
+ * and confidence intervals across all runs.
+ */
+public class MultiRunAnalyzer {
+
+ private final List results;
+ private final String configurationFile;
+
+ public MultiRunAnalyzer(String configurationFile) {
+ this.configurationFile = configurationFile;
+ this.results = new ArrayList<>();
+ }
+
+ /**
+ * Adds a completed simulation run result.
+ */
+ public void addResult(SimulationRunResult result) {
+ results.add(result);
+ }
+
+ /**
+ * Gets the number of completed runs.
+ */
+ public int getRunCount() {
+ return results.size();
+ }
+
+ /**
+ * Generates a comprehensive statistical report.
+ */
+ public String generateReport() {
+ if (results.isEmpty()) {
+ return "No simulation results to analyze.";
+ }
+
+ StringBuilder report = new StringBuilder();
+
+ // Header
+ report.append("=".repeat(80)).append("\n");
+ report.append("MULTI-RUN STATISTICAL ANALYSIS\n");
+ report.append("=".repeat(80)).append("\n");
+ report.append("Configuration: ").append(configurationFile).append("\n");
+ report.append("Number of Runs: ").append(results.size()).append("\n");
+ report.append("Analysis Date: ").append(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date())).append("\n");
+ report.append("\n");
+
+ // Global metrics
+ report.append("-".repeat(80)).append("\n");
+ report.append("GLOBAL METRICS\n");
+ report.append("-".repeat(80)).append("\n\n");
+
+ report.append(analyzeMetric("Vehicles Generated",
+ extractValues(r -> (double) r.getTotalVehiclesGenerated())));
+ report.append("\n");
+
+ report.append(analyzeMetric("Vehicles Completed",
+ extractValues(r -> (double) r.getTotalVehiclesCompleted())));
+ report.append("\n");
+
+ report.append(analyzeMetric("Completion Rate (%)",
+ extractValues(r -> r.getTotalVehiclesGenerated() > 0
+ ? 100.0 * r.getTotalVehiclesCompleted() / r.getTotalVehiclesGenerated()
+ : 0.0)));
+ report.append("\n");
+
+ report.append(analyzeMetric("Average System Time (seconds)",
+ extractValues(r -> r.getAverageSystemTime())));
+ report.append("\n");
+
+ report.append(analyzeMetric("Average Waiting Time (seconds)",
+ extractValues(r -> r.getAverageWaitingTime())));
+ report.append("\n");
+
+ // Per-vehicle-type analysis
+ report.append("\n");
+ report.append("-".repeat(80)).append("\n");
+ report.append("PER-VEHICLE-TYPE ANALYSIS\n");
+ report.append("-".repeat(80)).append("\n\n");
+
+ for (VehicleType type : VehicleType.values()) {
+ report.append("--- ").append(type).append(" ---\n");
+
+ report.append(analyzeMetric(" Vehicle Count",
+ extractValues(r -> (double) r.getVehicleCountByType().getOrDefault(type, 0))));
+ report.append("\n");
+
+ report.append(analyzeMetric(" Avg System Time (seconds)",
+ extractValues(r -> r.getAvgSystemTimeByType().getOrDefault(type, 0.0))));
+ report.append("\n");
+
+ report.append(analyzeMetric(" Avg Waiting Time (seconds)",
+ extractValues(r -> r.getAvgWaitTimeByType().getOrDefault(type, 0.0))));
+ report.append("\n\n");
+ }
+
+ // Per-intersection analysis
+ report.append("-".repeat(80)).append("\n");
+ report.append("PER-INTERSECTION ANALYSIS\n");
+ report.append("-".repeat(80)).append("\n\n");
+
+ Set allIntersections = new TreeSet<>();
+ for (SimulationRunResult result : results) {
+ allIntersections.addAll(result.getMaxQueueSizeByIntersection().keySet());
+ }
+
+ for (String intersection : allIntersections) {
+ report.append("--- ").append(intersection).append(" ---\n");
+
+ report.append(analyzeMetric(" Max Queue Size",
+ extractValues(r -> (double) r.getMaxQueueSizeByIntersection().getOrDefault(intersection, 0))));
+ report.append("\n");
+
+ report.append(analyzeMetric(" Avg Queue Size",
+ extractValues(r -> r.getAvgQueueSizeByIntersection().getOrDefault(intersection, 0.0))));
+ report.append("\n");
+
+ report.append(analyzeMetric(" Vehicles Processed",
+ extractValues(r -> (double) r.getVehiclesProcessedByIntersection().getOrDefault(intersection, 0))));
+ report.append("\n\n");
+ }
+
+ // Individual run summaries
+ report.append("-".repeat(80)).append("\n");
+ report.append("INDIVIDUAL RUN SUMMARIES\n");
+ report.append("-".repeat(80)).append("\n\n");
+
+ for (SimulationRunResult result : results) {
+ report.append(result.toString()).append("\n\n");
+ }
+
+ report.append("=".repeat(80)).append("\n");
+ report.append("END OF REPORT\n");
+ report.append("=".repeat(80)).append("\n");
+
+ return report.toString();
+ }
+
+ /**
+ * Analyzes a single metric and returns formatted statistics.
+ */
+ private String analyzeMetric(String metricName, List values) {
+ if (values.isEmpty() || values.stream().allMatch(v -> v == 0.0)) {
+ return metricName + ": No data\n";
+ }
+
+ double mean = StatisticalAnalysis.mean(values);
+ double stdDev = StatisticalAnalysis.standardDeviation(values);
+ double[] ci = StatisticalAnalysis.confidenceInterval95(values);
+ double min = StatisticalAnalysis.min(values);
+ double max = StatisticalAnalysis.max(values);
+ double median = StatisticalAnalysis.median(values);
+
+ return String.format(
+ "%s:\n" +
+ " Mean: %10.2f Std Dev: %10.2f\n" +
+ " Median: %10.2f 95%% CI: [%.2f, %.2f]\n" +
+ " Min: %10.2f Max: %10.2f\n",
+ metricName, mean, stdDev, median, ci[0], ci[1], min, max
+ );
+ }
+
+ /**
+ * Extracts values using a lambda function.
+ */
+ private List extractValues(java.util.function.Function extractor) {
+ List values = new ArrayList<>();
+ for (SimulationRunResult result : results) {
+ values.add(extractor.apply(result));
+ }
+ return values;
+ }
+
+ /**
+ * Saves the report to a file.
+ */
+ public void saveReport(String filename) throws IOException {
+ try (PrintWriter writer = new PrintWriter(new BufferedWriter(new FileWriter(filename)))) {
+ writer.print(generateReport());
+ }
+ }
+
+ /**
+ * Generates a CSV summary for easy import into spreadsheet tools.
+ */
+ public void saveCSVSummary(String filename) throws IOException {
+ try (PrintWriter writer = new PrintWriter(new BufferedWriter(new FileWriter(filename)))) {
+ // Header
+ writer.println("Run,VehiclesGenerated,VehiclesCompleted,CompletionRate," +
+ "AvgSystemTime,AvgWaitingTime,MinSystemTime,MaxSystemTime");
+
+ // Data rows
+ for (SimulationRunResult result : results) {
+ double completionRate = result.getTotalVehiclesGenerated() > 0
+ ? 100.0 * result.getTotalVehiclesCompleted() / result.getTotalVehiclesGenerated()
+ : 0.0;
+
+ writer.printf("%d,%d,%d,%.2f,%.2f,%.2f,%.2f,%.2f\n",
+ result.getRunNumber(),
+ result.getTotalVehiclesGenerated(),
+ result.getTotalVehiclesCompleted(),
+ completionRate,
+ result.getAverageSystemTime(),
+ result.getAverageWaitingTime(),
+ result.getMinSystemTime(),
+ result.getMaxSystemTime()
+ );
+ }
+ }
+ }
+}
diff --git a/main/src/main/java/sd/analysis/SimulationBatchRunner.java b/main/src/main/java/sd/analysis/SimulationBatchRunner.java
new file mode 100644
index 0000000..7dd9547
--- /dev/null
+++ b/main/src/main/java/sd/analysis/SimulationBatchRunner.java
@@ -0,0 +1,172 @@
+package sd.analysis;
+
+import java.io.IOException;
+import java.nio.file.Files;
+import java.nio.file.Paths;
+import java.text.SimpleDateFormat;
+import java.util.Date;
+
+/**
+ * Orquestra múltiplas execuções de simulação para análise estatística.
+ *
+ * Em vez de correr uma única simulação manualmente, esta ferramenta permite
+ * correr um "lote"
+ * de N simulações consecutivas. Isto é essencial para recolher dados
+ * estatisticamente significativos
+ * (calcular intervalos de confiança, etc.) conforme exigido pelas
+ * especificações do projeto.
+ *
+ * Utilização:
+ * java sd.analysis.SimulationBatchRunner
+ *
+ */
+public class SimulationBatchRunner {
+
+ public static void main(String[] args) {
+ if (args.length < 3) {
+ System.err.println("Usage: SimulationBatchRunner ");
+ System.err.println("Example: SimulationBatchRunner simulation-medium.properties 10 results/medium");
+ System.exit(1);
+ }
+
+ String configFile = args[0];
+ int numRuns;
+ String outputDir = args[2];
+
+ try {
+ numRuns = Integer.parseInt(args[1]);
+ if (numRuns < 1 || numRuns > 100) {
+ throw new IllegalArgumentException("Number of runs must be between 1 and 100");
+ }
+ } catch (NumberFormatException e) {
+ System.err.println("Error: Invalid number of runs: " + args[1]);
+ System.exit(1);
+ return;
+ }
+
+ System.out.println("=".repeat(80));
+ System.out.println("SIMULATION BATCH RUNNER");
+ System.out.println("=".repeat(80));
+ System.out.println("Configuration: " + configFile);
+ System.out.println("Number of Runs: " + numRuns);
+ System.out.println("Output Directory: " + outputDir);
+ System.out.println("=".repeat(80));
+ System.out.println();
+
+ // Create output directory
+ try {
+ Files.createDirectories(Paths.get(outputDir));
+ } catch (IOException e) {
+ System.err.println("Failed to create output directory: " + e.getMessage());
+ System.exit(1);
+ }
+
+ MultiRunAnalyzer analyzer = new MultiRunAnalyzer(configFile);
+
+ // Execute runs
+ for (int i = 1; i <= numRuns; i++) {
+ System.out.println("\n" + "=".repeat(80));
+ System.out.println("STARTING RUN " + i + " OF " + numRuns);
+ System.out.println("=".repeat(80));
+
+ SimulationRunResult result = executeSimulationRun(i, configFile, outputDir);
+
+ if (result != null) {
+ analyzer.addResult(result);
+ System.out.println("\n" + result);
+ } else {
+ System.err.println("Run " + i + " failed!");
+ }
+
+ // Pause between runs
+ if (i < numRuns) {
+ System.out.println("\nWaiting 10 seconds before next run...");
+ try {
+ Thread.sleep(10000);
+ } catch (InterruptedException e) {
+ Thread.currentThread().interrupt();
+ break;
+ }
+ }
+ }
+
+ // Generate reports
+ System.out.println("\n\n" + "=".repeat(80));
+ System.out.println("ALL RUNS COMPLETE - GENERATING REPORTS");
+ System.out.println("=".repeat(80));
+
+ try {
+ String timestamp = new SimpleDateFormat("yyyyMMdd-HHmmss").format(new Date());
+ String reportFile = outputDir + "/analysis-report-" + timestamp + ".txt";
+ String csvFile = outputDir + "/summary-" + timestamp + ".csv";
+
+ analyzer.saveReport(reportFile);
+ analyzer.saveCSVSummary(csvFile);
+
+ System.out.println("\nReports generated:");
+ System.out.println(" - Analysis Report: " + reportFile);
+ System.out.println(" - CSV Summary: " + csvFile);
+ System.out.println();
+
+ // Print report to console
+ System.out.println(analyzer.generateReport());
+
+ } catch (IOException e) {
+ System.err.println("Failed to generate reports: " + e.getMessage());
+ e.printStackTrace();
+ }
+ }
+
+ /**
+ * Executa uma única instância da simulação.
+ *
+ * Idealmente, este método iniciaria todos os processos necessários
+ * (Interseções, Nó de Saída, Coordenador),
+ * esperaria que terminassem e depois recolheria os resultados.
+ *
+ * Atualmente, serve como um espaço reservado estrutural para demonstrar como
+ * funciona o pipeline de análise.
+ * Para correr uma simulação real, deve iniciar os componentes manualmente ou
+ * usar um script shell.
+ */
+ private static SimulationRunResult executeSimulationRun(int runNumber, String configFile, String outputDir) {
+ SimulationRunResult result = new SimulationRunResult(runNumber, configFile);
+
+ try {
+ // TODO: Implement actual simulation execution
+ // This would involve:
+ // 1. Starting intersection processes
+ // 2. Starting exit node process
+ // 3. Starting dashboard process
+ // 4. Running coordinator
+ // 5. Collecting results from dashboard/exit node
+ // 6. Shutting down all processes
+
+ System.out.println("NOTE: Actual simulation execution not yet implemented.");
+ System.out.println("This batch runner demonstrates the framework structure.");
+ System.out.println("To run actual simulations, you need to:");
+ System.out.println(" 1. Start all intersection processes manually");
+ System.out.println(" 2. Start exit node process");
+ System.out.println(" 3. Start dashboard process");
+ System.out.println(" 4. Run coordinator with the configuration file");
+ System.out.println(" 5. Results will be collected automatically");
+
+ // Placeholder: simulate some results
+ // In real implementation, these would be collected from the actual simulation
+ result.setTotalVehiclesGenerated(100);
+ result.setTotalVehiclesCompleted(85);
+ result.setAverageSystemTime(120.5);
+ result.setMinSystemTime(45.2);
+ result.setMaxSystemTime(250.8);
+ result.setAverageWaitingTime(45.3);
+
+ return result;
+
+ } catch (Exception e) {
+ System.err.println("Error executing run " + runNumber + ": " + e.getMessage());
+ e.printStackTrace();
+ return null;
+ }
+ }
+
+}
diff --git a/main/src/main/java/sd/analysis/SimulationRunResult.java b/main/src/main/java/sd/analysis/SimulationRunResult.java
new file mode 100644
index 0000000..4d8a608
--- /dev/null
+++ b/main/src/main/java/sd/analysis/SimulationRunResult.java
@@ -0,0 +1,143 @@
+package sd.analysis;
+
+import java.util.HashMap;
+import java.util.Map;
+
+import sd.model.VehicleType;
+
+/**
+ * Stores the results of a single simulation run.
+ * Contains all key metrics for post-simulation analysis.
+ */
+public class SimulationRunResult {
+
+ private final int runNumber;
+ private final String configurationFile;
+ private final long startTimeMillis;
+ private final long endTimeMillis;
+
+ // Global metrics
+ private int totalVehiclesGenerated;
+ private int totalVehiclesCompleted;
+ private double averageSystemTime; // seconds
+ private double minSystemTime; // seconds
+ private double maxSystemTime; // seconds
+ private double averageWaitingTime; // seconds
+
+ // Per-type metrics
+ private final Map vehicleCountByType;
+ private final Map avgSystemTimeByType;
+ private final Map avgWaitTimeByType;
+
+ // Per-intersection metrics
+ private final Map maxQueueSizeByIntersection;
+ private final Map avgQueueSizeByIntersection;
+ private final Map vehiclesProcessedByIntersection;
+
+ public SimulationRunResult(int runNumber, String configurationFile) {
+ this.runNumber = runNumber;
+ this.configurationFile = configurationFile;
+ this.startTimeMillis = System.currentTimeMillis();
+ this.endTimeMillis = 0;
+
+ this.vehicleCountByType = new HashMap<>();
+ this.avgSystemTimeByType = new HashMap<>();
+ this.avgWaitTimeByType = new HashMap<>();
+ this.maxQueueSizeByIntersection = new HashMap<>();
+ this.avgQueueSizeByIntersection = new HashMap<>();
+ this.vehiclesProcessedByIntersection = new HashMap<>();
+ }
+
+ public void markCompleted() {
+ // This will be called when the run finishes
+ }
+
+ // Getters
+ public int getRunNumber() { return runNumber; }
+ public String getConfigurationFile() { return configurationFile; }
+ public long getStartTimeMillis() { return startTimeMillis; }
+ public long getEndTimeMillis() { return endTimeMillis; }
+ public long getDurationMillis() { return endTimeMillis - startTimeMillis; }
+
+ public int getTotalVehiclesGenerated() { return totalVehiclesGenerated; }
+ public int getTotalVehiclesCompleted() { return totalVehiclesCompleted; }
+ public double getAverageSystemTime() { return averageSystemTime; }
+ public double getMinSystemTime() { return minSystemTime; }
+ public double getMaxSystemTime() { return maxSystemTime; }
+ public double getAverageWaitingTime() { return averageWaitingTime; }
+
+ public Map getVehicleCountByType() {
+ return new HashMap<>(vehicleCountByType);
+ }
+ public Map getAvgSystemTimeByType() {
+ return new HashMap<>(avgSystemTimeByType);
+ }
+ public Map getAvgWaitTimeByType() {
+ return new HashMap<>(avgWaitTimeByType);
+ }
+ public Map getMaxQueueSizeByIntersection() {
+ return new HashMap<>(maxQueueSizeByIntersection);
+ }
+ public Map getAvgQueueSizeByIntersection() {
+ return new HashMap<>(avgQueueSizeByIntersection);
+ }
+ public Map getVehiclesProcessedByIntersection() {
+ return new HashMap<>(vehiclesProcessedByIntersection);
+ }
+
+ // Setters
+ public void setTotalVehiclesGenerated(int count) {
+ this.totalVehiclesGenerated = count;
+ }
+ public void setTotalVehiclesCompleted(int count) {
+ this.totalVehiclesCompleted = count;
+ }
+ public void setAverageSystemTime(double time) {
+ this.averageSystemTime = time;
+ }
+ public void setMinSystemTime(double time) {
+ this.minSystemTime = time;
+ }
+ public void setMaxSystemTime(double time) {
+ this.maxSystemTime = time;
+ }
+ public void setAverageWaitingTime(double time) {
+ this.averageWaitingTime = time;
+ }
+
+ public void setVehicleCountByType(VehicleType type, int count) {
+ vehicleCountByType.put(type, count);
+ }
+ public void setAvgSystemTimeByType(VehicleType type, double time) {
+ avgSystemTimeByType.put(type, time);
+ }
+ public void setAvgWaitTimeByType(VehicleType type, double time) {
+ avgWaitTimeByType.put(type, time);
+ }
+ public void setMaxQueueSize(String intersection, int size) {
+ maxQueueSizeByIntersection.put(intersection, size);
+ }
+ public void setAvgQueueSize(String intersection, double size) {
+ avgQueueSizeByIntersection.put(intersection, size);
+ }
+ public void setVehiclesProcessed(String intersection, int count) {
+ vehiclesProcessedByIntersection.put(intersection, count);
+ }
+
+ @Override
+ public String toString() {
+ return String.format(
+ "Run #%d [%s]:\n" +
+ " Generated: %d, Completed: %d (%.1f%%)\n" +
+ " Avg System Time: %.2fs\n" +
+ " Avg Waiting Time: %.2fs",
+ runNumber,
+ configurationFile,
+ totalVehiclesGenerated,
+ totalVehiclesCompleted,
+ totalVehiclesGenerated > 0 ? 100.0 * totalVehiclesCompleted / totalVehiclesGenerated : 0.0,
+ averageSystemTime,
+ averageWaitingTime
+ );
+ }
+}
diff --git a/main/src/main/java/sd/analysis/StatisticalAnalysis.java b/main/src/main/java/sd/analysis/StatisticalAnalysis.java
new file mode 100644
index 0000000..c62a2f5
--- /dev/null
+++ b/main/src/main/java/sd/analysis/StatisticalAnalysis.java
@@ -0,0 +1,160 @@
+package sd.analysis;
+
+import java.util.ArrayList;
+import java.util.Collections;
+import java.util.List;
+
+/**
+ * Statistical analysis utilities for simulation results.
+ * Calculates mean, standard deviation, and confidence intervals.
+ */
+public class StatisticalAnalysis {
+
+ /**
+ * Calculates the mean (average) of a list of values.
+ */
+ public static double mean(List values) {
+ if (values == null || values.isEmpty()) {
+ return 0.0;
+ }
+ double sum = 0.0;
+ for (double value : values) {
+ sum += value;
+ }
+ return sum / values.size();
+ }
+
+ /**
+ * Calculates the sample standard deviation.
+ */
+ public static double standardDeviation(List values) {
+ if (values == null || values.size() < 2) {
+ return 0.0;
+ }
+
+ double mean = mean(values);
+ double sumSquaredDiff = 0.0;
+
+ for (double value : values) {
+ double diff = value - mean;
+ sumSquaredDiff += diff * diff;
+ }
+
+ // Sample standard deviation (n-1 denominator)
+ return Math.sqrt(sumSquaredDiff / (values.size() - 1));
+ }
+
+ /**
+ * Calculates the 95% confidence interval for the mean.
+ * Uses t-distribution for small samples (n < 30).
+ *
+ * @return Array of [lowerBound, upperBound]
+ */
+ public static double[] confidenceInterval95(List values) {
+ if (values == null || values.size() < 2) {
+ double m = mean(values);
+ return new double[]{m, m};
+ }
+
+ double mean = mean(values);
+ double stdDev = standardDeviation(values);
+ int n = values.size();
+
+ // Critical value from t-distribution (approximation for common sample sizes)
+ double tCritical = getTCriticalValue(n);
+
+ // Standard error of the mean
+ double standardError = stdDev / Math.sqrt(n);
+
+ // Margin of error
+ double marginOfError = tCritical * standardError;
+
+ return new double[]{
+ mean - marginOfError, // Lower bound
+ mean + marginOfError // Upper bound
+ };
+ }
+
+ /**
+ * Returns the t-critical value for 95% confidence interval.
+ * Approximations for common degrees of freedom (n-1).
+ */
+ private static double getTCriticalValue(int sampleSize) {
+ int df = sampleSize - 1; // degrees of freedom
+
+ // t-critical values for 95% confidence (two-tailed)
+ if (df >= 30) return 1.96; // z-score for large samples
+ if (df >= 20) return 2.086;
+ if (df >= 15) return 2.131;
+ if (df >= 10) return 2.228;
+ if (df >= 5) return 2.571;
+ if (df >= 3) return 3.182;
+ if (df >= 2) return 4.303;
+ return 12.706; // df = 1
+ }
+
+ /**
+ * Calculates the minimum value.
+ */
+ public static double min(List values) {
+ if (values == null || values.isEmpty()) {
+ return 0.0;
+ }
+ return Collections.min(values);
+ }
+
+ /**
+ * Calculates the maximum value.
+ */
+ public static double max(List values) {
+ if (values == null || values.isEmpty()) {
+ return 0.0;
+ }
+ return Collections.max(values);
+ }
+
+ /**
+ * Calculates the median value.
+ */
+ public static double median(List values) {
+ if (values == null || values.isEmpty()) {
+ return 0.0;
+ }
+
+ List sorted = new ArrayList<>(values);
+ Collections.sort(sorted);
+
+ int size = sorted.size();
+ if (size % 2 == 0) {
+ return (sorted.get(size / 2 - 1) + sorted.get(size / 2)) / 2.0;
+ } else {
+ return sorted.get(size / 2);
+ }
+ }
+
+ /**
+ * Formats a statistical summary as a string.
+ */
+ public static String formatSummary(String metricName, List values) {
+ if (values == null || values.isEmpty()) {
+ return metricName + ": No data";
+ }
+
+ double mean = mean(values);
+ double stdDev = standardDeviation(values);
+ double[] ci = confidenceInterval95(values);
+ double min = min(values);
+ double max = max(values);
+
+ return String.format(
+ "%s:\n" +
+ " Mean: %.2f\n" +
+ " Std Dev: %.2f\n" +
+ " 95%% CI: [%.2f, %.2f]\n" +
+ " Min: %.2f\n" +
+ " Max: %.2f\n" +
+ " Samples: %d",
+ metricName, mean, stdDev, ci[0], ci[1], min, max, values.size()
+ );
+ }
+}
diff --git a/main/src/main/java/sd/config/SimulationConfig.java b/main/src/main/java/sd/config/SimulationConfig.java
index 6c11b66..75306e3 100644
--- a/main/src/main/java/sd/config/SimulationConfig.java
+++ b/main/src/main/java/sd/config/SimulationConfig.java
@@ -14,16 +14,14 @@ import java.util.Properties;
import com.google.gson.Gson;
/**
- * Class to load and manage simulation configurations.
- * Configurations are read from a .properties file. This class provides
- * type-safe getter methods for all expected configuration parameters,
- * with default values to ensure robustness.
+ * Carrega e gere configurações da simulação.
+ *
+ * Lê propriedades de um ficheiro .properties e fornece getters
+ * type-safe com valores padrão para robustez.
*/
public class SimulationConfig {
- /**
- * Holds all properties loaded from the file.
- */
+ /** Propriedades carregadas do ficheiro */
private final Properties properties;
private NetworkConfig networkConfig;
@@ -54,18 +52,17 @@ public class SimulationConfig {
}
/**
- * Constructs a new SimulationConfig object by loading properties
- * from the specified file path.
+ * Carrega propriedades do ficheiro especificado.
*
- * This constructor attempts to load the configuration file using multiple
- * strategies:
- * 1. Direct file system path
- * 2. Classpath resource (with automatic path normalization)
- * 3. Classpath resource with leading slash
+ *
Tenta múltiplas estratégias:
+ *
+ * - Caminho direto no sistema de ficheiros
+ *
- Recurso no classpath (com normalização automática)
+ *
- Recurso no classpath com barra inicial
+ *
*
- * @param filePath The path to the .properties file (e.g.,
- * "src/main/resources/simulation.properties").
- * @throws IOException If the file cannot be found or read from any location.
+ * @param filePath caminho do ficheiro .properties
+ * @throws IOException se o ficheiro não for encontrado
*/
public SimulationConfig(String filePath) throws IOException {
properties = new Properties();
@@ -224,7 +221,15 @@ public class SimulationConfig {
* @return The simulation duration.
*/
public double getSimulationDuration() {
- return Double.parseDouble(properties.getProperty("simulation.duration", "3600.0"));
+ return Double.parseDouble(properties.getProperty("simulation.duration", "3600"));
+ }
+
+ /**
+ * Get time scaling factor for visualization.
+ * 0 = instant (pure DES), 0.01 = 100x speed, 0.1 = 10x speed, 1.0 = real-time
+ */
+ public double getTimeScale() {
+ return Double.parseDouble(properties.getProperty("simulation.time.scale", "0"));
}
/**
diff --git a/main/src/main/java/sd/coordinator/CoordinatorProcess.java b/main/src/main/java/sd/coordinator/CoordinatorProcess.java
index 2fb1423..54e4387 100644
--- a/main/src/main/java/sd/coordinator/CoordinatorProcess.java
+++ b/main/src/main/java/sd/coordinator/CoordinatorProcess.java
@@ -6,6 +6,11 @@ import java.util.Map;
import sd.config.SimulationConfig;
import sd.dashboard.StatsUpdatePayload;
+import sd.des.DESEventType;
+import sd.des.EventQueue;
+import sd.des.SimulationClock;
+import sd.des.SimulationEvent;
+import sd.logging.EventLogger;
import sd.model.Message;
import sd.model.MessageType;
import sd.model.Vehicle;
@@ -13,12 +18,17 @@ import sd.serialization.SerializationException;
import sd.util.VehicleGenerator;
/**
- * Coordinator process responsible for:
- * 1. Vehicle generation (using VehicleGenerator)
- * 2. Distributing vehicles to intersection processes via sockets
- * 3. Managing simulation timing and shutdown
+ * Coordenador central da simulação distribuída.
*
- * This is the main entry point for the distributed simulation architecture.
+ * Responsabilidades:
+ *
+ * - Gerar veículos segundo modelo configurado (Poisson/Fixed)
+ *
- Injetar veículos nas interseções de entrada
+ *
- Gerir relógio global e sincronizar componentes
+ *
+ *
+ * Usa motor DES para agendar eventos de geração com precisão.
+ * Mantém fila de prioridade e processa eventos em ordem cronológica.
*/
public class CoordinatorProcess {
@@ -26,10 +36,14 @@ public class CoordinatorProcess {
private final VehicleGenerator vehicleGenerator;
private final Map intersectionClients;
private SocketClient dashboardClient;
- private double currentTime;
+
+ private final SimulationClock clock;
+ private final EventQueue eventQueue;
+ private final EventLogger eventLogger;
+
private int vehicleCounter;
private boolean running;
- private double nextGenerationTime;
+ private double timeScale;
public static void main(String[] args) {
System.out.println("=".repeat(60));
@@ -65,15 +79,22 @@ public class CoordinatorProcess {
this.config = config;
this.vehicleGenerator = new VehicleGenerator(config);
this.intersectionClients = new HashMap<>();
- this.currentTime = 0.0;
this.vehicleCounter = 0;
this.running = false;
- this.nextGenerationTime = 0.0;
+ this.timeScale = config.getTimeScale();
+
+ this.clock = new SimulationClock();
+ this.eventQueue = new EventQueue(true);
+
+ this.eventLogger = EventLogger.getInstance();
+ eventLogger.log(sd.logging.EventType.PROCESS_STARTED, "Coordinator",
+ "Coordinator process initialized with DES architecture");
System.out.println("Coordinator initialized with configuration:");
System.out.println(" - Simulation duration: " + config.getSimulationDuration() + "s");
System.out.println(" - Arrival model: " + config.getArrivalModel());
System.out.println(" - Arrival rate: " + config.getArrivalRate() + " vehicles/s");
+ System.out.println(" - DES Mode: ENABLED (Event-driven, no time-stepping)");
}
public void initialize() {
@@ -107,58 +128,151 @@ public class CoordinatorProcess {
public void run() {
double duration = config.getSimulationDuration();
+ double drainTime = config.getDrainTime();
+ double totalDuration = duration + drainTime;
running = true;
- System.out.println("Starting vehicle generation simulation...");
- System.out.println("Duration: " + duration + " seconds");
+ System.out.println("Starting DES-based vehicle generation simulation...");
+ System.out.println("Duration: " + duration + "s (+ " + drainTime + "s drain)");
System.out.println();
+ // Log simulation start
+ eventLogger.log(sd.logging.EventType.SIMULATION_STARTED, "Coordinator",
+ String.format("Starting simulation - Duration: %.1fs", duration));
+
// Send simulation start time to all processes for synchronization
sendSimulationStartTime();
- nextGenerationTime = vehicleGenerator.getNextArrivalTime(currentTime);
- final double TIME_STEP = 0.1;
+ // Schedule first vehicle generation event
+ double firstArrivalTime = vehicleGenerator.getNextArrivalTime(clock.getCurrentTime());
+ eventQueue.schedule(new SimulationEvent(
+ firstArrivalTime,
+ DESEventType.VEHICLE_GENERATION,
+ null,
+ "Coordinator"));
- double drainTime = config.getDrainTime();
- double totalDuration = duration + drainTime;
- boolean draining = false;
+ // Schedule simulation end event
+ eventQueue.schedule(new SimulationEvent(
+ totalDuration,
+ DESEventType.SIMULATION_END,
+ null,
+ "Coordinator"));
- while (running && currentTime < totalDuration) {
- // Only generate vehicles during the main duration
- if (currentTime < duration) {
- if (currentTime >= nextGenerationTime) {
- generateAndSendVehicle();
- nextGenerationTime = vehicleGenerator.getNextArrivalTime(currentTime);
+ System.out.printf("Initial event scheduled at t=%.3fs\n", firstArrivalTime);
+ System.out.println("Entering DES event loop...\n");
+
+ // Main DES loop - process events in chronological order
+ double lastTime = 0.0;
+ while (running && !eventQueue.isEmpty()) {
+ SimulationEvent event = eventQueue.poll();
+
+ // Apply time scaling for visualization
+ if (timeScale > 0) {
+ double simTimeDelta = event.getTimestamp() - lastTime;
+ long realDelayMs = (long) (simTimeDelta * timeScale * 1000);
+ if (realDelayMs > 0) {
+ try {
+ Thread.sleep(realDelayMs);
+ } catch (InterruptedException e) {
+ Thread.currentThread().interrupt();
+ break;
+ }
}
- } else if (!draining) {
- draining = true;
- System.out.println("\n[t=" + String.format("%.2f", currentTime)
- + "] Generation complete. Entering DRAIN MODE for " + drainTime + "s...");
+ lastTime = event.getTimestamp();
}
- try {
- Thread.sleep((long) (TIME_STEP * 1000));
- } catch (InterruptedException e) {
- Thread.currentThread().interrupt();
- break;
- }
+ // Advance simulation time to event time
+ clock.advanceTo(event.getTimestamp());
- currentTime += TIME_STEP;
+ // Process the event
+ processEvent(event, duration);
}
System.out.println();
- System.out.println("Simulation complete at t=" + String.format("%.2f", currentTime) + "s");
+ System.out.printf("Simulation complete at t=%.2fs\n", clock.getCurrentTime());
System.out.println("Total vehicles generated: " + vehicleCounter);
+ System.out.println("Total events processed: " + eventQueue.getProcessedCount());
+
+ // Log simulation end
+ eventLogger.log(sd.logging.EventType.SIMULATION_STOPPED, "Coordinator",
+ String.format("Simulation ended - Vehicles: %d, Events: %d",
+ vehicleCounter, eventQueue.getProcessedCount()));
+
+ // Export event history (spec requirement: view complete event list)
+ exportEventHistory();
shutdown();
}
+ /**
+ * Trata um único evento de simulação.
+ *
+ * É aqui que a magia acontece. Dependendo do tipo de evento (como
+ * VEHICLE_GENERATION),
+ * atualizamos o estado do mundo. Para a geração de veículos, criamos um novo
+ * veículo,
+ * enviamo-lo para uma interseção e depois agendamos o *próximo* evento de
+ * geração.
+ */
+ private void processEvent(SimulationEvent event, double generationDuration) {
+ double currentTime = clock.getCurrentTime();
+
+ switch (event.getType()) {
+ case VEHICLE_GENERATION:
+ // Only generate if we're still in the generation phase
+ if (currentTime < generationDuration) {
+ generateAndSendVehicle();
+
+ // Schedule next vehicle generation
+ double nextArrivalTime = vehicleGenerator.getNextArrivalTime(currentTime);
+ eventQueue.schedule(new SimulationEvent(
+ nextArrivalTime,
+ DESEventType.VEHICLE_GENERATION,
+ null,
+ "Coordinator"));
+ } else if (currentTime == generationDuration) {
+ System.out.printf("\n[t=%.2f] Generation phase complete. Entering DRAIN MODE...\n",
+ currentTime);
+ }
+ break;
+
+ case SIMULATION_END:
+ System.out.printf("[t=%.2f] Simulation end event reached\n", currentTime);
+ running = false;
+ break;
+
+ default:
+ System.err.println("WARNING: Unknown event type: " + event.getType());
+ }
+ }
+
+ /**
+ * Guarda o histórico completo de eventos de simulação num ficheiro de texto.
+ * Isto permite-nos auditar exatamente o que aconteceu e quando, o que é crucial
+ * para depuração e verificação.
+ */
+ private void exportEventHistory() {
+ try (java.io.PrintWriter writer = new java.io.PrintWriter(
+ new java.io.FileWriter("logs/coordinator-event-history.txt"))) {
+ String history = eventQueue.exportEventHistory();
+ writer.println(history);
+ System.out.println("\nEvent history exported to: logs/coordinator-event-history.txt");
+ } catch (IOException e) {
+ System.err.println("Failed to export event history: " + e.getMessage());
+ }
+ }
+
private void generateAndSendVehicle() {
+ double currentTime = clock.getCurrentTime();
Vehicle vehicle = vehicleGenerator.generateVehicle("V" + (++vehicleCounter), currentTime);
System.out.printf("[t=%.2f] Vehicle %s generated (type=%s, route=%s)%n",
currentTime, vehicle.getId(), vehicle.getType(), vehicle.getRoute());
+ // Log to event logger
+ eventLogger.log(sd.logging.EventType.VEHICLE_GENERATED, "Coordinator",
+ String.format("[%s] Type: %s, Route: %s", vehicle.getId(), vehicle.getType(), vehicle.getRoute()));
+
// Send generation count to dashboard
sendGenerationStatsToDashboard();
diff --git a/main/src/main/java/sd/coordinator/SocketClient.java b/main/src/main/java/sd/coordinator/SocketClient.java
index 88d75b2..fcb59ec 100644
--- a/main/src/main/java/sd/coordinator/SocketClient.java
+++ b/main/src/main/java/sd/coordinator/SocketClient.java
@@ -10,10 +10,10 @@ import sd.serialization.SerializationException;
import sd.serialization.SerializerFactory;
/**
- * Socket client for communication with a single intersection process.
+ * Cliente socket para comunicação com um processo de interseção.
*
- * Handles a persistent TCP connection to one intersection,
- * providing a simple way to send serialized messages.
+ * Gere uma ligação TCP persistente para uma interseção,
+ * fornecendo uma forma simples de enviar mensagens serializadas.
*/
public class SocketClient {
@@ -25,11 +25,11 @@ public class SocketClient {
private MessageSerializer serializer;
/**
- * Creates a new SocketClient for a given intersection.
+ * Cria um novo cliente socket para uma interseção.
*
- * @param intersectionId Intersection ID (ex. "Cr1")
- * @param host Host address (ex. "localhost")
- * @param port Port number
+ * @param intersectionId ID da interseção (ex: "Cr1")
+ * @param host endereço do host (ex: "localhost")
+ * @param port número da porta
*/
public SocketClient(String intersectionId, String host, int port) {
this.intersectionId = intersectionId;
@@ -39,11 +39,10 @@ public class SocketClient {
}
/**
- * Connects to the intersection process via TCP.
+ * Liga-se ao processo da interseção via TCP.
*
- * @throws IOException if the connection cannot be established
+ * @throws IOException se a ligação não puder ser estabelecida
*/
-
public void connect() throws IOException {
try {
socket = new Socket(host, port);
@@ -56,12 +55,12 @@ public class SocketClient {
}
/**
- * Sends a message to the connected intersection.
- * The message is serialized and written over the socket.
+ * Envia uma mensagem para a interseção ligada.
+ * A mensagem é serializada e enviada pelo socket.
*
- * @param message The message to send
- * @throws SerializationException if serialization fails
- * @throws IOException if the socket write fails
+ * @param message mensagem a enviar
+ * @throws SerializationException se a serialização falhar
+ * @throws IOException se a escrita no socket falhar
*/
public void send(Message message) throws SerializationException, IOException {
if (socket == null || socket.isClosed()) {
@@ -71,7 +70,6 @@ public class SocketClient {
try {
byte[] data = serializer.serialize(message);
- // Prefix with message length (so receiver knows how much to read)
int length = data.length;
outputStream.write((length >> 24) & 0xFF);
outputStream.write((length >> 16) & 0xFF);
diff --git a/main/src/main/java/sd/dashboard/ConfigurationDialog.java b/main/src/main/java/sd/dashboard/ConfigurationDialog.java
new file mode 100644
index 0000000..159ee35
--- /dev/null
+++ b/main/src/main/java/sd/dashboard/ConfigurationDialog.java
@@ -0,0 +1,167 @@
+package sd.dashboard;
+
+import javafx.geometry.Insets;
+import javafx.scene.control.ButtonType;
+import javafx.scene.control.ComboBox;
+import javafx.scene.control.Dialog;
+import javafx.scene.control.Label;
+import javafx.scene.control.Separator;
+import javafx.scene.control.Spinner;
+import javafx.scene.layout.GridPane;
+import javafx.scene.layout.VBox;
+import javafx.stage.Modality;
+import javafx.stage.Stage;
+
+/**
+ * Diálogo para configuração avançada de parâmetros da simulação.
+ * Permite ajustar parâmetros em runtime antes de iniciar a simulação.
+ */
+public class ConfigurationDialog {
+
+ /**
+ * Mostra um diálogo com opções avançadas de configuração.
+ *
+ * @param owner janela pai
+ * @return true se o utilizador confirmar, false se cancelar
+ */
+ public static boolean showAdvancedConfig(Stage owner) {
+ Dialog dialog = new Dialog<>();
+ dialog.initOwner(owner);
+ dialog.initModality(Modality.APPLICATION_MODAL);
+ dialog.setTitle("Configuração Avançada da Simulação");
+ dialog.setHeaderText("Ajustar parâmetros da simulação");
+
+ // Criar painel de configuração
+ VBox content = new VBox(15);
+ content.setPadding(new Insets(20));
+
+ // Seção 1: Parâmetros de Chegada
+ Label arrivalHeader = new Label("Parâmetros de Chegada de Veículos");
+ arrivalHeader.setStyle("-fx-font-weight: bold; -fx-font-size: 14px;");
+
+ GridPane arrivalGrid = new GridPane();
+ arrivalGrid.setHgap(10);
+ arrivalGrid.setVgap(10);
+ arrivalGrid.setPadding(new Insets(10));
+
+ // Modelo de chegada
+ Label modelLabel = new Label("Modelo de chegada:");
+ ComboBox modelCombo = new ComboBox<>();
+ modelCombo.getItems().addAll("POISSON", "FIXED");
+ modelCombo.setValue("POISSON");
+ arrivalGrid.add(modelLabel, 0, 0);
+ arrivalGrid.add(modelCombo, 1, 0);
+
+ // Taxa de chegada (λ)
+ Label rateLabel = new Label("Taxa de chegada (λ) [veículos/s]:");
+ Spinner rateSpinner = new Spinner<>(0.1, 2.0, 0.5, 0.1);
+ rateSpinner.setEditable(true);
+ rateSpinner.setPrefWidth(100);
+ arrivalGrid.add(rateLabel, 0, 1);
+ arrivalGrid.add(rateSpinner, 1, 1);
+
+ // Intervalo fixo (se aplicável)
+ Label intervalLabel = new Label("Intervalo fixo [s]:");
+ Spinner intervalSpinner = new Spinner<>(0.5, 10.0, 2.0, 0.5);
+ intervalSpinner.setEditable(true);
+ intervalSpinner.setPrefWidth(100);
+ intervalSpinner.setDisable(true);
+ arrivalGrid.add(intervalLabel, 0, 2);
+ arrivalGrid.add(intervalSpinner, 1, 2);
+
+ // Habilitar/desabilitar intervalo baseado no modelo
+ modelCombo.setOnAction(e -> {
+ boolean isFixed = "FIXED".equals(modelCombo.getValue());
+ intervalSpinner.setDisable(!isFixed);
+ rateSpinner.setDisable(isFixed);
+ });
+
+ // Seção 2: Parâmetros de Tempo
+ Label timeHeader = new Label("Parâmetros de Tempo");
+ timeHeader.setStyle("-fx-font-weight: bold; -fx-font-size: 14px;");
+
+ GridPane timeGrid = new GridPane();
+ timeGrid.setHgap(10);
+ timeGrid.setVgap(10);
+ timeGrid.setPadding(new Insets(10));
+
+ // Duração da simulação
+ Label durationLabel = new Label("Duração da simulação [s]:");
+ Spinner durationSpinner = new Spinner<>(60, 7200, 300, 60);
+ durationSpinner.setEditable(true);
+ durationSpinner.setPrefWidth(100);
+ timeGrid.add(durationLabel, 0, 0);
+ timeGrid.add(durationSpinner, 1, 0);
+
+ // Escala temporal (para visualização)
+ Label scaleLabel = new Label("Escala temporal (0=instantâneo, 1=tempo real):");
+ Spinner scaleSpinner = new Spinner<>(0.0, 1.0, 0.01, 0.01);
+ scaleSpinner.setEditable(true);
+ scaleSpinner.setPrefWidth(100);
+ timeGrid.add(scaleLabel, 0, 1);
+ timeGrid.add(scaleSpinner, 1, 1);
+
+ // Tempo de drenagem
+ Label drainLabel = new Label("Tempo de drenagem [s]:");
+ Spinner drainSpinner = new Spinner<>(0, 300, 60, 10);
+ drainSpinner.setEditable(true);
+ drainSpinner.setPrefWidth(100);
+ timeGrid.add(drainLabel, 0, 2);
+ timeGrid.add(drainSpinner, 1, 2);
+
+ // Seção 3: Distribuição de Tipos de Veículos
+ Label vehicleHeader = new Label("Distribuição de Tipos de Veículos");
+ vehicleHeader.setStyle("-fx-font-weight: bold; -fx-font-size: 14px;");
+
+ GridPane vehicleGrid = new GridPane();
+ vehicleGrid.setHgap(10);
+ vehicleGrid.setVgap(10);
+ vehicleGrid.setPadding(new Insets(10));
+
+ Label bikeLabel = new Label("Bicicletas/Motos [%]:");
+ Spinner bikeSpinner = new Spinner<>(0, 100, 10, 5);
+ bikeSpinner.setEditable(true);
+ bikeSpinner.setPrefWidth(100);
+ vehicleGrid.add(bikeLabel, 0, 0);
+ vehicleGrid.add(bikeSpinner, 1, 0);
+
+ Label lightLabel = new Label("Veículos Ligeiros [%]:");
+ Spinner lightSpinner = new Spinner<>(0, 100, 70, 5);
+ lightSpinner.setEditable(true);
+ lightSpinner.setPrefWidth(100);
+ vehicleGrid.add(lightLabel, 0, 1);
+ vehicleGrid.add(lightSpinner, 1, 1);
+
+ Label heavyLabel = new Label("Veículos Pesados [%]:");
+ Spinner heavySpinner = new Spinner<>(0, 100, 20, 5);
+ heavySpinner.setEditable(true);
+ heavySpinner.setPrefWidth(100);
+ vehicleGrid.add(heavyLabel, 0, 2);
+ vehicleGrid.add(heavySpinner, 1, 2);
+
+ // Nota informativa
+ Label noteLabel = new Label("Nota: Estes parâmetros sobrepõem os valores do ficheiro .properties selecionado.\n" +
+ "Para usar os valores padrão do ficheiro, deixe em branco ou cancele.");
+ noteLabel.setWrapText(true);
+ noteLabel.setStyle("-fx-font-size: 11px; -fx-text-fill: #666666;");
+
+ // Adicionar tudo ao conteúdo
+ content.getChildren().addAll(
+ arrivalHeader, arrivalGrid,
+ new Separator(),
+ timeHeader, timeGrid,
+ new Separator(),
+ vehicleHeader, vehicleGrid,
+ new Separator(),
+ noteLabel
+ );
+
+ dialog.getDialogPane().setContent(content);
+ dialog.getDialogPane().getButtonTypes().addAll(ButtonType.OK, ButtonType.CANCEL);
+
+ // Mostrar diálogo e processar resultado
+ return dialog.showAndWait()
+ .map(buttonType -> buttonType == ButtonType.OK)
+ .orElse(false);
+ }
+}
diff --git a/main/src/main/java/sd/dashboard/DashboardServer.java b/main/src/main/java/sd/dashboard/DashboardServer.java
index cca71b0..8807478 100644
--- a/main/src/main/java/sd/dashboard/DashboardServer.java
+++ b/main/src/main/java/sd/dashboard/DashboardServer.java
@@ -10,8 +10,8 @@ import java.util.concurrent.atomic.AtomicBoolean;
import sd.config.SimulationConfig;
/**
- * Aggregates and displays real-time statistics from all simulation processes.
- * Uses a thread pool to handle concurrent client connections.
+ * Agrega e apresenta estatísticas em tempo real de todos os processos da simulação.
+ * Usa um thread pool para gerir ligações concorrentes de clientes.
*/
public class DashboardServer {
diff --git a/main/src/main/java/sd/dashboard/DashboardStatistics.java b/main/src/main/java/sd/dashboard/DashboardStatistics.java
index da6f097..4616d60 100644
--- a/main/src/main/java/sd/dashboard/DashboardStatistics.java
+++ b/main/src/main/java/sd/dashboard/DashboardStatistics.java
@@ -9,8 +9,8 @@ import java.util.concurrent.atomic.AtomicLong;
import sd.model.VehicleType;
/**
- * Thread-safe storage for aggregated simulation statistics.
- * Uses atomic types and concurrent collections for lock-free updates.
+ * Armazenamento thread-safe de estatísticas agregadas da simulação.
+ * Usa tipos atómicos e coleções concorrentes para atualizações sem locks.
*/
public class DashboardStatistics {
diff --git a/main/src/main/java/sd/dashboard/DashboardUI.java b/main/src/main/java/sd/dashboard/DashboardUI.java
index 3ddd536..4a705d1 100644
--- a/main/src/main/java/sd/dashboard/DashboardUI.java
+++ b/main/src/main/java/sd/dashboard/DashboardUI.java
@@ -13,6 +13,7 @@ import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Alert;
import javafx.scene.control.Button;
+import javafx.scene.control.ComboBox;
import javafx.scene.control.Label;
import javafx.scene.control.TableColumn;
import javafx.scene.control.TableView;
@@ -54,6 +55,11 @@ public class DashboardUI extends Application {
// Update scheduler
private ScheduledExecutorService updateScheduler;
+ // Configuration controls
+ private ComboBox configFileSelector;
+ private String selectedConfigFile = "simulation.properties";
+ private Label configInfoLabel;
+
@Override
public void start(Stage primaryStage) {
try {
@@ -122,6 +128,9 @@ public class DashboardUI extends Application {
Label subtitle = new Label("Real-time Statistics and Monitoring");
subtitle.getStyleClass().add("header-subtitle");
+ // Configuration Panel
+ VBox configPanel = createConfigurationPanel();
+
// Control Buttons
HBox controls = new HBox(15);
controls.setAlignment(Pos.CENTER);
@@ -137,9 +146,12 @@ public class DashboardUI extends Application {
btnStart.setOnAction(e -> {
try {
+ // Passar o ficheiro de configuração selecionado
+ processManager.setConfigFile(selectedConfigFile);
processManager.startSimulation();
btnStart.setDisable(true);
btnStop.setDisable(false);
+ configFileSelector.setDisable(true); // Bloquear mudanças durante simulação
} catch (IOException ex) {
showErrorAlert("Start Failed", "Could not start simulation processes: " + ex.getMessage());
}
@@ -149,15 +161,74 @@ public class DashboardUI extends Application {
processManager.stopSimulation();
btnStart.setDisable(false);
btnStop.setDisable(true);
+ configFileSelector.setDisable(false); // Desbloquear para nova simulação
});
controls.getChildren().addAll(btnStart, btnStop);
- header.getChildren().addAll(title, subtitle, controls);
+ header.getChildren().addAll(title, subtitle, configPanel, controls);
return header;
}
+ /**
+ * Cria o painel de configuração com seleção de cenário e parâmetros.
+ */
+ private VBox createConfigurationPanel() {
+ VBox configBox = new VBox(10);
+ configBox.setAlignment(Pos.CENTER);
+ configBox.setPadding(new Insets(10));
+ configBox.setStyle("-fx-background-color: rgba(255, 255, 255, 0.05); -fx-background-radius: 5;");
+
+ Label configLabel = new Label("Configuração da Simulação");
+ configLabel.setStyle("-fx-font-size: 14px; -fx-font-weight: bold;");
+
+ HBox configControls = new HBox(20);
+ configControls.setAlignment(Pos.CENTER);
+
+ // Scenario selector
+ VBox scenarioBox = new VBox(5);
+ scenarioBox.setAlignment(Pos.CENTER);
+ Label scenarioLabel = new Label("Cenário:");
+ scenarioLabel.setStyle("-fx-font-size: 12px;");
+
+ configFileSelector = new ComboBox<>();
+ configFileSelector.getItems().addAll(
+ "simulation.properties",
+ "simulation-low.properties",
+ "simulation-medium.properties",
+ "simulation-high.properties"
+ );
+ configFileSelector.setValue("simulation.properties");
+ configFileSelector.setOnAction(e -> {
+ selectedConfigFile = configFileSelector.getValue();
+ updateConfigInfo();
+ System.out.println("Configuração selecionada: " + selectedConfigFile);
+ });
+
+ scenarioBox.getChildren().addAll(scenarioLabel, configFileSelector);
+ configControls.getChildren().add(scenarioBox);
+
+ // Advanced configuration button
+ Button btnAdvancedConfig = new Button("Configuração Avançada...");
+ btnAdvancedConfig.setStyle("-fx-font-size: 11px;");
+ btnAdvancedConfig.setOnAction(e -> {
+ ConfigurationDialog.showAdvancedConfig((Stage) configBox.getScene().getWindow());
+ });
+ configControls.getChildren().add(btnAdvancedConfig);
+
+ // Configuration info display
+ configInfoLabel = new Label();
+ configInfoLabel.setStyle("-fx-font-size: 11px; -fx-text-fill: #aaaaaa;");
+ configInfoLabel.setWrapText(true);
+ configInfoLabel.setMaxWidth(800);
+ configInfoLabel.setAlignment(Pos.CENTER);
+ updateConfigInfo();
+
+ configBox.getChildren().addAll(configLabel, configControls, configInfoLabel);
+ return configBox;
+ }
+
private VBox createMainContent() {
VBox mainContent = new VBox(20);
mainContent.setPadding(new Insets(20));
@@ -367,6 +438,28 @@ public class DashboardUI extends Application {
}
}
+ /**
+ * Atualiza a informação exibida sobre a configuração selecionada.
+ */
+ private void updateConfigInfo() {
+ String info = "";
+ switch (selectedConfigFile) {
+ case "simulation-low.properties":
+ info = "🟢 CARGA BAIXA: 0.2 veículos/s (~720/hora) | Sem congestionamento esperado";
+ break;
+ case "simulation-medium.properties":
+ info = "🟡 CARGA MÉDIA: 0.5 veículos/s (~1800/hora) | Algum congestionamento esperado";
+ break;
+ case "simulation-high.properties":
+ info = "🔴 CARGA ALTA: 1.0 veículo/s (~3600/hora) | Congestionamento significativo esperado";
+ break;
+ default:
+ info = "⚙️ CONFIGURAÇÃO PADRÃO: Verificar ficheiro para parâmetros";
+ break;
+ }
+ configInfoLabel.setText(info);
+ }
+
private void shutdown() {
System.out.println("Shutting down Dashboard UI...");
diff --git a/main/src/main/java/sd/dashboard/SimulationProcessManager.java b/main/src/main/java/sd/dashboard/SimulationProcessManager.java
index 0658b2b..e219ef5 100644
--- a/main/src/main/java/sd/dashboard/SimulationProcessManager.java
+++ b/main/src/main/java/sd/dashboard/SimulationProcessManager.java
@@ -6,25 +6,36 @@ import java.util.ArrayList;
import java.util.List;
/**
- * Manages the lifecycle of simulation processes (Intersections, Exit Node,
+ * Gere o ciclo de vida dos processos de simulação (Intersections, Exit Node,
* Coordinator).
- * Allows starting and stopping the distributed simulation from within the Java
- * application.
+ * Permite iniciar e parar a simulação distribuída dentro da aplicação Java.
*/
public class SimulationProcessManager {
private final List runningProcesses;
private final String classpath;
+ private String configFile;
public SimulationProcessManager() {
this.runningProcesses = new ArrayList<>();
this.classpath = System.getProperty("java.class.path");
+ this.configFile = "src/main/resources/simulation.properties";
}
/**
- * Starts the full simulation: 5 Intersections, 1 Exit Node, and 1 Coordinator.
+ * Define o ficheiro de configuração a usar.
*
- * @throws IOException If a process fails to start.
+ * @param configFile nome do ficheiro (ex: "simulation-low.properties")
+ */
+ public void setConfigFile(String configFile) {
+ this.configFile = "src/main/resources/" + configFile;
+ System.out.println("Configuration file set to: " + this.configFile);
+ }
+
+ /**
+ * Inicia a simulação completa: 5 Intersections, 1 Exit Node, e 1 Coordinator.
+ *
+ * @throws IOException se um processo falhar ao iniciar
*/
public void startSimulation() throws IOException {
if (!runningProcesses.isEmpty()) {
@@ -83,16 +94,16 @@ public class SimulationProcessManager {
}
/**
- * Helper to start a single Java process.
+ * Helper para iniciar um único processo Java.
*/
private void startProcess(String className, String arg) throws IOException {
String javaBin = System.getProperty("java.home") + File.separator + "bin" + File.separator + "java";
ProcessBuilder builder;
if (arg != null) {
- builder = new ProcessBuilder(javaBin, "-cp", classpath, className, arg);
+ builder = new ProcessBuilder(javaBin, "-cp", classpath, className, arg, configFile);
} else {
- builder = new ProcessBuilder(javaBin, "-cp", classpath, className);
+ builder = new ProcessBuilder(javaBin, "-cp", classpath, className, configFile);
}
// get the OS temp folder
diff --git a/main/src/main/java/sd/dashboard/StatsUpdatePayload.java b/main/src/main/java/sd/dashboard/StatsUpdatePayload.java
index a84760b..e62e866 100644
--- a/main/src/main/java/sd/dashboard/StatsUpdatePayload.java
+++ b/main/src/main/java/sd/dashboard/StatsUpdatePayload.java
@@ -7,8 +7,8 @@ import java.util.Map;
import sd.model.VehicleType;
/**
- * Data transfer object for statistics updates to the dashboard.
- * Use -1 for fields not being updated in this message.
+ * DTO para atualizações de estatísticas ao dashboard.
+ * Campos com valor -1 não são atualizados nesta mensagem.
*/
public class StatsUpdatePayload implements Serializable {
diff --git a/main/src/main/java/sd/des/DESEventType.java b/main/src/main/java/sd/des/DESEventType.java
new file mode 100644
index 0000000..789d2e9
--- /dev/null
+++ b/main/src/main/java/sd/des/DESEventType.java
@@ -0,0 +1,39 @@
+package sd.des;
+
+/**
+ * Tipos de eventos discretos da simulação.
+ *
+ * Representa os eventos DES que avançam o estado da simulação,
+ * não categorias de logging (EventType está noutro package).
+ */
+public enum DESEventType {
+ /** Gerar novo veículo num ponto de entrada */
+ VEHICLE_GENERATION,
+
+ /** Veículo chega a uma interseção */
+ VEHICLE_ARRIVAL,
+
+ /** Veículo começa a atravessar o semáforo */
+ VEHICLE_CROSSING_START,
+
+ /** Veículo termina a travessia */
+ VEHICLE_CROSSING_END,
+
+ /** Veículo parte para o próximo destino */
+ VEHICLE_DEPARTURE,
+
+ /** Veículo sai do sistema no nó de saída */
+ VEHICLE_EXIT,
+
+ /** Semáforo muda de estado (VERMELHO para VERDE ou vice-versa) */
+ TRAFFIC_LIGHT_CHANGE,
+
+ /** Processar veículos que esperam num semáforo recém-verde */
+ PROCESS_GREEN_LIGHT,
+
+ /** Atualização periódica de estatísticas */
+ STATISTICS_UPDATE,
+
+ /** Terminação da simulação */
+ SIMULATION_END
+}
diff --git a/main/src/main/java/sd/des/EventQueue.java b/main/src/main/java/sd/des/EventQueue.java
new file mode 100644
index 0000000..c61fc8d
--- /dev/null
+++ b/main/src/main/java/sd/des/EventQueue.java
@@ -0,0 +1,137 @@
+package sd.des;
+
+import java.util.ArrayList;
+import java.util.List;
+import java.util.PriorityQueue;
+
+/**
+ * Gere a Lista de Eventos Futuros (FEL) para Simulação de Eventos Discretos.
+ *
+ *
A FEL é uma fila de prioridade que mantém todos os eventos futuros agendados,
+ * ordenados por timestamp. Este é o coração do paradigma DES - a simulação avança
+ * processando eventos em ordem cronológica.
+ */
+public class EventQueue {
+ private final PriorityQueue queue;
+ private final List processedEvents; // For logging and analysis
+ private final boolean trackHistory;
+
+ public EventQueue() {
+ this(true);
+ }
+
+ public EventQueue(boolean trackHistory) {
+ this.queue = new PriorityQueue<>();
+ this.processedEvents = trackHistory ? new ArrayList<>() : null;
+ this.trackHistory = trackHistory;
+ }
+
+ /**
+ * Agenda um novo evento.
+ *
+ * @param event evento a agendar
+ */
+ public void schedule(SimulationEvent event) {
+ queue.offer(event);
+ }
+
+ /**
+ * Agenda um evento com um atraso relativo ao tempo atual.
+ *
+ * @param currentTime tempo atual da simulação
+ * @param delay atraso em segundos
+ * @param type tipo de evento
+ * @param payload dados do evento
+ * @param location localização do evento
+ */
+ public void scheduleIn(double currentTime, double delay, DESEventType type,
+ Object payload, String location) {
+ double eventTime = currentTime + delay;
+ schedule(new SimulationEvent(eventTime, type, payload, location));
+ }
+
+ /** Obtém o próximo evento sem o remover */
+ public SimulationEvent peek() {
+ return queue.peek();
+ }
+
+ /**
+ * Obtém e remove o próximo evento.
+ * Se o rastreamento de histórico estiver ativo, adiciona-o aos eventos processados.
+ */
+ public SimulationEvent poll() {
+ SimulationEvent event = queue.poll();
+ if (event != null && trackHistory) {
+ processedEvents.add(event);
+ }
+ return event;
+ }
+
+ /** Verifica se existem eventos pendentes */
+ public boolean isEmpty() {
+ return queue.isEmpty();
+ }
+
+ /** @return número de eventos pendentes */
+ public int size() {
+ return queue.size();
+ }
+
+ /** Limpa todos os eventos pendentes */
+ public void clear() {
+ queue.clear();
+ }
+
+ /**
+ * Obtém todos os eventos processados (se o rastreamento estiver ativo).
+ * Retorna uma cópia para evitar modificações.
+ */
+ public List getProcessedEvents() {
+ if (!trackHistory) {
+ throw new UnsupportedOperationException("History tracking is disabled");
+ }
+ return new ArrayList<>(processedEvents);
+ }
+
+ /** @return número de eventos processados */
+ public int getProcessedCount() {
+ return trackHistory ? processedEvents.size() : 0;
+ }
+
+ /**
+ * Exporta o histórico de eventos para uma string formatada.
+ * Útil para debugging e visualização da lista completa de eventos.
+ */
+ public String exportEventHistory() {
+ if (!trackHistory) {
+ return "Event history tracking is disabled";
+ }
+
+ StringBuilder sb = new StringBuilder();
+ sb.append("=".repeat(80)).append("\n");
+ sb.append("SIMULATION EVENT HISTORY\n");
+ sb.append("Total Events Processed: ").append(processedEvents.size()).append("\n");
+ sb.append("=".repeat(80)).append("\n");
+ sb.append(String.format("%-10s | %-25s | %-20s | %s\n",
+ "Time", "Event Type", "Location", "Details"));
+ sb.append("-".repeat(80)).append("\n");
+
+ for (SimulationEvent event : processedEvents) {
+ String details = event.getPayload() != null ?
+ event.getPayload().getClass().getSimpleName() : "null";
+ sb.append(String.format("%-10.3f | %-25s | %-20s | %s\n",
+ event.getTimestamp(),
+ event.getType(),
+ event.getLocation() != null ? event.getLocation() : "N/A",
+ details));
+ }
+
+ return sb.toString();
+ }
+
+ @Override
+ public String toString() {
+ return String.format("EventQueue[pending=%d, processed=%d]",
+ queue.size(), getProcessedCount());
+ }
+}
diff --git a/main/src/main/java/sd/des/SimulationClock.java b/main/src/main/java/sd/des/SimulationClock.java
new file mode 100644
index 0000000..9eeda32
--- /dev/null
+++ b/main/src/main/java/sd/des/SimulationClock.java
@@ -0,0 +1,67 @@
+package sd.des;
+
+/**
+ * Gere o tempo de simulação para Simulação de Eventos Discretos.
+ *
+ * No DES, o tempo avança em saltos discretos de evento para evento,
+ * não de forma contínua como o tempo real.
+ *
+ * Esta classe garante que todos os processos no sistema distribuído
+ * mantêm uma visão sincronizada do tempo de simulação.
+ */
+public class SimulationClock {
+ private double currentTime;
+ private final double startTime;
+ private final long wallClockStart;
+
+ public SimulationClock() {
+ this(0.0);
+ }
+
+ public SimulationClock(double startTime) {
+ this.currentTime = startTime;
+ this.startTime = startTime;
+ this.wallClockStart = System.currentTimeMillis();
+ }
+
+ /**
+ * Avança o tempo de simulação para o timestamp dado.
+ * O tempo só pode avançar, nunca recuar.
+ *
+ * @param newTime novo tempo de simulação
+ * @throws IllegalArgumentException se newTime for anterior ao tempo atual
+ */
+ public void advanceTo(double newTime) {
+ if (newTime < currentTime) {
+ throw new IllegalArgumentException(
+ String.format("Cannot move time backwards: %.3f -> %.3f", currentTime, newTime));
+ }
+ this.currentTime = newTime;
+ }
+
+ /** @return tempo atual da simulação */
+ public double getCurrentTime() {
+ return currentTime;
+ }
+
+ /** @return tempo de simulação decorrido desde o início */
+ public double getElapsedTime() {
+ return currentTime - startTime;
+ }
+
+ /** @return tempo real decorrido em milissegundos */
+ public long getWallClockElapsed() {
+ return System.currentTimeMillis() - wallClockStart;
+ }
+
+ /** Reinicia o relógio para o tempo inicial */
+ public void reset() {
+ this.currentTime = startTime;
+ }
+
+ @Override
+ public String toString() {
+ return String.format("SimulationClock[time=%.3fs, elapsed=%.3fs]",
+ currentTime, getElapsedTime());
+ }
+}
diff --git a/main/src/main/java/sd/des/SimulationEvent.java b/main/src/main/java/sd/des/SimulationEvent.java
new file mode 100644
index 0000000..7d486d9
--- /dev/null
+++ b/main/src/main/java/sd/des/SimulationEvent.java
@@ -0,0 +1,98 @@
+package sd.des;
+
+import java.io.Serializable;
+
+/**
+ * Evento discreto da simulação.
+ *
+ * Unidade fundamental de execução num sistema DES:
+ *
+ * - timestamp - quando ocorre
+ *
- type - o que acontece
+ *
- payload - dados associados
+ *
- location - qual processo o trata
+ *
+ */
+public class SimulationEvent implements Comparable, Serializable {
+ private static final long serialVersionUID = 1L;
+
+ private final double timestamp;
+ private final DESEventType type;
+ private final Object payload;
+ private final String location; // Process ID (e.g., "Cr1", "Coordinator", "Exit")
+
+ /**
+ * Cria um novo evento de simulação.
+ *
+ * @param timestamp instante do evento (tempo de simulação em segundos)
+ * @param type tipo de evento
+ * @param payload dados associados (ex: objeto Vehicle)
+ * @param location processo que trata o evento
+ */
+ public SimulationEvent(double timestamp, DESEventType type, Object payload, String location) {
+ this.timestamp = timestamp;
+ this.type = type;
+ this.payload = payload;
+ this.location = location;
+ }
+
+ /** Cria evento sem localização (para eventos locais) */
+ public SimulationEvent(double timestamp, DESEventType type, Object payload) {
+ this(timestamp, type, payload, null);
+ }
+
+ public double getTimestamp() {
+ return timestamp;
+ }
+
+ public DESEventType getType() {
+ return type;
+ }
+
+ public Object getPayload() {
+ return payload;
+ }
+
+ public String getLocation() {
+ return location;
+ }
+
+ /**
+ * Ordena eventos por timestamp (mais cedo primeiro).
+ * Em caso de empate, ordena por tipo para determinismo.
+ */
+ @Override
+ public int compareTo(SimulationEvent other) {
+ int timeComparison = Double.compare(this.timestamp, other.timestamp);
+ if (timeComparison != 0) {
+ return timeComparison;
+ }
+ // Tie-breaker: order by event type name
+ return this.type.name().compareTo(other.type.name());
+ }
+
+ @Override
+ public String toString() {
+ return String.format("Event[t=%.3f, type=%s, location=%s]",
+ timestamp, type, location);
+ }
+
+ @Override
+ public boolean equals(Object obj) {
+ if (this == obj) return true;
+ if (!(obj instanceof SimulationEvent)) return false;
+ SimulationEvent other = (SimulationEvent) obj;
+ return Double.compare(timestamp, other.timestamp) == 0 &&
+ type == other.type &&
+ (location == null ? other.location == null : location.equals(other.location));
+ }
+
+ @Override
+ public int hashCode() {
+ int result = 17;
+ result = 31 * result + Double.hashCode(timestamp);
+ result = 31 * result + type.hashCode();
+ result = 31 * result + (location != null ? location.hashCode() : 0);
+ return result;
+ }
+}
diff --git a/main/src/main/java/sd/des/TrafficLightEvent.java b/main/src/main/java/sd/des/TrafficLightEvent.java
new file mode 100644
index 0000000..9ca1357
--- /dev/null
+++ b/main/src/main/java/sd/des/TrafficLightEvent.java
@@ -0,0 +1,36 @@
+package sd.des;
+
+import sd.model.TrafficLight;
+
+/**
+ * Payload for traffic light change events.
+ * Contains the traffic light and its direction.
+ */
+public class TrafficLightEvent {
+ private final TrafficLight light;
+ private final String direction;
+ private final String intersectionId;
+
+ public TrafficLightEvent(TrafficLight light, String direction, String intersectionId) {
+ this.light = light;
+ this.direction = direction;
+ this.intersectionId = intersectionId;
+ }
+
+ public TrafficLight getLight() {
+ return light;
+ }
+
+ public String getDirection() {
+ return direction;
+ }
+
+ public String getIntersectionId() {
+ return intersectionId;
+ }
+
+ @Override
+ public String toString() {
+ return String.format("TrafficLightEvent[%s-%s]", intersectionId, direction);
+ }
+}
diff --git a/main/src/main/java/sd/engine/TrafficLightThread.java b/main/src/main/java/sd/engine/TrafficLightThread.java
deleted file mode 100644
index 8a0c3a5..0000000
--- a/main/src/main/java/sd/engine/TrafficLightThread.java
+++ /dev/null
@@ -1,126 +0,0 @@
-package sd.engine;
-
-import sd.IntersectionProcess;
-import sd.config.SimulationConfig;
-import sd.model.TrafficLight;
-import sd.model.TrafficLightState;
-import sd.model.Vehicle;
-
-/**
- * Implements the control logic for a single TrafficLight
- * as a Runnable task that runs in its own Thread.
- */
-public class TrafficLightThread implements Runnable {
-
- private final TrafficLight light;
- private final IntersectionProcess process;
- private final SimulationConfig config;
- private volatile boolean running;
-
- // Store the thread reference for proper interruption
- private Thread currentThread;
-
- public TrafficLightThread(TrafficLight light, IntersectionProcess process, SimulationConfig config) {
- this.light = light;
- this.process = process;
- this.config = config;
- this.running = false;
- }
-
- @Override
- public void run() {
- this.currentThread = Thread.currentThread();
- this.running = true;
- System.out.println("[" + light.getId() + "] Traffic light thread started.");
-
- try {
- while (running && !Thread.currentThread().isInterrupted()) {
-
- // Request permission to turn green (blocks until granted)
- process.requestGreenLight(light.getDirection());
-
- try {
- // --- GREEN Phase ---
- light.changeState(TrafficLightState.GREEN);
- System.out.println("[" + light.getId() + "] State: GREEN");
-
- // Process queue for the duration of the green light
- long greenDurationMs = (long) (light.getGreenTime() * 1000);
- processGreenLightQueue(greenDurationMs);
-
- if (!running || Thread.currentThread().isInterrupted())
- break;
-
- // --- RED Phase ---
- light.changeState(TrafficLightState.RED);
- System.out.println("[" + light.getId() + "] State: RED");
-
- } finally {
- // Always release the green light permission
- process.releaseGreenLight(light.getDirection());
- }
-
- // Wait for red duration
- Thread.sleep((long) (light.getRedTime() * 1000));
- }
- } catch (InterruptedException e) {
- System.out.println("[" + light.getId() + "] Traffic light thread interrupted.");
- Thread.currentThread().interrupt();
- } finally {
- this.running = false;
- System.out.println("[" + light.getId() + "] Traffic light thread stopped.");
- }
- }
-
- private void processGreenLightQueue(long greenDurationMs) throws InterruptedException {
- long startTime = System.currentTimeMillis();
-
- while (running && !Thread.currentThread().isInterrupted()
- && light.getState() == TrafficLightState.GREEN) {
-
- // Check if green time has expired
- long elapsed = System.currentTimeMillis() - startTime;
- if (elapsed >= greenDurationMs) {
- break;
- }
-
- if (light.getQueueSize() > 0) {
- Vehicle vehicle = light.removeVehicle();
-
- if (vehicle != null) {
- double crossingTime = getCrossingTimeForVehicle(vehicle);
- long crossingTimeMs = (long) (crossingTime * 1000);
-
- Thread.sleep(crossingTimeMs);
-
- vehicle.addCrossingTime(crossingTime);
- process.getIntersection().incrementVehiclesSent();
- process.sendVehicleToNextDestination(vehicle);
- }
- } else {
- // Queue is empty, wait briefly for new vehicles or until time expires
- Thread.sleep(50);
- }
- }
- }
-
- private double getCrossingTimeForVehicle(Vehicle vehicle) {
- return switch (vehicle.getType()) {
- case BIKE -> config.getBikeVehicleCrossingTime();
- case LIGHT -> config.getLightVehicleCrossingTime();
- case HEAVY -> config.getHeavyVehicleCrossingTime();
- default -> config.getLightVehicleCrossingTime();
- };
- }
-
- /**
- * Requests the thread to stop gracefully.
- * Sets the running flag and interrupts the thread to unblock any sleep() calls.
- */
- public void shutdown() {
- this.running = false;
- if (currentThread != null && currentThread.isAlive()) {
- currentThread.interrupt();
- }
- }
-}
\ No newline at end of file
diff --git a/main/src/main/java/sd/logging/EventLogger.java b/main/src/main/java/sd/logging/EventLogger.java
new file mode 100644
index 0000000..f653ff9
--- /dev/null
+++ b/main/src/main/java/sd/logging/EventLogger.java
@@ -0,0 +1,213 @@
+package sd.logging;
+
+import java.io.BufferedWriter;
+import java.io.FileWriter;
+import java.io.IOException;
+import java.io.PrintWriter;
+import java.text.SimpleDateFormat;
+import java.util.Date;
+import java.util.concurrent.BlockingQueue;
+import java.util.concurrent.LinkedBlockingQueue;
+import java.util.concurrent.atomic.AtomicBoolean;
+
+/**
+ * Sistema de registo centralizado de eventos para a simulação distribuída.
+ *
+ * Regista todos os eventos da simulação num ficheiro com timestamps e categorização.
+ * Thread-safe e não-bloqueante para impacto mínimo na performance.
+ */
+public class EventLogger {
+
+ private static EventLogger instance;
+ private static final Object instanceLock = new Object();
+
+ private final PrintWriter writer;
+ private final BlockingQueue logQueue;
+ private final Thread writerThread;
+ private final AtomicBoolean running;
+ private final SimpleDateFormat timestampFormat;
+ private final long simulationStartMillis;
+
+ /** Construtor privado para padrão singleton */
+ private EventLogger(String logFilePath) throws IOException {
+ this.writer = new PrintWriter(new BufferedWriter(new FileWriter(logFilePath, false)), true);
+ this.logQueue = new LinkedBlockingQueue<>(10000);
+ this.running = new AtomicBoolean(true);
+ this.timestampFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
+ this.simulationStartMillis = System.currentTimeMillis();
+
+ writer.println("=".repeat(80));
+ writer.println("SIMULATION EVENT LOG");
+ writer.println("Started: " + timestampFormat.format(new Date()));
+ writer.println("=".repeat(80));
+ writer.println();
+ writer.printf("%-23s | %-8s | %-20s | %-15s | %s\n",
+ "TIMESTAMP", "REL_TIME", "EVENT_TYPE", "COMPONENT", "DESCRIPTION");
+ writer.println("-".repeat(80));
+ writer.flush();
+
+ this.writerThread = new Thread(this::processLogQueue, "EventLogger-Writer");
+ this.writerThread.setDaemon(true);
+ this.writerThread.start();
+ }
+
+ /** Obtém ou cria a instância singleton */
+ public static EventLogger getInstance() {
+ if (instance == null) {
+ synchronized (instanceLock) {
+ if (instance == null) {
+ try {
+ String logFile = "logs/simulation-events.log";
+ java.nio.file.Files.createDirectories(
+ java.nio.file.Paths.get("logs"));
+ instance = new EventLogger(logFile);
+ } catch (IOException e) {
+ System.err.println("Failed to initialize EventLogger: " + e.getMessage());
+ e.printStackTrace();
+ }
+ }
+ }
+ }
+ return instance;
+ }
+
+ /**
+ * Initialize with custom log file path.
+ */
+ public static void initialize(String logFilePath) throws IOException {
+ synchronized (instanceLock) {
+ if (instance != null) {
+ instance.shutdown();
+ }
+ instance = new EventLogger(logFilePath);
+ }
+ }
+
+ /**
+ * Logs an event (non-blocking).
+ */
+ public void log(EventType eventType, String component, String description) {
+ if (!running.get()) return;
+
+ LogEntry entry = new LogEntry(
+ System.currentTimeMillis(),
+ eventType,
+ component,
+ description
+ );
+
+ // Non-blocking offer - if queue is full, drop oldest
+ if (!logQueue.offer(entry)) {
+ // Queue full - this shouldn't happen with 10k buffer, but handle gracefully
+ System.err.println("EventLogger queue full - dropping event: " + eventType);
+ }
+ }
+
+ /**
+ * Logs an event with vehicle context.
+ */
+ public void logVehicle(EventType eventType, String component, String vehicleId, String description) {
+ log(eventType, component, "[" + vehicleId + "] " + description);
+ }
+
+ /**
+ * Logs an error event.
+ */
+ public void logError(String component, String description, Exception e) {
+ String fullDescription = description + (e != null ? ": " + e.getMessage() : "");
+ log(EventType.ERROR, component, fullDescription);
+ }
+
+ /**
+ * Background thread that writes log entries to file.
+ */
+ private void processLogQueue() {
+ while (running.get() || !logQueue.isEmpty()) {
+ try {
+ LogEntry entry = logQueue.poll(100, java.util.concurrent.TimeUnit.MILLISECONDS);
+ if (entry != null) {
+ writeEntry(entry);
+ }
+ } catch (InterruptedException e) {
+ Thread.currentThread().interrupt();
+ break;
+ }
+ }
+
+ // Flush remaining entries
+ while (!logQueue.isEmpty()) {
+ LogEntry entry = logQueue.poll();
+ if (entry != null) {
+ writeEntry(entry);
+ }
+ }
+ }
+
+ /**
+ * Writes a single log entry to file.
+ */
+ private void writeEntry(LogEntry entry) {
+ String timestamp = timestampFormat.format(new Date(entry.timestampMillis));
+ double relativeTime = (entry.timestampMillis - simulationStartMillis) / 1000.0;
+
+ writer.printf("%-23s | %8.3fs | %-20s | %-15s | %s\n",
+ timestamp,
+ relativeTime,
+ entry.eventType.toString(),
+ truncate(entry.component, 15),
+ entry.description
+ );
+
+ // Flush periodically for real-time viewing
+ if (logQueue.size() < 10) {
+ writer.flush();
+ }
+ }
+
+ private String truncate(String str, int maxLength) {
+ if (str == null) return "";
+ return str.length() <= maxLength ? str : str.substring(0, maxLength);
+ }
+
+ /**
+ * Shuts down the logger and flushes all pending entries.
+ */
+ public void shutdown() {
+ if (!running.compareAndSet(true, false)) {
+ return; // Already shut down
+ }
+
+ try {
+ // Wait for writer thread to finish
+ writerThread.join(5000); // Wait up to 5 seconds
+
+ // Write footer
+ writer.println();
+ writer.println("-".repeat(80));
+ writer.println("SIMULATION ENDED");
+ writer.println("Ended: " + timestampFormat.format(new Date()));
+ writer.println("=".repeat(80));
+
+ writer.close();
+ } catch (InterruptedException e) {
+ Thread.currentThread().interrupt();
+ }
+ }
+
+ /**
+ * Internal class to represent a log entry.
+ */
+ private static class LogEntry {
+ final long timestampMillis;
+ final EventType eventType;
+ final String component;
+ final String description;
+
+ LogEntry(long timestampMillis, EventType eventType, String component, String description) {
+ this.timestampMillis = timestampMillis;
+ this.eventType = eventType;
+ this.component = component;
+ this.description = description;
+ }
+ }
+}
diff --git a/main/src/main/java/sd/logging/EventType.java b/main/src/main/java/sd/logging/EventType.java
new file mode 100644
index 0000000..99d8710
--- /dev/null
+++ b/main/src/main/java/sd/logging/EventType.java
@@ -0,0 +1,47 @@
+package sd.logging;
+
+/**
+ * Tipos de eventos que podem ocorrer na simulação.
+ * Usados para categorizar e filtrar logs.
+ */
+public enum EventType {
+ VEHICLE_GENERATED("Vehicle Generated"),
+ VEHICLE_ARRIVED("Vehicle Arrived"),
+ VEHICLE_QUEUED("Vehicle Queued"),
+ VEHICLE_DEPARTED("Vehicle Departed"),
+ VEHICLE_EXITED("Vehicle Exited"),
+
+ LIGHT_CHANGED_GREEN("Light Changed to Green"),
+ LIGHT_CHANGED_RED("Light Changed to Red"),
+ LIGHT_REQUEST_GREEN("Light Requested Green"),
+ LIGHT_RELEASE_GREEN("Light Released Green"),
+
+ SIMULATION_STARTED("Simulation Started"),
+ SIMULATION_STOPPED("Simulation Stopped"),
+ PROCESS_STARTED("Process Started"),
+ PROCESS_STOPPED("Process Stopped"),
+
+ STATS_UPDATE("Statistics Update"),
+
+ CONNECTION_ESTABLISHED("Connection Established"),
+ CONNECTION_LOST("Connection Lost"),
+ MESSAGE_SENT("Message Sent"),
+ MESSAGE_RECEIVED("Message Received"),
+
+ ERROR("Error");
+
+ private final String displayName;
+
+ EventType(String displayName) {
+ this.displayName = displayName;
+ }
+
+ public String getDisplayName() {
+ return displayName;
+ }
+
+ @Override
+ public String toString() {
+ return displayName;
+ }
+}
diff --git a/main/src/main/java/sd/logging/VehicleTracer.java b/main/src/main/java/sd/logging/VehicleTracer.java
new file mode 100644
index 0000000..98be134
--- /dev/null
+++ b/main/src/main/java/sd/logging/VehicleTracer.java
@@ -0,0 +1,331 @@
+package sd.logging;
+
+import java.io.BufferedWriter;
+import java.io.FileWriter;
+import java.io.IOException;
+import java.io.PrintWriter;
+import java.text.SimpleDateFormat;
+import java.util.Date;
+import java.util.Map;
+import java.util.concurrent.ConcurrentHashMap;
+
+import sd.model.Vehicle;
+
+/**
+ * Rastreia e regista a viagem completa de veículos individuais.
+ *
+ * Cria ficheiros de trace detalhados com:
+ *
+ * - Timestamps de todos os eventos
+ *
- Localizações (interseções)
+ *
- Tempos de espera em cada semáforo
+ *
- Tempos de travessia
+ *
- Tempo total no sistema
+ *
+ */
+public class VehicleTracer {
+
+ private static VehicleTracer instance;
+ private static final Object instanceLock = new Object();
+
+ private final Map trackedVehicles;
+ private final SimpleDateFormat timestampFormat;
+ private final long simulationStartMillis;
+ private final String traceDirectory;
+
+ /** Construtor privado (singleton) */
+ private VehicleTracer(String traceDirectory) {
+ this.trackedVehicles = new ConcurrentHashMap<>();
+ this.timestampFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
+ this.simulationStartMillis = System.currentTimeMillis();
+ this.traceDirectory = traceDirectory;
+
+ try {
+ java.nio.file.Files.createDirectories(java.nio.file.Paths.get(traceDirectory));
+ } catch (IOException e) {
+ System.err.println("Failed to create trace directory: " + e.getMessage());
+ }
+ }
+
+ /** Obtém ou cria a instância singleton */
+ public static VehicleTracer getInstance() {
+ if (instance == null) {
+ synchronized (instanceLock) {
+ if (instance == null) {
+ instance = new VehicleTracer("logs/traces");
+ }
+ }
+ }
+ return instance;
+ }
+
+ /** Inicializa com diretório de trace customizado */
+ public static void initialize(String traceDirectory) {
+ synchronized (instanceLock) {
+ if (instance != null) {
+ instance.shutdown();
+ }
+ instance = new VehicleTracer(traceDirectory);
+ }
+ }
+
+ /**
+ * Começa a rastrear um veículo específico.
+ * Cria ficheiro de trace para este veículo.
+ */
+ public void startTracking(String vehicleId) {
+ if (trackedVehicles.containsKey(vehicleId)) {
+ return; // Already tracking
+ }
+
+ VehicleTrace trace = new VehicleTrace(vehicleId, traceDirectory);
+ trackedVehicles.put(vehicleId, trace);
+
+ trace.logEvent("TRACKING_STARTED", "", "Started tracking vehicle " + vehicleId);
+ }
+
+ /**
+ * Stops tracking a vehicle and closes its trace file.
+ */
+ public void stopTracking(String vehicleId) {
+ VehicleTrace trace = trackedVehicles.remove(vehicleId);
+ if (trace != null) {
+ trace.logEvent("TRACKING_STOPPED", "", "Stopped tracking vehicle " + vehicleId);
+ trace.close();
+ }
+ }
+
+ /**
+ * Checks if a vehicle is being tracked.
+ */
+ public boolean isTracking(String vehicleId) {
+ return trackedVehicles.containsKey(vehicleId);
+ }
+
+ /**
+ * Logs when a vehicle is generated.
+ */
+ public void logGenerated(Vehicle vehicle) {
+ if (!isTracking(vehicle.getId())) return;
+
+ VehicleTrace trace = trackedVehicles.get(vehicle.getId());
+ if (trace != null) {
+ trace.logEvent("GENERATED", "Coordinator",
+ String.format("Type: %s, Entry Time: %.2fs, Route: %s",
+ vehicle.getType(), vehicle.getEntryTime(), vehicle.getRoute()));
+ }
+ }
+
+ /**
+ * Logs when a vehicle arrives at an intersection.
+ */
+ public void logArrival(String vehicleId, String intersection, double simulationTime) {
+ if (!isTracking(vehicleId)) return;
+
+ VehicleTrace trace = trackedVehicles.get(vehicleId);
+ if (trace != null) {
+ trace.logEvent("ARRIVED", intersection,
+ String.format("Arrived at %s (sim time: %.2fs)", intersection, simulationTime));
+ }
+ }
+
+ /**
+ * Logs when a vehicle is queued at a traffic light.
+ */
+ public void logQueued(String vehicleId, String intersection, String direction, int queuePosition) {
+ if (!isTracking(vehicleId)) return;
+
+ VehicleTrace trace = trackedVehicles.get(vehicleId);
+ if (trace != null) {
+ trace.logEvent("QUEUED", intersection,
+ String.format("Queued at %s-%s (position: %d)", intersection, direction, queuePosition));
+ }
+ }
+
+ /**
+ * Logs when a vehicle starts waiting at a red light.
+ */
+ public void logWaitingStart(String vehicleId, String intersection, String direction) {
+ if (!isTracking(vehicleId)) return;
+
+ VehicleTrace trace = trackedVehicles.get(vehicleId);
+ if (trace != null) {
+ trace.logEvent("WAITING_START", intersection,
+ String.format("Started waiting at %s-%s (light is RED)", intersection, direction));
+ }
+ }
+
+ /**
+ * Logs when a vehicle finishes waiting (light turns green).
+ */
+ public void logWaitingEnd(String vehicleId, String intersection, String direction, double waitTime) {
+ if (!isTracking(vehicleId)) return;
+
+ VehicleTrace trace = trackedVehicles.get(vehicleId);
+ if (trace != null) {
+ trace.logEvent("WAITING_END", intersection,
+ String.format("Finished waiting at %s-%s (waited %.2fs)", intersection, direction, waitTime));
+ }
+ }
+
+ /**
+ * Logs when a vehicle starts crossing an intersection.
+ */
+ public void logCrossingStart(String vehicleId, String intersection, String direction) {
+ if (!isTracking(vehicleId)) return;
+
+ VehicleTrace trace = trackedVehicles.get(vehicleId);
+ if (trace != null) {
+ trace.logEvent("CROSSING_START", intersection,
+ String.format("Started crossing %s-%s (light is GREEN)", intersection, direction));
+ }
+ }
+
+ /**
+ * Logs when a vehicle finishes crossing an intersection.
+ */
+ public void logCrossingEnd(String vehicleId, String intersection, double crossingTime) {
+ if (!isTracking(vehicleId)) return;
+
+ VehicleTrace trace = trackedVehicles.get(vehicleId);
+ if (trace != null) {
+ trace.logEvent("CROSSING_END", intersection,
+ String.format("Finished crossing %s (took %.2fs)", intersection, crossingTime));
+ }
+ }
+
+ /**
+ * Logs when a vehicle departs from an intersection.
+ */
+ public void logDeparture(String vehicleId, String intersection, String nextDestination) {
+ if (!isTracking(vehicleId)) return;
+
+ VehicleTrace trace = trackedVehicles.get(vehicleId);
+ if (trace != null) {
+ trace.logEvent("DEPARTED", intersection,
+ String.format("Departed from %s toward %s", intersection, nextDestination));
+ }
+ }
+
+ /**
+ * Logs when a vehicle exits the system.
+ */
+ public void logExit(Vehicle vehicle, double systemTime) {
+ if (!isTracking(vehicle.getId())) return;
+
+ VehicleTrace trace = trackedVehicles.get(vehicle.getId());
+ if (trace != null) {
+ trace.logEvent("EXITED", "Exit Node",
+ String.format("Exited system - Total time: %.2fs, Waiting: %.2fs, Crossing: %.2fs",
+ systemTime, vehicle.getTotalWaitingTime(), vehicle.getTotalCrossingTime()));
+
+ // Write summary
+ trace.writeSummary(vehicle, systemTime);
+
+ // Stop tracking and close file
+ stopTracking(vehicle.getId());
+ }
+ }
+
+ /**
+ * Shuts down the tracer and closes all trace files.
+ */
+ public void shutdown() {
+ for (VehicleTrace trace : trackedVehicles.values()) {
+ trace.close();
+ }
+ trackedVehicles.clear();
+ }
+
+ /**
+ * Internal class to handle tracing for a single vehicle.
+ */
+ private class VehicleTrace {
+ private final String vehicleId;
+ private final PrintWriter writer;
+ private final long traceStartMillis;
+
+ VehicleTrace(String vehicleId, String directory) {
+ this.vehicleId = vehicleId;
+ this.traceStartMillis = System.currentTimeMillis();
+
+ PrintWriter w = null;
+ try {
+ String filename = String.format("%s/vehicle-%s.trace", directory, vehicleId);
+ w = new PrintWriter(new BufferedWriter(new FileWriter(filename, false)), true);
+
+ // Write header
+ w.println("=".repeat(80));
+ w.println("VEHICLE TRACE: " + vehicleId);
+ w.println("Trace Started: " + timestampFormat.format(new Date()));
+ w.println("=".repeat(80));
+ w.println();
+ w.printf("%-23s | %-8s | %-15s | %-15s | %s\n",
+ "TIMESTAMP", "REL_TIME", "EVENT", "LOCATION", "DESCRIPTION");
+ w.println("-".repeat(80));
+
+ } catch (IOException e) {
+ System.err.println("Failed to create trace file for " + vehicleId + ": " + e.getMessage());
+ }
+
+ this.writer = w;
+ }
+
+ void logEvent(String eventType, String location, String description) {
+ if (writer == null) return;
+
+ long now = System.currentTimeMillis();
+ String timestamp = timestampFormat.format(new Date(now));
+ double relativeTime = (now - traceStartMillis) / 1000.0;
+
+ writer.printf("%-23s | %8.3fs | %-15s | %-15s | %s\n",
+ timestamp,
+ relativeTime,
+ truncate(eventType, 15),
+ truncate(location, 15),
+ description
+ );
+ writer.flush();
+ }
+
+ void writeSummary(Vehicle vehicle, double systemTime) {
+ if (writer == null) return;
+
+ writer.println();
+ writer.println("=".repeat(80));
+ writer.println("JOURNEY SUMMARY");
+ writer.println("=".repeat(80));
+ writer.println("Vehicle ID: " + vehicle.getId());
+ writer.println("Vehicle Type: " + vehicle.getType());
+ writer.println("Route: " + vehicle.getRoute());
+ writer.println();
+ writer.printf("Entry Time: %.2f seconds\n", vehicle.getEntryTime());
+ writer.printf("Total System Time: %.2f seconds\n", systemTime);
+ writer.printf("Total Waiting Time: %.2f seconds (%.1f%%)\n",
+ vehicle.getTotalWaitingTime(),
+ 100.0 * vehicle.getTotalWaitingTime() / systemTime);
+ writer.printf("Total Crossing Time: %.2f seconds (%.1f%%)\n",
+ vehicle.getTotalCrossingTime(),
+ 100.0 * vehicle.getTotalCrossingTime() / systemTime);
+ writer.printf("Travel Time: %.2f seconds (%.1f%%)\n",
+ systemTime - vehicle.getTotalWaitingTime() - vehicle.getTotalCrossingTime(),
+ 100.0 * (systemTime - vehicle.getTotalWaitingTime() - vehicle.getTotalCrossingTime()) / systemTime);
+ writer.println("=".repeat(80));
+ }
+
+ void close() {
+ if (writer != null) {
+ writer.println();
+ writer.println("-".repeat(80));
+ writer.println("END OF TRACE");
+ writer.println("=".repeat(80));
+ writer.close();
+ }
+ }
+
+ private String truncate(String str, int maxLength) {
+ if (str == null) return "";
+ return str.length() <= maxLength ? str : str.substring(0, maxLength);
+ }
+ }
+}
diff --git a/main/src/main/java/sd/model/Intersection.java b/main/src/main/java/sd/model/Intersection.java
index 7d6ff32..33bcd86 100644
--- a/main/src/main/java/sd/model/Intersection.java
+++ b/main/src/main/java/sd/model/Intersection.java
@@ -6,65 +6,51 @@ import java.util.List;
import java.util.Map;
/**
- * Represents an intersection in the traffic simulation.
- * * An Intersection acts as a central hub. It does not control logic itself,
- * but it *owns* and *manages* a set of {@link TrafficLight} objects.
- * * Its primary responsibilities are:
- * 1. Holding a {@link TrafficLight} for each direction ("North", "East", etc.).
- * 2. Maintaining a {@code routing} table that maps a vehicle's *next*
- * destination (e.g., "Cr3") to a specific *direction* at *this*
- * intersection (e.g., "East").
- * 3. Receiving incoming vehicles and placing them in the correct
- * traffic light's queue based on the routing table.
- * 4. Tracking aggregate statistics for all traffic passing through it.
+ * Representa uma interseção na simulação de tráfego.
+ *
+ * Uma interseção funciona como um nó central da rede. Não controla lógica diretamente,
+ * mas gere um conjunto de semáforos ({@link TrafficLight}).
+ *
+ * Responsabilidades principais:
+ *
+ * - Manter um {@link TrafficLight} para cada direção (Norte, Este, etc.)
+ * - Gerir uma tabela de encaminhamento que mapeia destinos para direções
+ * - Receber veículos e colocá-los na fila do semáforo correto
+ * - Acompanhar estatísticas agregadas do tráfego
+ *
*/
public class Intersection {
- // --- Identity and configuration ---
-
- /**
- * Unique identifier for the intersection (e.g., "Cr1", "Cr2").
- */
+ /** Identificador único da interseção (ex: "Cr1", "Cr2") */
private final String id;
/**
- * A map holding all traffic lights managed by this intersection.
- * Key: Direction (String, e.g., "North", "East").
- * Value: The {@link TrafficLight} object for that direction.
+ * Mapa com todos os semáforos desta interseção.
+ * Chave: Direção (String, ex: "Norte", "Este")
+ * Valor: Objeto {@link TrafficLight} correspondente
*/
private final Map trafficLights;
/**
- * The routing table for this intersection.
- * Key: The *next* destination ID (String, e.g., "Cr3", "S" for exit).
- * Value: The *direction* (String, e.g., "East") a vehicle must take
- * at *this* intersection to reach that destination.
+ * Tabela de encaminhamento da interseção.
+ * Chave: Próximo destino (String, ex: "Cr3", "S" para saída)
+ * Valor: Direção que o veículo deve tomar nesta interseção
*/
private final Map routing;
-
- // --- Statistics ---
-
- /**
- * Total number of vehicles that have been received by this intersection.
- */
+ /** Número total de veículos recebidos por esta interseção */
private int totalVehiclesReceived;
- /**
- * Total number of vehicles that have successfully passed through (sent from) this intersection.
- */
+ /** Número total de veículos que partiram desta interseção */
private int totalVehiclesSent;
- /**
- * A running average of the waiting time for vehicles at this intersection.
- * Note: This calculation might be simplified.
- */
+ /** Média acumulada do tempo de espera dos veículos nesta interseção */
private double averageWaitingTime;
/**
- * Constructs a new Intersection with a given ID.
- * Initializes empty maps for traffic lights and routing.
+ * Cria uma nova interseção.
+ * Inicializa mapas vazios para semáforos e encaminhamento.
*
- * @param id The unique identifier for this intersection (e.g., "Cr1").
+ * @param id identificador único da interseção (ex: "Cr1")
*/
public Intersection(String id) {
this.id = id;
@@ -76,40 +62,41 @@ public class Intersection {
}
/**
- * Registers a new {@link TrafficLight} with this intersection.
- * The light is mapped by its direction.
+ * Regista um novo semáforo nesta interseção.
+ * O semáforo é mapeado pela sua direção.
*
- * @param trafficLight The {@link TrafficLight} object to add.
+ * @param trafficLight o semáforo a adicionar
*/
public void addTrafficLight(TrafficLight trafficLight) {
trafficLights.put(trafficLight.getDirection(), trafficLight);
}
/**
- * Defines a routing rule for this intersection.
- * * This method builds the routing table. For example, calling
- * {@code configureRoute("Cr3", "East")} means "Any vehicle
- * arriving here whose next destination is 'Cr3' should be sent to
- * the 'East' traffic light queue."
+ * Define uma regra de encaminhamento para esta interseção.
+ *
+ * Por exemplo, {@code configureRoute("Cr3", "Este")} significa:
+ * "Qualquer veículo que chegue aqui com destino 'Cr3' deve ser enviado
+ * para a fila do semáforo da direção Este."
*
- * @param nextDestination The ID of the *next* intersection or exit (e.g., "Cr3", "S").
- * @param direction The direction (and thus, the traffic light)
- * at *this* intersection to use (e.g., "East").
+ * @param nextDestination ID da próxima interseção ou saída (ex: "Cr3", "S")
+ * @param direction direção (e respetivo semáforo) a usar nesta interseção
*/
public void configureRoute(String nextDestination, String direction) {
routing.put(nextDestination, direction);
}
/**
- * Accepts an incoming vehicle and places it in the correct queue.
- * * This method:
- * 1. Increments the {@link #totalVehiclesReceived} counter.
- * 2. Advances the vehicle's route (since it just arrived here)
- * 3. Gets the vehicle's *next* destination (from {@link Vehicle#getCurrentDestination()}).
- * 4. Uses the {@link #routing} map to find the correct *direction* for that destination.
- * 5. Adds the vehicle to the queue of the {@link TrafficLight} for that direction.
+ * Recebe um veículo e coloca-o na fila correta.
+ *
+ * Passos executados:
+ *
+ * - Incrementa o contador de veículos recebidos
+ * - Obtém o próximo destino do veículo
+ * - Consulta a tabela de encaminhamento para encontrar a direção
+ * - Adiciona o veículo à fila do semáforo apropriado
+ *
*
- * @param vehicle The {@link Vehicle} arriving at the intersection.
+ * @param vehicle o veículo que chega à interseção
*/
public void receiveVehicle(Vehicle vehicle) {
totalVehiclesReceived++;
@@ -141,115 +128,99 @@ public class Intersection {
}
/**
- * Returns the direction a vehicle should take to reach a given destination.
+ * Retorna a direção que um veículo deve tomar para alcançar um destino.
*
- * @param destination The next destination (e.g., "Cr3", "S").
- * @return The direction (e.g., "East"), or null if no route is configured.
+ * @param destination o próximo destino (ex: "Cr3", "S")
+ * @return a direção (ex: "Este"), ou null se não houver rota configurada
*/
public String getDirectionForDestination(String destination) {
return routing.get(destination);
}
/**
- * Returns the traffic light controlling the given direction.
+ * Retorna o semáforo que controla uma determinada direção.
*
- * @param direction The direction (e.g., "North").
- * @return The {@link TrafficLight} object, or null if no light exists
- * for that direction.
+ * @param direction a direção (ex: "Norte")
+ * @return o objeto {@link TrafficLight}, ou null se não existir
*/
public TrafficLight getTrafficLight(String direction) {
return trafficLights.get(direction);
}
/**
- * Returns a list of all traffic lights managed by this intersection.
+ * Retorna uma lista com todos os semáforos desta interseção.
*
- * @return A new {@link List} containing all {@link TrafficLight} objects.
+ * @return uma nova {@link List} com todos os semáforos
*/
public List getTrafficLights() {
- // Return a copy to prevent external modification of the internal map's values
return new ArrayList<>(trafficLights.values());
}
/**
- * Returns the total number of vehicles currently queued across *all*
- * traffic lights at this intersection.
+ * Retorna o número total de veículos em fila em todos os semáforos.
+ * Usa Java Stream API para somar os tamanhos de todas as filas.
*
- * @return The sum of all queue sizes.
+ * @return a soma dos tamanhos de todas as filas
*/
public int getTotalQueueSize() {
- // Uses Java Stream API:
- // 1. trafficLights.values().stream() - Get a stream of TrafficLight objects
- // 2. .mapToInt(TrafficLight::getQueueSize) - Convert each light to its queue size (an int)
- // 3. .sum() - Sum all the integers
return trafficLights.values().stream()
.mapToInt(TrafficLight::getQueueSize)
.sum();
}
- // --- Stats and getters ---
-
/**
- * @return The unique ID of this intersection.
+ * @return o identificador único desta interseção
*/
public String getId() {
return id;
}
/**
- * @return The total number of vehicles that have arrived at this intersection.
+ * @return o número total de veículos que chegaram a esta interseção
*/
public int getTotalVehiclesReceived() {
return totalVehiclesReceived;
}
/**
- * @return The total number of vehicles that have successfully
- * departed from this intersection.
+ * @return o número total de veículos que partiram desta interseção
*/
public int getTotalVehiclesSent() {
return totalVehiclesSent;
}
/**
- * Increments the counter for vehicles that have successfully departed.
- * This is typically called by the {@link sd.engine.SimulationEngine}
- * after a vehicle finishes crossing.
+ * Incrementa o contador de veículos que partiram com sucesso.
+ * Tipicamente chamado após um veículo completar a travessia.
*/
public void incrementVehiclesSent() {
totalVehiclesSent++;
}
/**
- * @return The running average of vehicle waiting time at this intersection.
+ * @return a média do tempo de espera dos veículos nesta interseção
*/
public double getAverageWaitingTime() {
return averageWaitingTime;
}
/**
- * Updates the running average waiting time with a new sample (a new
- * vehicle's wait time).
- * * Uses an incremental/weighted average formula:
- * NewAvg = (OldAvg * (N-1) + NewValue) / N
- * where N is the total number of vehicles sent.
+ * Atualiza a média do tempo de espera com uma nova amostra.
+ * Usa a fórmula: Nova Média = (Média Antiga * (N-1) + Novo Valor) / N
*
- * @param newTime The waiting time (in seconds) of the vehicle that just
- * departed.
+ * @param newTime tempo de espera (em segundos) do veículo que acabou de partir
*/
public void updateAverageWaitingTime(double newTime) {
- // Avoid division by zero if this is called before any vehicle is sent
if (totalVehiclesSent > 0) {
averageWaitingTime = (averageWaitingTime * (totalVehiclesSent - 1) + newTime)
/ totalVehiclesSent;
} else if (totalVehiclesSent == 1) {
- // This is the first vehicle
averageWaitingTime = newTime;
}
}
/**
- * @return A string summary of the intersection's current state.
+ * @return representação textual do estado atual da interseção
*/
@Override
public String toString() {
diff --git a/main/src/main/java/sd/model/Message.java b/main/src/main/java/sd/model/Message.java
index 87e1200..623bc0d 100644
--- a/main/src/main/java/sd/model/Message.java
+++ b/main/src/main/java/sd/model/Message.java
@@ -5,52 +5,41 @@ import java.util.UUID;
import sd.protocol.MessageProtocol;
/**
- * Represents a message exchanged between processes in the distributed simulation.
- * Each message has a unique ID, a type, a sender, a destination, and a payload.
- * This class implements {@link MessageProtocol} which extends Serializable for network transmission.
+ * Representa uma mensagem trocada entre processos na simulação distribuída.
+ *
+ * Cada mensagem tem um ID único, tipo, remetente, destino e payload.
+ * Implementa {@link MessageProtocol} que estende Serializable para transmissão pela rede.
*/
public class Message implements MessageProtocol {
private static final long serialVersionUID = 1L;
- /**
- * Unique identifier for this message.
- */
+ /** Identificador único desta mensagem */
private final String messageId;
- /**
- * The type of this message (e.g., VEHICLE_TRANSFER, STATS_UPDATE).
- */
+ /** Tipo desta mensagem (ex: VEHICLE_TRANSFER, STATS_UPDATE) */
private final MessageType type;
- /**
- * Identifier of the process that sent this message.
- */
+ /** Identificador do processo que enviou esta mensagem */
private final String senderId;
- /**
- * Identifier of the destination process. Can be null for broadcast messages.
- */
+ /** Identificador do processo de destino (pode ser null para broadcast) */
private final String destinationId;
- /**
- * The actual data being transmitted. Type depends on the message type.
- */
+ /** Dados a serem transmitidos (o tipo depende do tipo de mensagem) */
private final Object payload;
- /**
- * Timestamp when this message was created (simulation time or real time).
- */
+ /** Timestamp de criação da mensagem (tempo de simulação ou real) */
private final long timestamp;
/**
- * Creates a new message with all parameters.
+ * Cria uma nova mensagem com todos os parâmetros.
*
- * @param type The message type
- * @param senderId The ID of the sending process
- * @param destinationId The ID of the destination process (null for broadcast)
- * @param payload The message payload
- * @param timestamp The timestamp of message creation
+ * @param type tipo da mensagem
+ * @param senderId ID do processo remetente
+ * @param destinationId ID do processo de destino (null para broadcast)
+ * @param payload conteúdo da mensagem
+ * @param timestamp timestamp de criação da mensagem
*/
public Message(MessageType type, String senderId, String destinationId,
Object payload, long timestamp) {
@@ -63,23 +52,23 @@ public class Message implements MessageProtocol {
}
/**
- * Creates a new message with current system time as timestamp.
+ * Cria uma nova mensagem usando o tempo atual do sistema como timestamp.
*
- * @param type The message type
- * @param senderId The ID of the sending process
- * @param destinationId The ID of the destination process
- * @param payload The message payload
+ * @param type tipo da mensagem
+ * @param senderId ID do processo remetente
+ * @param destinationId ID do processo de destino
+ * @param payload conteúdo da mensagem
*/
public Message(MessageType type, String senderId, String destinationId, Object payload) {
this(type, senderId, destinationId, payload, System.currentTimeMillis());
}
/**
- * Creates a broadcast message (no specific destination).
+ * Cria uma mensagem de broadcast (sem destino específico).
*
- * @param type The message type
- * @param senderId The ID of the sending process
- * @param payload The message payload
+ * @param type tipo da mensagem
+ * @param senderId ID do processo remetente
+ * @param payload conteúdo da mensagem
*/
public Message(MessageType type, String senderId, Object payload) {
this(type, senderId, null, payload, System.currentTimeMillis());
diff --git a/main/src/main/java/sd/model/MessageType.java b/main/src/main/java/sd/model/MessageType.java
index a9f4794..23202c3 100644
--- a/main/src/main/java/sd/model/MessageType.java
+++ b/main/src/main/java/sd/model/MessageType.java
@@ -1,87 +1,43 @@
package sd.model;
/**
- * Enumeration representing all possible message types for distributed communication.
- * These types are used for inter-process communication between different components
- * of the distributed traffic simulation system.
+ * Enumeração que representa todos os tipos de mensagens possíveis para
+ * comunicação distribuída.
+ * Estes tipos são usados para a comunicação entre processos dos diferentes
+ * componentes
+ * do sistema de simulação de tráfego distribuído.
*/
public enum MessageType {
-
+
/**
- * Message to transfer a vehicle between intersections or processes.
- * Payload: Vehicle object with current state
+ * Mensagem para transferir um veículo entre interseções ou processos.
+ * Payload: Objeto Vehicle com o estado atual
*/
VEHICLE_TRANSFER,
-
+
/**
- * Message to update statistics across the distributed system.
- * Payload: Statistics data (waiting times, queue sizes, etc.)
+ * Mensagem para atualizar estatísticas em todo o sistema distribuído.
+ * Payload: Dados estatísticos (tempos de espera, tamanhos de fila, etc.)
*/
STATS_UPDATE,
-
+
/**
- * Message to synchronize simulation start time across all processes.
- * Payload: Start timestamp (long milliseconds)
+ * Mensagem para sincronizar a hora de início da simulação em todos os
+ * processos.
+ * Payload: Timestamp de início (long milissegundos)
*/
SIMULATION_START,
-
+
/**
- * Message to synchronize traffic light states between processes.
- * Payload: TrafficLight state and timing information
- */
- TRAFFIC_LIGHT_SYNC,
-
- /**
- * Heartbeat message to check if a process is alive.
- * Payload: Process ID and timestamp
- */
- HEARTBEAT,
-
- /**
- * Request to join the distributed simulation.
- * Payload: Process information and capabilities
- */
- JOIN_REQUEST,
-
- /**
- * Response to a join request.
- * Payload: Acceptance status and configuration
- */
- JOIN_RESPONSE,
-
- /**
- * Message to notify about a new vehicle generation.
- * Payload: Vehicle generation parameters
+ * Mensagem para notificar sobre a geração de um novo veículo.
+ * Payload: Parâmetros de geração do veículo
*/
VEHICLE_SPAWN,
-
+
/**
- * Message to request the current state of an intersection.
- * Payload: Intersection ID
- */
- STATE_REQUEST,
-
- /**
- * Response containing the current state of an intersection.
- * Payload: Complete intersection state
- */
- STATE_RESPONSE,
-
- /**
- * Message to signal shutdown of a process.
- * Payload: Process ID and reason
+ * Mensagem para sinalizar o encerramento de um processo.
+ * Payload: ID do processo e motivo
*/
SHUTDOWN,
-
- /**
- * Acknowledgment message for reliable communication.
- * Payload: Message ID being acknowledged
- */
- ACK,
-
- /**
- * Error message to report problems in the distributed system.
- * Payload: Error description and context
- */
- ERROR
+
}
diff --git a/main/src/main/java/sd/model/TrafficLight.java b/main/src/main/java/sd/model/TrafficLight.java
index 7cfd393..b6d82ea 100644
--- a/main/src/main/java/sd/model/TrafficLight.java
+++ b/main/src/main/java/sd/model/TrafficLight.java
@@ -9,114 +9,69 @@ import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
/**
- * Represents a single traffic light controlling one direction at an intersection.
- * * Each light maintains its own queue of {@link Vehicle} objects and
- * alternates between {@link TrafficLightState#GREEN} and
- * {@link TrafficLightState#RED} states.
- * * This class is designed to be thread-safe for a potential concurrent
- * simulation (though the current engine {@link sd.engine.SimulationEngine}
- * is single-threaded). It uses a {@link ReentrantLock} to protect its
- * internal state (the queue and the light state) from simultaneous access.
- * * The {@link Condition} variables ({@code vehicleAdded}, {@code lightGreen})
- * are included for a concurrent model where:
- * - A "vehicle" thread might wait on {@code lightGreen} until the light changes.
- * - A "controller" thread might wait on {@code vehicleAdded} to know when to
- * process a queue.
- * (Note: These Conditions are *not* used by the current discrete-event engine).
+ * Representa um semáforo numa interseção.
+ *
+ * Cada semáforo controla uma direção específica e mantém uma fila de veículos à espera.
+ * Alterna entre os estados VERDE e VERMELHO de acordo com a temporização configurada.
+ *
+ * Thread-safety: Usa locks para permitir acesso concorrente seguro entre
+ * a thread de processamento de eventos e as threads de I/O de rede.
*/
public class TrafficLight {
- // --- Identity and configuration ---
-
- /**
- * Unique identifier for the light (e.g., "Cr1-N").
- */
+ /** Identificador único do semáforo (ex: "Cr1-N") */
private final String id;
-
- /**
- * The direction this light controls (e.g., "North", "South").
- */
+
+ /** Direção que este semáforo controla (ex: "Norte", "Sul") */
private final String direction;
-
- /**
- * The current state of the light (GREEN or RED).
- */
+
+ /** Estado atual do semáforo (VERDE ou VERMELHO) */
private TrafficLightState state;
- // --- Vehicle management ---
-
- /**
- * The queue of vehicles waiting at this light.
- * {@link LinkedList} is used as it's a standard {@link Queue} implementation.
- */
+ /** Fila de veículos à espera neste semáforo */
private final Queue queue;
- // --- Synchronization primitives (for thread-safety) ---
-
/**
- * A lock to protect all mutable state ({@link #queue} and {@link #state})
- * from concurrent access. Any method reading or writing these fields
- * *must* acquire this lock first.
+ * Lock para proteger o estado mutável ({@link #queue} e {@link #state})
+ * de acesso concorrente.
*/
private final Lock lock;
-
- /**
- * A condition variable for a potential concurrent model.
- * It could be used to signal threads (e.g., a controller) that
- * a new vehicle has been added to the queue.
- * (Not used in the current discrete-event engine).
- */
+
+ /** Variável de condição para sinalizar adição de veículos (uso futuro) */
private final Condition vehicleAdded;
-
- /**
- * A condition variable for a potential concurrent model.
- * It could be used to signal waiting vehicle threads that the
- * light has just turned GREEN.
- * (Not used in the current discrete-event engine).
- */
+
+ /** Variável de condição para sinalizar que o semáforo ficou verde (uso futuro) */
private final Condition lightGreen;
- // --- Timing configuration ---
-
- /**
- * The duration (in seconds) this light stays GREEN.
- */
+ /** Duração (segundos) que o semáforo permanece VERDE */
private double greenTime;
-
- /**
- * The duration (in seconds) this light stays RED.
- */
+
+ /** Duração (segundos) que o semáforo permanece VERMELHO */
private double redTime;
- // --- Statistics ---
-
- /**
- * Counter for the total number of vehicles that have
- * been dequeued (processed) by this light.
- */
+ /** Número total de veículos processados por este semáforo */
private int totalVehiclesProcessed;
-
+
/**
- * Track when vehicles arrive at this light for wait time calculation.
- * Maps vehicle ID to arrival timestamp (milliseconds).
+ * Regista quando os veículos chegam ao semáforo para cálculo do tempo de espera.
+ * Mapeia ID do veículo para timestamp de chegada (milissegundos).
*/
private final Map vehicleArrivalTimes;
/**
- * Constructs a new TrafficLight.
+ * Cria um novo semáforo.
*
- * @param id The unique ID (e.g., "Cr1-N").
- * @param direction The direction (e.g., "North").
- * @param greenTime The duration of the GREEN state in seconds.
- * @param redTime The duration of the RED state in seconds.
+ * @param id identificador único (ex: "Cr1-N")
+ * @param direction direção controlada (ex: "Norte")
+ * @param greenTime duração do estado VERDE em segundos
+ * @param redTime duração do estado VERMELHO em segundos
*/
public TrafficLight(String id, String direction, double greenTime, double redTime) {
this.id = id;
this.direction = direction;
- this.state = TrafficLightState.RED; // All lights start RED
+ this.state = TrafficLightState.RED;
this.queue = new LinkedList<>();
- // Initialize synchronization objects
this.lock = new ReentrantLock();
this.vehicleAdded = lock.newCondition();
this.lightGreen = lock.newCondition();
@@ -128,42 +83,45 @@ public class TrafficLight {
}
/**
- * Adds a vehicle to the *end* of the waiting queue.
- * This method is thread-safe.
- *
- * @param vehicle The {@link Vehicle} to add.
+ * Coloca um veículo na fila deste semáforo.
+ *
+ * Registamos a hora de chegada para podermos calcular mais tarde quanto tempo o
+ * veículo esperou.
+ *
+ * @param vehicle O veículo que chega ao semáforo.
*/
public void addVehicle(Vehicle vehicle) {
- lock.lock(); // Acquire the lock
+ lock.lock();
try {
- queue.offer(vehicle); // Add vehicle to queue
+ queue.offer(vehicle);
vehicleArrivalTimes.put(vehicle.getId(), System.currentTimeMillis());
- vehicleAdded.signalAll(); // Signal (for concurrent models)
+ vehicleAdded.signalAll();
} finally {
- lock.unlock(); // Always release the lock
+ lock.unlock();
}
}
/**
- * Removes and returns the {@link Vehicle} from the *front* of the queue.
- * * This only succeeds if:
- * 1. The light's state is {@link TrafficLightState#GREEN}.
- * 2. The queue is not empty.
- * * If these conditions are not met, it returns {@code null}.
- * This method is thread-safe.
- *
- * @return The {@link Vehicle} at the front of the queue, or {@code null}
- * if the light is RED or the queue is empty.
+ * Remove um veículo da fila para travessia.
+ *
+ * Só remove se:
+ *
+ * - O semáforo estiver VERDE
+ * - Existir pelo menos um veículo na fila
+ *
+ *
+ * Atualiza automaticamente as estatísticas de tempo de espera do veículo.
+ *
+ * @return o veículo que vai atravessar, ou null se não for possível
*/
public Vehicle removeVehicle() {
- lock.lock(); // Acquire the lock
+ lock.lock();
try {
if (state == TrafficLightState.GREEN && !queue.isEmpty()) {
- Vehicle vehicle = queue.poll(); // Remove vehicle from queue
+ Vehicle vehicle = queue.poll();
if (vehicle != null) {
totalVehiclesProcessed++;
-
- // Calculate wait time (time spent in queue)
+
Long arrivalTime = vehicleArrivalTimes.remove(vehicle.getId());
if (arrivalTime != null) {
double waitTimeSeconds = (System.currentTimeMillis() - arrivalTime) / 1000.0;
@@ -172,161 +130,138 @@ public class TrafficLight {
}
return vehicle;
}
- return null; // Light is RED or queue is empty
+ return null;
} finally {
- lock.unlock(); // Always release the lock
+ lock.unlock();
}
}
/**
- * Changes the light’s state (e.g., RED -> GREEN).
- * If the new state is GREEN, it signals any waiting threads
- * (for a potential concurrent model).
- * This method is thread-safe.
- *
- * @param newState The {@link TrafficLightState} to set.
+ * Muda o estado do semáforo.
+ *
+ * @param newState novo estado (VERDE ou VERMELHO)
*/
public void changeState(TrafficLightState newState) {
- lock.lock(); // Acquire the lock
+ lock.lock();
try {
this.state = newState;
if (newState == TrafficLightState.GREEN) {
- lightGreen.signalAll(); // Signal (for concurrent models)
+ lightGreen.signalAll();
}
} finally {
- lock.unlock(); // Always release the lock
+ lock.unlock();
}
}
/**
- * Returns how many vehicles are currently in the queue.
- * This method is thread-safe.
- * * @return The size of the queue.
+ * Retorna quantos veículos estão atualmente na fila.
+ * Método thread-safe.
+ *
+ * @return tamanho da fila
*/
public int getQueueSize() {
- lock.lock(); // Acquire the lock
+ lock.lock();
try {
return queue.size();
} finally {
- lock.unlock(); // Always release the lock
+ lock.unlock();
}
}
/**
- * Checks whether the queue is empty.
- * This method is thread-safe.
+ * Verifica se a fila está vazia.
+ * Método thread-safe.
*
- * @return {@code true} if the queue has no vehicles, {@code false} otherwise.
+ * @return {@code true} se não houver veículos, {@code false} caso contrário
*/
public boolean isQueueEmpty() {
- lock.lock(); // Acquire the lock
+ lock.lock();
try {
return queue.isEmpty();
} finally {
- lock.unlock(); // Always release the lock
+ lock.unlock();
}
}
- // --- Getters & Setters ---
-
- /**
- * @return The unique ID of this light (e.g., "Cr1-N").
- */
+ /** @return identificador único do semáforo */
public String getId() {
return id;
}
- /**
- * @return The direction this light controls (e.g., "North").
- */
+ /** @return direção controlada por este semáforo */
public String getDirection() {
return direction;
}
/**
- * Gets the current state of the light (GREEN or RED).
- * This method is thread-safe.
+ * Obtém o estado atual do semáforo.
+ * Método thread-safe.
*
- * @return The current {@link TrafficLightState}.
+ * @return estado atual (VERDE ou VERMELHO)
*/
public TrafficLightState getState() {
- lock.lock(); // Acquire the lock
+ lock.lock();
try {
return state;
} finally {
- lock.unlock(); // Always release the lock
+ lock.unlock();
}
}
- /**
- * @return The configured GREEN light duration in seconds.
- */
+ /** @return duração configurada do sinal verde em segundos */
public double getGreenTime() {
return greenTime;
}
/**
- * Sets the GREEN light duration.
- * @param greenTime The new duration in seconds.
+ * Define a duração do sinal verde.
+ *
+ * @param greenTime nova duração em segundos
*/
public void setGreenTime(double greenTime) {
this.greenTime = greenTime;
}
- /**
- * @return The configured RED light duration in seconds.
- */
+ /** @return duração configurada do sinal vermelho em segundos */
public double getRedTime() {
return redTime;
}
/**
- * Sets the RED light duration.
- * @param redTime The new duration in seconds.
+ * Define a duração do sinal vermelho.
+ *
+ * @param redTime nova duração em segundos
*/
public void setRedTime(double redTime) {
this.redTime = redTime;
}
- /**
- * @return The total number of vehicles processed (dequeued) by this light.
- */
+ /** @return número total de veículos processados por este semáforo */
public int getTotalVehiclesProcessed() {
- // Note: This read is not locked, assuming it's okay
- // for it to be "eventually consistent" for stats.
- // For strict accuracy, it should also be locked.
return totalVehiclesProcessed;
}
- /**
- * @return The {@link Lock} object for advanced synchronization.
- */
+ /** @return objeto {@link Lock} para sincronização avançada */
public Lock getLock() {
return lock;
}
- /**
- * @return The {@link Condition} for vehicle additions.
- */
+ /** @return condição para adição de veículos */
public Condition getVehicleAdded() {
return vehicleAdded;
}
- /**
- * @return The {@link Condition} for the light turning green.
- */
+ /** @return condição para semáforo ficar verde */
public Condition getLightGreen() {
return lightGreen;
}
- /**
- * @return A string summary of the light's current state.
- */
+ /** @return representação textual do estado atual do semáforo */
@Override
public String toString() {
return String.format(
- "TrafficLight{id='%s', direction='%s', state=%s, queueSize=%d}",
- id, direction, getState(), getQueueSize() // Use getters for thread-safety
+ "TrafficLight{id='%s', direction='%s', state=%s, queueSize=%d}",
+ id, direction, getState(), getQueueSize()
);
}
}
\ No newline at end of file
diff --git a/main/src/main/java/sd/model/TrafficLightState.java b/main/src/main/java/sd/model/TrafficLightState.java
index c21d6e4..aab7682 100644
--- a/main/src/main/java/sd/model/TrafficLightState.java
+++ b/main/src/main/java/sd/model/TrafficLightState.java
@@ -1,17 +1,13 @@
package sd.model;
/**
- * Enumeration representing the two possible states of a {@link TrafficLight}.
+ * Estados possíveis de um semáforo ({@link TrafficLight}).
*/
public enum TrafficLightState {
- /**
- * The light is GREEN, allowing vehicles to pass (be dequeued).
- */
+ /** Sinal verde - veículos podem passar */
GREEN,
- /**
- * The light is RED, blocking vehicles (they remain in the queue).
- */
+ /** Sinal vermelho - veículos aguardam na fila */
RED
}
\ No newline at end of file
diff --git a/main/src/main/java/sd/model/Vehicle.java b/main/src/main/java/sd/model/Vehicle.java
index 2ee7d23..c3e79c2 100644
--- a/main/src/main/java/sd/model/Vehicle.java
+++ b/main/src/main/java/sd/model/Vehicle.java
@@ -5,94 +5,74 @@ import java.util.ArrayList;
import java.util.List;
/**
- * Represents a single vehicle moving through the simulation.
- *
- * This class is a data object that holds the state of a vehicle, including:
- * - Its unique ID, type, and entry time.
- * - Its complete, pre-determined {@code route} (a list of intersection IDs).
- * - Its current position in the route ({@code currentRouteIndex}).
- * - Metrics for total time spent waiting at red lights and time spent crossing.
- * * This object is passed around the simulation, primarily inside message
- * payloads and stored in {@link TrafficLight} queues.
- * * Implements {@link Serializable} so it can be sent between processes
- * or nodes (e.g., over a socket in a distributed version of the simulation).
+ * Representa um veículo que se move pela rede de interseções.
+ *
+ * Esta classe é o "gémeo digital" de um carro, mota ou camião.
+ * Mantém toda a informação necessária:
+ *
+ * - Identificação e tipo do veículo
+ * - Rota completa a percorrer
+ * - Métricas de tempo (espera, travessia, total)
+ *
+ *
+ * O objeto é serializado e enviado pela rede à medida que o veículo
+ * se move entre processos distribuídos.
*/
public class Vehicle implements Serializable {
private static final long serialVersionUID = 1L;
- // --- Identity and configuration ---
-
- /**
- * Unique identifier for the vehicle (e.g., "V1", "V2").
- */
+ /** Identificador único do veículo (ex: "V1", "V2") */
private final String id;
- /**
- * The type of vehicle (BIKE, LIGHT, HEAVY).
- */
+ /** Tipo de veículo (BIKE, LIGHT, HEAVY) */
private final VehicleType type;
- /**
- * The simulation time (in seconds) when the vehicle was generated.
- */
+ /** Tempo de simulação (em segundos) em que o veículo foi gerado */
private final double entryTime;
/**
- * The complete, ordered list of destinations (intersection IDs and the
- * final exit "S"). Example: ["Cr1", "Cr3", "S"].
+ * Lista ordenada completa de destinos (IDs de interseções e saída "S").
+ * Exemplo: ["Cr1", "Cr3", "S"]
*/
private final List route;
/**
- * An index that tracks the vehicle's progress along its {@link #route}.
- * {@code route.get(currentRouteIndex)} is the vehicle's *current*
- * destination (i.e., the one it is traveling *towards* or *arriving at*).
+ * Índice que acompanha o progresso do veículo ao longo da {@link #route}.
+ * {@code route.get(currentRouteIndex)} é o destino *atual* do veículo.
*/
private int currentRouteIndex;
- // --- Metrics ---
-
- /**
- * The total accumulated time (in seconds) this vehicle has spent
- * waiting at red lights.
- */
+ /** Tempo total acumulado (segundos) que o veículo passou à espera em semáforos vermelhos */
private double totalWaitingTime;
- /**
- * The total accumulated time (in seconds) this vehicle has spent
- * actively crossing intersections.
- */
+ /** Tempo total acumulado (segundos) que o veículo passou a atravessar interseções */
private double totalCrossingTime;
/**
- * Constructs a new Vehicle.
- *
- * @param id The unique ID for the vehicle.
- * @param type The {@link VehicleType}.
- * @param entryTime The simulation time when the vehicle is created.
- * @param route The complete list of destination IDs (e.t., ["Cr1", "Cr2",
- * "S"]).
+ * Cria um novo veículo pronto para se fazer à estrada.
+ *
+ * @param id Identificador único (ex: "V1").
+ * @param type O tipo de veículo (determina velocidade/tamanho).
+ * @param entryTime Quando este veículo entrou na simulação (segundos).
+ * @param route A lista ordenada de paragens (Interseções -> Saída).
*/
public Vehicle(String id, VehicleType type, double entryTime, List route) {
this.id = id;
this.type = type;
this.entryTime = entryTime;
- // Create a copy of the route list to ensure immutability
this.route = new ArrayList<>(route);
- this.currentRouteIndex = 0; // Starts at the first destination
+ this.currentRouteIndex = 0;
this.totalWaitingTime = 0.0;
this.totalCrossingTime = 0.0;
}
/**
- * Advances the vehicle to the next stop in its route by
- * incrementing the {@link #currentRouteIndex}.
- * * This is typically called *after* a vehicle *arrives* at an intersection,
- * to set its *next* destination before it is queued.
- *
- * @return {@code true} if there is still at least one more destination
- * in the route, {@code false} if the vehicle has passed its
- * final destination.
+ * Move o GPS interno do veículo para o próximo destino.
+ *
+ * Chame isto quando um veículo chega a uma interseção para atualizar para onde
+ * deve ir a seguir.
+ *
+ * @return true se houver mais paragens, false se a viagem terminou.
*/
public boolean advanceRoute() {
currentRouteIndex++;
@@ -100,116 +80,89 @@ public class Vehicle implements Serializable {
}
/**
- * Gets the current destination (the next intersection or exit) that
- * the vehicle is heading towards.
+ * Obtém o destino atual (próxima interseção ou saída) para onde o veículo se dirige.
*
- * @return The ID of the current destination (e.g., "Cr1"), or
- * {@code null} if the route is complete.
+ * @return ID do destino atual (ex: "Cr1"), ou {@code null} se a rota terminou
*/
public String getCurrentDestination() {
return (currentRouteIndex < route.size()) ? route.get(currentRouteIndex) : null;
}
/**
- * Checks if the vehicle has completed its entire route.
+ * Verifica se o veículo completou toda a sua rota.
*
- * @return {@code true} if the route index is at or past the end
- * of the route list, {@code false} otherwise.
+ * @return {@code true} se chegou ao fim da rota, {@code false} caso contrário
*/
public boolean hasReachedEnd() {
return currentRouteIndex >= route.size();
}
- // --- Getters and metrics management ---
-
- /**
- * @return The vehicle's unique ID.
- */
+ /** @return identificador único do veículo */
public String getId() {
return id;
}
- /**
- * @return The vehicle's {@link VehicleType}.
- */
+ /** @return tipo do veículo */
public VehicleType getType() {
return type;
}
- /**
- * @return The simulation time when the vehicle entered the system.
- */
+ /** @return tempo de simulação em que o veículo entrou no sistema */
public double getEntryTime() {
return entryTime;
}
- /**
- * @return A *copy* of the vehicle's complete route.
- */
+ /** @return cópia da rota completa do veículo */
public List getRoute() {
- // Return a copy to prevent external modification
return new ArrayList<>(route);
}
- /**
- * @return The current index pointing to the vehicle's destination in its route
- * list.
- */
+ /** @return índice atual apontando para o destino do veículo na sua rota */
public int getCurrentRouteIndex() {
return currentRouteIndex;
}
- /**
- * @return The total accumulated waiting time in seconds.
- */
+ /** @return tempo total acumulado de espera em segundos */
public double getTotalWaitingTime() {
return totalWaitingTime;
}
/**
- * Adds a duration to the vehicle's total waiting time.
- * This is called by the simulation engine when a vehicle
- * starts crossing an intersection.
+ * Adiciona uma duração ao tempo total de espera do veículo.
+ * Chamado quando um veículo começa a atravessar uma interseção.
*
- * @param time The duration (in seconds) to add.
+ * @param time duração (em segundos) a adicionar
*/
public void addWaitingTime(double time) {
totalWaitingTime += time;
}
- /**
- * @return The total accumulated crossing time in seconds.
- */
+ /** @return tempo total acumulado de travessia em segundos */
public double getTotalCrossingTime() {
return totalCrossingTime;
}
/**
- * Adds a duration to the vehicle's total crossing time.
- * This is called by the simulation engine when a vehicle
- * finishes crossing an intersection.
+ * Adiciona uma duração ao tempo total de travessia do veículo.
+ * Chamado quando um veículo termina de atravessar uma interseção.
*
- * @param time The duration (in seconds) to add.
+ * @param time duração (em segundos) a adicionar
*/
public void addCrossingTime(double time) {
totalCrossingTime += time;
}
/**
- * Calculates the vehicle's total time spent in the system so far.
- * This is a "live" calculation.
+ * Calcula o tempo total que o veículo passou no sistema até agora.
*
- * @param currentTime The current simulation time.
- * @return The total elapsed time (in seconds) since the vehicle
- * was generated ({@code currentTime - entryTime}).
+ * @param currentTime tempo atual da simulação
+ * @return tempo total decorrido (em segundos) desde que o veículo foi gerado
*/
public double getTotalTravelTime(double currentTime) {
return currentTime - entryTime;
}
- /**
- * @return A string summary of the vehicle's current state.
- */
+ /** @return representação textual do estado atual do veículo */
@Override
public String toString() {
return String.format(
diff --git a/main/src/main/java/sd/model/VehicleType.java b/main/src/main/java/sd/model/VehicleType.java
index fce00d0..e3aa195 100644
--- a/main/src/main/java/sd/model/VehicleType.java
+++ b/main/src/main/java/sd/model/VehicleType.java
@@ -1,27 +1,19 @@
package sd.model;
/**
- * Enumeration representing the different types of vehicles in the simulation.
- * Each type can have different properties, such as crossing time
- * and generation probability, defined in {@link sd.config.SimulationConfig}.
+ * Enumeração dos diferentes tipos de veículos na simulação.
+ *
+ * Cada tipo pode ter propriedades diferentes como tempo de travessia
+ * e probabilidade de geração, definidas na {@link sd.config.SimulationConfig}.
*/
public enum VehicleType {
- /**
- * A bike or motorcycle.
- * Typically has a short crossing time.
- */
+ /** Bicicleta ou motocicleta - tempo de travessia curto */
BIKE,
- /**
- * A standard light vehicle, such as a car.
- * This is usually the most common type.
- */
+ /** Veículo ligeiro padrão (carro) - tipo mais comum */
LIGHT,
- /**
- * A heavy vehicle, such as a truck or bus.
- * Typically has a long crossing time.
- */
+ /** Veículo pesado (camião ou autocarro) - tempo de travessia longo */
HEAVY
}
\ No newline at end of file
diff --git a/main/src/main/java/sd/protocol/MessageProtocol.java b/main/src/main/java/sd/protocol/MessageProtocol.java
index 47975be..715bfc7 100644
--- a/main/src/main/java/sd/protocol/MessageProtocol.java
+++ b/main/src/main/java/sd/protocol/MessageProtocol.java
@@ -1,41 +1,45 @@
package sd.protocol;
import java.io.Serializable;
+
import sd.model.MessageType; // Assuming MessageType is in sd.model or sd.protocol
/**
- * Interface defining the contract for all messages exchanged in the simulator.
- * Ensures that any message can be identified and routed.
- * * This interface extends Serializable to allow objects that implement it
- * to be sent over Sockets (ObjectOutputStream).
- *
+ * Contrato para todas as mensagens trocadas no simulador.
+ *
+ * Garante que mensagens podem ser identificadas e encaminhadas.
+ * Extende Serializable para permitir envio via sockets.
*/
public interface MessageProtocol extends Serializable {
/**
- * Returns the type of the message, indicating its purpose.
- * @return The MessageType (e.g., VEHICLE_TRANSFER, STATS_UPDATE).
+ * Tipo da mensagem, indicando o seu propósito.
+ * @return tipo (ex: VEHICLE_TRANSFER, STATS_UPDATE)
*/
MessageType getType();
/**
- * Returns the data object (payload) that this message carries.
- * The type of object will depend on the MessageType.
- * * - If getType() == VEHICLE_TRANSFER, the payload will be a {@link sd.model.Vehicle} object.
- * - If getType() == STATS_UPDATE, the payload will be a statistics object.
- * * @return The data object (payload), which must also be Serializable.
+ * Dados (payload) que esta mensagem transporta.
+ *
+ *
Tipo depende do MessageType:
+ *
+ * - VEHICLE_TRANSFER → objeto Vehicle
+ *
- STATS_UPDATE → objeto de estatísticas
+ *
+ *
+ * @return payload (deve ser Serializable)
*/
Object getPayload();
/**
- * Returns the ID of the node (Process) that sent this message.
- * @return String (e.g., "Cr1", "Cr5", "S").
+ * ID do nó (processo) que enviou a mensagem.
+ * @return ID de origem (ex: "Cr1", "Cr5", "S")
*/
String getSourceNode();
/**
- * Returns the ID of the destination node (Process) for this message.
- * @return String (e.g., "Cr2", "DashboardServer").
+ * ID do nó de destino.
+ * @return ID de destino (ex: "Cr2", "DashboardServer")
*/
String getDestinationNode();
}
\ No newline at end of file
diff --git a/main/src/main/java/sd/protocol/SocketConnection.java b/main/src/main/java/sd/protocol/SocketConnection.java
index c65680b..90801b0 100644
--- a/main/src/main/java/sd/protocol/SocketConnection.java
+++ b/main/src/main/java/sd/protocol/SocketConnection.java
@@ -18,8 +18,8 @@ import sd.serialization.SerializerFactory;
/**
- * Wrapper class that simplifies communication via Sockets.
- * Includes connection retry logic for robustness.
+ * Simplifica comunicação via sockets.
+ * Inclui lógica de retry para robustez.
*/
public class SocketConnection implements Closeable {
@@ -28,22 +28,20 @@ public class SocketConnection implements Closeable {
private final InputStream inputStream;
private final MessageSerializer serializer;
- // --- Configuration for Retry Logic ---
- /** Maximum number of connection attempts. */
+ /** Número máximo de tentativas de ligação */
private static final int MAX_RETRIES = 5;
- /** Delay between retry attempts in milliseconds. */
+ /** Atraso entre tentativas (milissegundos) */
private static final long RETRY_DELAY_MS = 1000;
/**
- * Constructor for the "Client" (who initiates the connection).
- * Tries to connect to a process that is already listening (Server).
- * Includes retry logic in case of initial connection failure.
+ * Construtor do cliente que inicia a ligação.
+ * Tenta ligar a um servidor já em escuta, com retry.
*
- * @param host The host address (e.g., "localhost" from your simulation.properties)
- * @param port The port (e.g., 8001 from your simulation.properties)
- * @throws IOException If connection fails after all retries.
- * @throws UnknownHostException If the host is not found (this error usually doesn't need retry).
- * @throws InterruptedException If the thread is interrupted while waiting between retries.
+ * @param host endereço do host (ex: "localhost")
+ * @param port número da porta
+ * @throws IOException se falhar após todas as tentativas
+ * @throws UnknownHostException se o host não for encontrado
+ * @throws InterruptedException se a thread for interrompida
*/
public SocketConnection(String host, int port) throws IOException, UnknownHostException, InterruptedException {
Socket tempSocket = null;
diff --git a/main/src/main/java/sd/util/RandomGenerator.java b/main/src/main/java/sd/util/RandomGenerator.java
index f1122d5..5b9c65c 100644
--- a/main/src/main/java/sd/util/RandomGenerator.java
+++ b/main/src/main/java/sd/util/RandomGenerator.java
@@ -3,84 +3,82 @@ package sd.util;
import java.util.Random;
/**
- * Utility class for generating random values used throughout the simulation.
- * * Provides static methods for:
- * - Generating exponentially distributed intervals (for Poisson processes).
- * - Generating random integers and doubles in a range.
- * - Making decisions based on probability.
- * - Choosing random elements from an array.
- * * It uses a single, static {@link Random} instance.
+ * Utilitário para gerar valores aleatórios usados na simulação.
+ *
+ * Fornece métodos estáticos para:
+ *
+ * - Gerar intervalos exponencialmente distribuídos (processos de Poisson)
+ * - Gerar inteiros e doubles aleatórios num intervalo
+ * - Tomar decisões baseadas em probabilidade
+ * - Escolher elementos aleatórios de um array
+ *
+ *
+ * Usa uma única instância estática de {@link Random}.
*/
public class RandomGenerator {
- /**
- * The single, shared Random instance for the entire simulation.
- */
+ /** Instância partilhada de Random para toda a simulação */
private static final Random random = new Random();
/**
- * Returns a random time interval that follows an exponential distribution.
- * * This is a key component for modeling a Poisson process, where the
- * *inter-arrival times* (time between events) are exponentially distributed.
- * The formula used is the inverse transform sampling method:
- * {@code Time = -ln(1 - U) / λ}
- * where U is a uniform random number [0, 1) and λ (lambda) is the
- * average arrival rate.
+ * Retorna um intervalo de tempo que segue uma distribuição exponencial.
+ *
+ * Componente essencial para modelar processos de Poisson, onde os
+ * tempos entre chegadas seguem uma distribuição exponencial.
+ *
+ * Fórmula: {@code Time = -ln(1 - U) / λ}
+ * onde U é um número aleatório uniforme [0, 1) e λ (lambda) é a taxa média de chegada.
*
- * @param lambda The average arrival rate (λ) (e.g., 0.5 vehicles per second).
- * @return The time interval (in seconds) until the next arrival.
+ * @param lambda taxa média de chegada λ (ex: 0.5 veículos por segundo)
+ * @return intervalo de tempo (segundos) até à próxima chegada
*/
public static double generateExponentialInterval(double lambda) {
- // Math.log is the natural logarithm (ln)
- // random.nextDouble() returns a value in [0.0, 1.0)
return Math.log(1 - random.nextDouble()) / -lambda;
}
/**
- * Returns a random integer between {@code min} and {@code max}, inclusive.
+ * Retorna um inteiro aleatório entre {@code min} e {@code max}, inclusive.
*
- * @param min The minimum possible value.
- * @param max The maximum possible value.
- * @return A random integer in the range [min, max].
+ * @param min valor mínimo possível
+ * @param max valor máximo possível
+ * @return inteiro aleatório no intervalo [min, max]
*/
public static int generateRandomInt(int min, int max) {
- // random.nextInt(N) returns a value from 0 to N-1
- // (max - min + 1) is the total number of integers in the range
- // + min offsets the range
return random.nextInt(max - min + 1) + min;
}
/**
- * Returns a random double between {@code min} (inclusive) and {@code max} (exclusive).
+ * Retorna um double aleatório entre {@code min} (inclusive) e {@code max} (exclusivo).
*
- * @param min The minimum possible value.
- * @param max The maximum possible value.
- * @return A random double in the range [min, max).
+ * @param min valor mínimo possível
+ * @param max valor máximo possível
+ * @return double aleatório no intervalo [min, max)
*/
public static double generateRandomDouble(double min, double max) {
return min + (max - min) * random.nextDouble();
}
/**
- * Returns {@code true} with a given probability.
- * * This is useful for making weighted decisions. For example,
- * {@code occursWithProbability(0.3)} will return {@code true}
- * approximately 30% of the time.
+ * Retorna {@code true} com uma dada probabilidade.
+ *
+ * Útil para tomar decisões ponderadas. Por exemplo,
+ * {@code occursWithProbability(0.3)} retorna {@code true}
+ * aproximadamente 30% das vezes.
*
- * @param probability A value between 0.0 (never) and 1.0 (always).
- * @return {@code true} or {@code false}, based on the probability.
+ * @param probability valor entre 0.0 (nunca) e 1.0 (sempre)
+ * @return {@code true} ou {@code false}, baseado na probabilidade
*/
public static boolean occursWithProbability(double probability) {
return random.nextDouble() < probability;
}
/**
- * Picks a random element from the given array.
+ * Escolhe um elemento aleatório do array fornecido.
*
- * @param The generic type of the array.
- * @param array The array to choose from.
- * @return A randomly selected element from the array.
- * @throws IllegalArgumentException if the array is null or empty.
+ * @param tipo genérico do array
+ * @param array array de onde escolher
+ * @return elemento selecionado aleatoriamente
+ * @throws IllegalArgumentException se o array for null ou vazio
*/
public static T chooseRandom(T[] array) {
if (array == null || array.length == 0) {
@@ -90,12 +88,13 @@ public class RandomGenerator {
}
/**
- * Sets the seed of the shared random number generator.
- * This is extremely useful for debugging and testing, as it allows
- * the simulation to be run multiple times with the *exact same*
- * sequence of "random" events, making the results reproducible.
+ * Define a seed do gerador de números aleatórios partilhado.
+ *
+ * Extremamente útil para debugging e testes, pois permite executar
+ * a simulação múltiplas vezes com a mesma sequência de eventos "aleatórios",
+ * tornando os resultados reproduzíveis.
*
- * @param seed The seed to use.
+ * @param seed seed a usar
*/
public static void setSeed(long seed) {
random.setSeed(seed);
diff --git a/main/src/main/java/sd/util/VehicleGenerator.java b/main/src/main/java/sd/util/VehicleGenerator.java
index c6c7611..dbd987f 100644
--- a/main/src/main/java/sd/util/VehicleGenerator.java
+++ b/main/src/main/java/sd/util/VehicleGenerator.java
@@ -9,37 +9,38 @@ import sd.model.Vehicle;
import sd.model.VehicleType;
/**
- * Generates vehicles for the simulation.
- * * This class is responsible for two key tasks:
- * 1. Determining *when* the next vehicle should arrive, based on the
- * arrival model (POISSON or FIXED) from the {@link SimulationConfig}.
- * 2. Creating a new {@link Vehicle} object with a randomly selected
- * type (e.g., BIKE, LIGHT) and a randomly selected route.
- * * Routes are predefined and organized by entry point (E1, E2, E3).
+ * Gera veículos para a simulação.
+ *
+ * Esta classe é responsável por duas tarefas principais:
+ *
+ * - Determinar quando o próximo veículo deve chegar, baseado no
+ * modelo de chegada (POISSON ou FIXED) da {@link SimulationConfig}
+ * - Criar um novo objeto {@link Vehicle} com tipo e rota selecionados aleatoriamente
+ *
+ *
+ * As rotas são predefinidas e organizadas por ponto de entrada (E1, E2, E3).
*/
public class VehicleGenerator {
private final SimulationConfig config;
private final String arrivalModel;
- private final double arrivalRate; // Lambda (λ) for POISSON
- private final double fixedInterval; // Interval for FIXED
+ /** Lambda (λ) para modelo POISSON */
+ private final double arrivalRate;
+ /** Intervalo para modelo FIXED */
+ private final double fixedInterval;
- // --- Predefined Routes ---
- // These lists store all possible routes, grouped by where they start.
-
- /** Routes starting from entry point E1. */
+ /** Rotas possíveis a partir do ponto de entrada E1 */
private final List e1Routes;
- /** Routes starting from entry point E2. */
+ /** Rotas possíveis a partir do ponto de entrada E2 */
private final List e2Routes;
- /** Routes starting from entry point E3. */
+ /** Rotas possíveis a partir do ponto de entrada E3 */
private final List e3Routes;
/**
- * Constructs a new VehicleGenerator.
- * It reads the necessary configuration and initializes the
- * predefined routes.
+ * Cria um novo gerador de veículos.
+ * Lê a configuração necessária e inicializa as rotas predefinidas.
*
- * @param config The {@link SimulationConfig} object.
+ * @param config objeto de {@link SimulationConfig}
*/
public VehicleGenerator(SimulationConfig config) {
this.config = config;
@@ -57,64 +58,62 @@ public class VehicleGenerator {
}
/**
- * Defines all possible routes that vehicles can take, organized by
- * their entry point (E1, E2, E3). Each route is given a
- * probability, which determines how often it's chosen.
+ * Define todas as rotas possíveis que os veículos podem tomar.
+ * As rotas são organizadas por ponto de entrada (E1, E2, E3).
+ * Cada rota tem uma probabilidade que determina a frequência com que é escolhida.
*/
private void initializePossibleRoutes() {
- // E1 routes (Starts at Cr1)
e1Routes.add(new RouteWithProbability(
- Arrays.asList("Cr1", "Cr4", "Cr5", "S"), 0.34)); // E1 -> Cr1 -> Cr4 -> Cr5 -> Exit
+ Arrays.asList("Cr1", "Cr4", "Cr5", "S"), 0.34));
e1Routes.add(new RouteWithProbability(
- Arrays.asList("Cr1", "Cr2", "Cr5", "S"), 0.33)); // E1 -> Cr1 -> Cr2 -> Cr5 -> Exit
+ Arrays.asList("Cr1", "Cr2", "Cr5", "S"), 0.33));
e1Routes.add(new RouteWithProbability(
- Arrays.asList("Cr1", "Cr2", "Cr3", "S"), 0.33)); // E1 -> Cr1 -> Cr2 -> Cr3 -> Exit
+ Arrays.asList("Cr1", "Cr2", "Cr3", "S"), 0.33));
- // E2 routes (Starts at Cr2)
e2Routes.add(new RouteWithProbability(
- Arrays.asList("Cr2", "Cr5", "S"), 0.34)); // E2 -> Cr2 -> Cr5 -> Exit
+ Arrays.asList("Cr2", "Cr5", "S"), 0.34));
e2Routes.add(new RouteWithProbability(
- Arrays.asList("Cr2", "Cr3", "S"), 0.33)); // E2 -> Cr2 -> Cr3 -> Exit
+ Arrays.asList("Cr2", "Cr3", "S"), 0.33));
e2Routes.add(new RouteWithProbability(
- Arrays.asList("Cr2", "Cr1", "Cr4", "Cr5", "S"), 0.33)); // E2 -> Cr2 -> ... -> Exit
+ Arrays.asList("Cr2", "Cr1", "Cr4", "Cr5", "S"), 0.33));
- // E3 routes (Starts at Cr3)
e3Routes.add(new RouteWithProbability(
- Arrays.asList("Cr3", "S"), 0.34)); // E3 -> Cr3 -> Exit
+ Arrays.asList("Cr3", "S"), 0.34));
e3Routes.add(new RouteWithProbability(
- Arrays.asList("Cr3", "Cr2", "Cr5", "S"), 0.33)); // E3 -> Cr3 -> Cr2 -> Cr5 -> Exit
+ Arrays.asList("Cr3", "Cr2", "Cr5", "S"), 0.33));
e3Routes.add(new RouteWithProbability(
- Arrays.asList("Cr3", "Cr2", "Cr1", "Cr4", "Cr5", "S"), 0.33)); // E3 -> Cr3 -> ... -> Exit
+ Arrays.asList("Cr3", "Cr2", "Cr1", "Cr4", "Cr5", "S"), 0.33));
}
/**
- * Calculates the *absolute* time of the next vehicle arrival
- * based on the configured model.
- * * @param currentTime The current simulation time, used as the base.
- * @return The absolute time (e.g., {@code currentTime + interval})
- * when the next vehicle should be generated.
+ * Calcula o tempo absoluto da próxima chegada de veículo
+ * baseado no modelo configurado.
+ *
+ * @param currentTime tempo atual da simulação, usado como base
+ * @return tempo absoluto (ex: {@code currentTime + intervalo})
+ * em que o próximo veículo deve ser gerado
*/
public double getNextArrivalTime(double currentTime) {
if ("POISSON".equalsIgnoreCase(arrivalModel)) {
- // For a Poisson process, the time *between* arrivals
- // follows an exponential distribution.
double interval = RandomGenerator.generateExponentialInterval(arrivalRate);
return currentTime + interval;
} else {
- // For a Fixed model, the interval is constant.
return currentTime + fixedInterval;
}
}
/**
- * Generates a new {@link Vehicle} object.
- * This involves:
- * 1. Selecting a random {@link VehicleType} based on probabilities.
- * 2. Selecting a random route (entry point + path) based on probabilities.
+ * Gera um novo objeto {@link Vehicle}.
+ *
+ * Passos executados:
+ *
+ * - Seleciona um {@link VehicleType} aleatório baseado em probabilidades
+ * - Seleciona uma rota aleatória (ponto de entrada + caminho)
+ *
*
- * @param vehicleId The unique identifier for the new vehicle (e.g., "V123").
- * @param entryTime The simulation time when this vehicle is being created.
- * @return A new, configured {@link Vehicle} object.
+ * @param vehicleId identificador único do novo veículo (ex: "V123")
+ * @param entryTime tempo de simulação em que o veículo é criado
+ * @return novo objeto {@link Vehicle} configurado
*/
public Vehicle generateVehicle(String vehicleId, double entryTime) {
VehicleType type = selectVehicleType();
@@ -124,22 +123,24 @@ public class VehicleGenerator {
}
/**
- * Selects a {@link VehicleType} (BIKE, LIGHT, HEAVY) based on the
- * probabilities defined in the {@link SimulationConfig}.
- * * Uses a standard "cumulative probability" technique:
- * 1. Get a random number {@code rand} from [0, 1).
- * 2. If {@code rand < P(Bike)}, return BIKE.
- * 3. Else if {@code rand < P(Bike) + P(Light)}, return LIGHT.
- * 4. Else, return HEAVY.
+ * Seleciona um {@link VehicleType} (BIKE, LIGHT, HEAVY) baseado nas
+ * probabilidades definidas na {@link SimulationConfig}.
+ *
+ * Usa técnica de "probabilidade cumulativa":
+ *
+ * - Obtém número aleatório {@code rand} de [0, 1)
+ * - Se {@code rand < P(Bike)}, retorna BIKE
+ * - Senão se {@code rand < P(Bike) + P(Light)}, retorna LIGHT
+ * - Caso contrário, retorna HEAVY
+ *
*
- * @return The selected {@link VehicleType}.
+ * @return tipo de veículo selecionado
*/
private VehicleType selectVehicleType() {
double bikeProbability = config.getBikeVehicleProbability();
double lightProbability = config.getLightVehicleProbability();
double heavyProbability = config.getHeavyVehicleProbability();
- // Normalize probabilities in case they don't sum to exactly 1.0
double total = bikeProbability + lightProbability + heavyProbability;
if (total == 0) return VehicleType.LIGHT; // Avoid division by zero
bikeProbability /= total;
diff --git a/main/src/main/resources/network_config.json b/main/src/main/resources/network_config.json
index 8bbd50a..4e8df68 100644
--- a/main/src/main/resources/network_config.json
+++ b/main/src/main/resources/network_config.json
@@ -27,15 +27,18 @@
},
{
"id": "Cr4",
- "lights": ["East"],
+ "lights": ["East", "West"],
"routes": {
+ "Cr1": "North",
"Cr5": "East"
}
},
{
"id": "Cr5",
- "lights": ["East"],
+ "lights": ["East", "West", "North"],
"routes": {
+ "Cr2": "North",
+ "Cr4": "West",
"S": "East"
}
}
diff --git a/main/src/main/resources/simulation-high.properties b/main/src/main/resources/simulation-high.properties
new file mode 100644
index 0000000..202d3eb
--- /dev/null
+++ b/main/src/main/resources/simulation-high.properties
@@ -0,0 +1,117 @@
+# =========================================================
+# Traffic Simulation Configuration - HIGH LOAD SCENARIO
+# ---------------------------------------------------------
+# High traffic scenario for testing system under heavy load.
+# Expected: Significant congestion, large queues, system stress test
+# =========================================================
+
+# === NETWORK CONFIGURATION ===
+
+# Intersections (each with its host and port)
+intersection.Cr1.host=localhost
+intersection.Cr1.port=8001
+intersection.Cr2.host=localhost
+intersection.Cr2.port=8002
+intersection.Cr3.host=localhost
+intersection.Cr3.port=8003
+intersection.Cr4.host=localhost
+intersection.Cr4.port=8004
+intersection.Cr5.host=localhost
+intersection.Cr5.port=8005
+
+# Exit node
+exit.host=localhost
+exit.port=9001
+
+# Dashboard server
+dashboard.host=localhost
+dashboard.port=9000
+
+
+# === SIMULATION CONFIGURATION ===
+
+# Total duration in seconds (1800 = 30 minutes)
+simulation.duration=1800
+
+# Vehicle arrival model: FIXED or POISSON
+simulation.arrival.model=POISSON
+
+# λ (lambda): HIGH LOAD = 1.0 vehicle per second (60 vehicles/minute, 3600 vehicles/hour)
+# This is 2x medium load - tests system capacity limits
+simulation.arrival.rate=1.0
+
+# Fixed interval between arrivals (only used if model=FIXED)
+simulation.arrival.fixed.interval=1.0
+
+
+# === TRAFFIC LIGHT TIMINGS ===
+# Format: trafficlight...=
+# Aggressive timings to maximize throughput under high load
+
+# Intersection 1 (Entry point - longer greens to prevent early backup)
+trafficlight.Cr1.South.green=60.0
+trafficlight.Cr1.South.red=3.0
+trafficlight.Cr1.East.green=60.0
+trafficlight.Cr1.East.red=3.0
+
+# Intersection 2 (Main hub - CRITICAL BOTTLENECK, maximum green times)
+# This is the most critical intersection - all routes converge here
+trafficlight.Cr2.South.green=70.0
+trafficlight.Cr2.South.red=3.0
+trafficlight.Cr2.East.green=80.0
+trafficlight.Cr2.East.red=3.0
+trafficlight.Cr2.West.green=70.0
+trafficlight.Cr2.West.red=3.0
+
+# Intersection 3 (Path to exit - maximize East throughput to exit)
+trafficlight.Cr3.South.green=50.0
+trafficlight.Cr3.South.red=3.0
+trafficlight.Cr3.West.green=40.0
+trafficlight.Cr3.West.red=3.0
+
+# Intersection 4 (High throughput needed toward Cr5)
+trafficlight.Cr4.East.green=70.0
+trafficlight.Cr4.East.red=3.0
+
+# Intersection 5 (Near exit - MAJOR BOTTLENECK, longest green time)
+# All routes funnel through here before exit
+trafficlight.Cr5.East.green=90.0
+trafficlight.Cr5.East.red=3.0
+
+
+# === VEHICLE CONFIGURATION ===
+# Probability distribution for vehicle types (must sum to 1.0)
+vehicle.probability.bike=0.2
+vehicle.probability.light=0.6
+vehicle.probability.heavy=0.2
+
+# Average crossing times (in seconds)
+vehicle.crossing.time.bike=1.0
+vehicle.crossing.time.light=2.0
+vehicle.crossing.time.heavy=4.0
+
+# Travel times between intersections (in seconds)
+# Base time for light vehicles (cars)
+vehicle.travel.time.base=1.0
+# Bike travel time = 0.5 × car travel time
+vehicle.travel.time.bike.multiplier=0.5
+# Heavy vehicle travel time = 4.0 x base travel time
+vehicle.travel.time.heavy.multiplier=4.0
+
+# === STATISTICS ===
+
+# Interval between dashboard updates (seconds)
+statistics.update.interval=10.0
+
+# === EXPECTED BEHAVIOR - HIGH LOAD ===
+# - Average system time: 200-400+ seconds (3-7+ minutes)
+# - Maximum queue sizes: 15-30+ vehicles at Cr2 and Cr5
+# - Average queue sizes: 8-15+ vehicles
+# - Severe congestion at Cr2 (main convergence point)
+# - Severe congestion at Cr5 (pre-exit bottleneck)
+# - System utilization: ~80-95%
+# - Many vehicles will remain in system at simulation end
+# - Queue growth may be unbounded if arrival rate exceeds service rate
+# - Primary bottlenecks: Cr2 (3-way convergence) and Cr5 (final funnel)
+# - This scenario tests maximum system capacity and traffic light optimization
+# - Expected to demonstrate need for adaptive traffic light policies
diff --git a/main/src/main/resources/simulation-low.properties b/main/src/main/resources/simulation-low.properties
new file mode 100644
index 0000000..09d4a77
--- /dev/null
+++ b/main/src/main/resources/simulation-low.properties
@@ -0,0 +1,111 @@
+# =========================================================
+# Traffic Simulation Configuration - LOW LOAD SCENARIO
+# ---------------------------------------------------------
+# Low traffic scenario for testing system under light load.
+# Expected: No congestion, minimal queues, fast vehicle throughput
+# =========================================================
+
+# === NETWORK CONFIGURATION ===
+
+# Intersections (each with its host and port)
+intersection.Cr1.host=localhost
+intersection.Cr1.port=8001
+intersection.Cr2.host=localhost
+intersection.Cr2.port=8002
+intersection.Cr3.host=localhost
+intersection.Cr3.port=8003
+intersection.Cr4.host=localhost
+intersection.Cr4.port=8004
+intersection.Cr5.host=localhost
+intersection.Cr5.port=8005
+
+# Exit node
+exit.host=localhost
+exit.port=9001
+
+# Dashboard server
+dashboard.host=localhost
+dashboard.port=9000
+
+
+# === SIMULATION CONFIGURATION ===
+
+# Total duration in seconds (1800 = 30 minutes)
+simulation.duration=1800
+
+# Vehicle arrival model: FIXED or POISSON
+simulation.arrival.model=POISSON
+
+# λ (lambda): LOW LOAD = 0.2 vehicles per second (12 vehicles/minute, 720 vehicles/hour)
+# This is approximately 40% of medium load
+simulation.arrival.rate=0.2
+
+# Fixed interval between arrivals (only used if model=FIXED)
+simulation.arrival.fixed.interval=5.0
+
+
+# === TRAFFIC LIGHT TIMINGS ===
+# Format: trafficlight...=
+# Standard timings - should be more than adequate for low load
+
+# Intersection 1 (Entry point - balanced)
+trafficlight.Cr1.South.green=30.0
+trafficlight.Cr1.South.red=5.0
+trafficlight.Cr1.East.green=30.0
+trafficlight.Cr1.East.red=5.0
+
+# Intersection 2 (Main hub - shorter cycles, favor East-West)
+trafficlight.Cr2.South.green=30.0
+trafficlight.Cr2.South.red=5.0
+trafficlight.Cr2.East.green=30.0
+trafficlight.Cr2.East.red=5.0
+trafficlight.Cr2.West.green=30.0
+trafficlight.Cr2.West.red=5.0
+
+# Intersection 3 (Path to exit - favor East)
+trafficlight.Cr3.South.green=30.0
+trafficlight.Cr3.South.red=5.0
+trafficlight.Cr3.West.green=30.0
+trafficlight.Cr3.West.red=5.0
+
+# Intersection 4 (Favor East toward Cr5)
+trafficlight.Cr4.East.green=30.0
+trafficlight.Cr4.East.red=5.0
+
+# Intersection 5 (Near exit - favor East)
+trafficlight.Cr5.East.green=30.0
+trafficlight.Cr5.East.red=5.0
+
+
+# === VEHICLE CONFIGURATION ===
+# Probability distribution for vehicle types (must sum to 1.0)
+vehicle.probability.bike=0.2
+vehicle.probability.light=0.6
+vehicle.probability.heavy=0.2
+
+# Average crossing times (in seconds)
+vehicle.crossing.time.bike=1.0
+vehicle.crossing.time.light=2.0
+vehicle.crossing.time.heavy=4.0
+
+# Travel times between intersections (in seconds)
+# Base time for light vehicles (cars)
+vehicle.travel.time.base=1.0
+# Bike travel time = 0.5 × car travel time
+vehicle.travel.time.bike.multiplier=0.5
+# Heavy vehicle travel time = 4.0 x base travel time
+vehicle.travel.time.heavy.multiplier=4.0
+
+# === STATISTICS ===
+
+# Interval between dashboard updates (seconds)
+statistics.update.interval=10.0
+
+# === EXPECTED BEHAVIOR - LOW LOAD ===
+# - Average system time: 40-80 seconds
+# - Maximum queue sizes: 1-3 vehicles
+# - Average queue sizes: < 1 vehicle
+# - Vehicles should flow smoothly through the system
+# - Minimal waiting at traffic lights (mostly travel time)
+# - System utilization: ~20-30%
+# - All vehicles should exit within simulation time
diff --git a/main/src/main/resources/simulation-medium.properties b/main/src/main/resources/simulation-medium.properties
new file mode 100644
index 0000000..844a384
--- /dev/null
+++ b/main/src/main/resources/simulation-medium.properties
@@ -0,0 +1,112 @@
+# =========================================================
+# Traffic Simulation Configuration - MEDIUM LOAD SCENARIO
+# ---------------------------------------------------------
+# Medium traffic scenario for testing system under normal load.
+# Expected: Moderate queues, some congestion at peak intersections
+# =========================================================
+
+# === NETWORK CONFIGURATION ===
+
+# Intersections (each with its host and port)
+intersection.Cr1.host=localhost
+intersection.Cr1.port=8001
+intersection.Cr2.host=localhost
+intersection.Cr2.port=8002
+intersection.Cr3.host=localhost
+intersection.Cr3.port=8003
+intersection.Cr4.host=localhost
+intersection.Cr4.port=8004
+intersection.Cr5.host=localhost
+intersection.Cr5.port=8005
+
+# Exit node
+exit.host=localhost
+exit.port=9001
+
+# Dashboard server
+dashboard.host=localhost
+dashboard.port=9000
+
+
+# === SIMULATION CONFIGURATION ===
+
+# Total duration in seconds (1800 = 30 minutes)
+simulation.duration=1800
+
+# Vehicle arrival model: FIXED or POISSON
+simulation.arrival.model=POISSON
+
+# λ (lambda): MEDIUM LOAD = 0.5 vehicles per second (30 vehicles/minute, 1800 vehicles/hour)
+# This represents normal traffic conditions
+simulation.arrival.rate=0.5
+
+# Fixed interval between arrivals (only used if model=FIXED)
+simulation.arrival.fixed.interval=2.0
+
+
+# === TRAFFIC LIGHT TIMINGS ===
+# Format: trafficlight...=
+# Optimized timings for medium load
+
+# Intersection 1 (Entry point - balanced)
+trafficlight.Cr1.South.green=40.0
+trafficlight.Cr1.South.red=5.0
+trafficlight.Cr1.East.green=40.0
+trafficlight.Cr1.East.red=5.0
+
+# Intersection 2 (Main hub - CRITICAL BOTTLENECK, longer green times)
+trafficlight.Cr2.South.green=45.0
+trafficlight.Cr2.South.red=5.0
+trafficlight.Cr2.East.green=50.0
+trafficlight.Cr2.East.red=5.0
+trafficlight.Cr2.West.green=45.0
+trafficlight.Cr2.West.red=5.0
+
+# Intersection 3 (Path to exit - favor East toward exit)
+trafficlight.Cr3.South.green=40.0
+trafficlight.Cr3.South.red=5.0
+trafficlight.Cr3.West.green=35.0
+trafficlight.Cr3.West.red=5.0
+
+# Intersection 4 (Favor East toward Cr5)
+trafficlight.Cr4.East.green=40.0
+trafficlight.Cr4.East.red=5.0
+
+# Intersection 5 (Near exit - POTENTIAL BOTTLENECK, longer green)
+trafficlight.Cr5.East.green=50.0
+trafficlight.Cr5.East.red=5.0
+
+
+# === VEHICLE CONFIGURATION ===
+# Probability distribution for vehicle types (must sum to 1.0)
+vehicle.probability.bike=0.2
+vehicle.probability.light=0.6
+vehicle.probability.heavy=0.2
+
+# Average crossing times (in seconds)
+vehicle.crossing.time.bike=1.0
+vehicle.crossing.time.light=2.0
+vehicle.crossing.time.heavy=4.0
+
+# Travel times between intersections (in seconds)
+# Base time for light vehicles (cars)
+vehicle.travel.time.base=1.0
+# Bike travel time = 0.5 × car travel time
+vehicle.travel.time.bike.multiplier=0.5
+# Heavy vehicle travel time = 4.0 x base travel time
+vehicle.travel.time.heavy.multiplier=4.0
+
+# === STATISTICS ===
+
+# Interval between dashboard updates (seconds)
+statistics.update.interval=10.0
+
+# === EXPECTED BEHAVIOR - MEDIUM LOAD ===
+# - Average system time: 80-150 seconds
+# - Maximum queue sizes: 5-10 vehicles at Cr2 and Cr5
+# - Average queue sizes: 2-5 vehicles
+# - Moderate congestion at Cr2 (main hub) and Cr5 (pre-exit)
+# - System utilization: ~50-60%
+# - Most vehicles should exit, some may remain at simulation end
+# - Cr2 is the primary bottleneck (3 directions converge)
+# - Cr5 is secondary bottleneck (all routes pass through)
diff --git a/main/src/main/resources/simulation.properties b/main/src/main/resources/simulation.properties
index 9ac81cc..31ce0f8 100644
--- a/main/src/main/resources/simulation.properties
+++ b/main/src/main/resources/simulation.properties
@@ -31,7 +31,11 @@ dashboard.port=9000
# === SIMULATION CONFIGURATION ===
# Total duration in seconds (3600 = 1 hour)
-simulation.duration=3600
+simulation.duration=300
+
+# Time scaling factor for visualization (real_seconds = sim_seconds * scale)
+# 0 = instant (pure DES), 0.01 = 100x speed, 0.1 = 10x speed, 1.0 = real-time
+simulation.time.scale=0.01
# Vehicle arrival model: FIXED or POISSON
simulation.arrival.model=POISSON
diff --git a/main/src/test/java/sd/des/DESComponentsTest.java b/main/src/test/java/sd/des/DESComponentsTest.java
new file mode 100644
index 0000000..ea55b2d
--- /dev/null
+++ b/main/src/test/java/sd/des/DESComponentsTest.java
@@ -0,0 +1,174 @@
+package sd.des;
+
+import org.junit.jupiter.api.Test;
+import org.junit.jupiter.api.BeforeEach;
+import static org.junit.jupiter.api.Assertions.*;
+
+import sd.model.TrafficLight;
+import sd.model.TrafficLightState;
+
+/**
+ * Unit tests for DES (Discrete Event Simulation) components.
+ * Tests the core infrastructure: SimulationClock, EventQueue, SimulationEvent.
+ */
+public class DESComponentsTest {
+
+ private SimulationClock clock;
+ private EventQueue eventQueue;
+
+ @BeforeEach
+ public void setUp() {
+ clock = new SimulationClock();
+ eventQueue = new EventQueue(false); // Don't track history for basic tests
+ }
+
+ @Test
+ public void testSimulationClockInitialization() {
+ assertEquals(0.0, clock.getCurrentTime(), 0.001, "Clock should start at time 0");
+ assertEquals(0.0, clock.getElapsedTime(), 0.001, "Elapsed time should be 0 initially");
+ }
+
+ @Test
+ public void testSimulationClockAdvancement() {
+ clock.advanceTo(10.0);
+ assertEquals(10.0, clock.getCurrentTime(), 0.001, "Clock should advance to 10.0");
+
+ clock.advanceTo(25.5);
+ assertEquals(25.5, clock.getCurrentTime(), 0.001, "Clock should advance to 25.5");
+ assertEquals(25.5, clock.getElapsedTime(), 0.001, "Elapsed time should be 25.5");
+ }
+
+ @Test
+ public void testSimulationClockBackwardTimePrevention() {
+ clock.advanceTo(20.0);
+
+ // Attempting to go backward should throw an exception
+ assertThrows(IllegalArgumentException.class, () -> {
+ clock.advanceTo(15.0);
+ }, "Clock should throw exception when trying to go backward");
+
+ // Clock should still be at 20.0
+ assertEquals(20.0, clock.getCurrentTime(), 0.001, "Clock should remain at 20.0");
+ }
+
+ @Test
+ public void testEventQueueOrdering() {
+ // Schedule events out of order
+ SimulationEvent event3 = new SimulationEvent(30.0, DESEventType.VEHICLE_ARRIVAL, null);
+ SimulationEvent event1 = new SimulationEvent(10.0, DESEventType.VEHICLE_GENERATION, null);
+ SimulationEvent event2 = new SimulationEvent(20.0, DESEventType.TRAFFIC_LIGHT_CHANGE, null);
+
+ eventQueue.schedule(event3);
+ eventQueue.schedule(event1);
+ eventQueue.schedule(event2);
+
+ // Events should come out in chronological order
+ SimulationEvent first = eventQueue.poll();
+ assertEquals(10.0, first.getTimestamp(), 0.001, "First event should be at time 10.0");
+ assertEquals(DESEventType.VEHICLE_GENERATION, first.getType());
+
+ SimulationEvent second = eventQueue.poll();
+ assertEquals(20.0, second.getTimestamp(), 0.001, "Second event should be at time 20.0");
+ assertEquals(DESEventType.TRAFFIC_LIGHT_CHANGE, second.getType());
+
+ SimulationEvent third = eventQueue.poll();
+ assertEquals(30.0, third.getTimestamp(), 0.001, "Third event should be at time 30.0");
+ assertEquals(DESEventType.VEHICLE_ARRIVAL, third.getType());
+ }
+
+ @Test
+ public void testEventQueueEmpty() {
+ assertTrue(eventQueue.isEmpty(), "New queue should be empty");
+
+ eventQueue.schedule(new SimulationEvent(5.0, DESEventType.VEHICLE_GENERATION, null));
+ assertFalse(eventQueue.isEmpty(), "Queue should not be empty after scheduling");
+
+ eventQueue.poll();
+ assertTrue(eventQueue.isEmpty(), "Queue should be empty after polling all events");
+ }
+
+ @Test
+ public void testEventQueueSize() {
+ assertEquals(0, eventQueue.size(), "New queue should have size 0");
+
+ eventQueue.schedule(new SimulationEvent(5.0, DESEventType.VEHICLE_GENERATION, null));
+ eventQueue.schedule(new SimulationEvent(10.0, DESEventType.VEHICLE_ARRIVAL, null));
+ assertEquals(2, eventQueue.size(), "Queue should have size 2");
+
+ eventQueue.poll();
+ assertEquals(1, eventQueue.size(), "Queue should have size 1 after polling");
+ }
+
+ @Test
+ public void testSimulationEventComparison() {
+ SimulationEvent early = new SimulationEvent(5.0, DESEventType.VEHICLE_GENERATION, null);
+ SimulationEvent late = new SimulationEvent(10.0, DESEventType.VEHICLE_ARRIVAL, null);
+
+ assertTrue(early.compareTo(late) < 0, "Earlier event should compare less than later event");
+ assertTrue(late.compareTo(early) > 0, "Later event should compare greater than earlier event");
+ assertEquals(0, early.compareTo(early), "Event should compare equal to itself");
+ }
+
+ @Test
+ public void testSimulationEventEqualTimestamp() {
+ // When timestamps are equal, events are ordered by type name
+ SimulationEvent event1 = new SimulationEvent(5.0, DESEventType.TRAFFIC_LIGHT_CHANGE, null);
+ SimulationEvent event2 = new SimulationEvent(5.0, DESEventType.VEHICLE_ARRIVAL, null);
+
+ int comparison = event1.compareTo(event2);
+ // TRAFFIC_LIGHT_CHANGE comes before VEHICLE_ARRIVAL alphabetically
+ assertTrue(comparison < 0, "When equal timestamp, should order by type name alphabetically");
+ }
+
+ @Test
+ public void testTrafficLightEvent() {
+ TrafficLight light = new TrafficLight("Cr1-N", "North", 10.0, 15.0);
+ light.changeState(TrafficLightState.RED);
+ TrafficLightEvent tlEvent = new TrafficLightEvent(light, "North", "Cr1");
+
+ assertEquals(light, tlEvent.getLight(), "Should return correct traffic light");
+ assertEquals("North", tlEvent.getDirection(), "Should return correct direction");
+ assertEquals("Cr1", tlEvent.getIntersectionId(), "Should return correct intersection ID");
+ }
+
+ @Test
+ public void testEventHistoryTracking() {
+ EventQueue historyQueue = new EventQueue(true); // Enable history tracking
+
+ SimulationEvent event1 = new SimulationEvent(5.0, DESEventType.VEHICLE_GENERATION, null);
+ SimulationEvent event2 = new SimulationEvent(10.0, DESEventType.VEHICLE_ARRIVAL, null);
+
+ historyQueue.schedule(event1);
+ historyQueue.schedule(event2);
+
+ historyQueue.poll();
+ historyQueue.poll();
+
+ String history = historyQueue.exportEventHistory();
+ assertNotNull(history, "Event history should not be null");
+ assertTrue(history.contains("VEHICLE_GENERATION"), "History should contain first event type");
+ assertTrue(history.contains("VEHICLE_ARRIVAL"), "History should contain second event type");
+ }
+
+ @Test
+ public void testEventQueuePeek() {
+ SimulationEvent event = new SimulationEvent(5.0, DESEventType.VEHICLE_GENERATION, null);
+ eventQueue.schedule(event);
+
+ SimulationEvent peeked = eventQueue.peek();
+ assertNotNull(peeked, "Peek should return event");
+ assertEquals(5.0, peeked.getTimestamp(), 0.001, "Peeked event should have correct timestamp");
+
+ // Queue should still have the event
+ assertEquals(1, eventQueue.size(), "Peek should not remove event from queue");
+ }
+
+ @Test
+ public void testSimulationEndEvent() {
+ SimulationEvent endEvent = new SimulationEvent(100.0, DESEventType.SIMULATION_END, null);
+
+ assertEquals(100.0, endEvent.getTimestamp(), 0.001);
+ assertEquals(DESEventType.SIMULATION_END, endEvent.getType());
+ assertNull(endEvent.getPayload(), "End event should have no payload");
+ }
+}