mirror of
https://github.com/davidalves04/Trabalho-Pratico-SD.git
synced 2025-12-08 20:43:32 +00:00
proto-doc
This commit is contained in:
@@ -7,40 +7,50 @@ import sd.engine.SimulationEngine;
|
|||||||
|
|
||||||
/**
|
/**
|
||||||
* Main entry point for the traffic simulation.
|
* Main entry point for the traffic simulation.
|
||||||
*
|
* * This class is responsible for loading the simulation configuration,
|
||||||
* This class initializes and runs the discrete event simulation.
|
* initializing the {@link SimulationEngine}, and starting the simulation run.
|
||||||
|
* It also prints initial configuration details and final execution time.
|
||||||
*/
|
*/
|
||||||
public class Entry {
|
public class Entry {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The default path to the simulation configuration file.
|
||||||
|
* This is used if no command-line arguments are provided.
|
||||||
|
*/
|
||||||
private static final String DEFAULT_CONFIG_FILE = "src/main/resources/simulation.properties";
|
private static final String DEFAULT_CONFIG_FILE = "src/main/resources/simulation.properties";
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The main method to start the simulation.
|
||||||
|
* * @param args Command-line arguments. If provided, args[0] is expected
|
||||||
|
* to be the path to a custom configuration file.
|
||||||
|
*/
|
||||||
public static void main(String[] args) {
|
public static void main(String[] args) {
|
||||||
System.out.println("=".repeat(60));
|
System.out.println("=".repeat(60));
|
||||||
System.out.println("TRAFFIC SIMULATION - DISCRETE EVENT SIMULATOR");
|
System.out.println("TRAFFIC SIMULATION - DISCRETE EVENT SIMULATOR");
|
||||||
System.out.println("=".repeat(60));
|
System.out.println("=".repeat(60));
|
||||||
|
|
||||||
try {
|
try {
|
||||||
// Load configuration
|
// 1. Load configuration
|
||||||
String configFile = args.length > 0 ? args[0] : DEFAULT_CONFIG_FILE;
|
String configFile = args.length > 0 ? args[0] : DEFAULT_CONFIG_FILE;
|
||||||
System.out.println("Loading configuration from: " + configFile);
|
System.out.println("Loading configuration from: " + configFile);
|
||||||
|
|
||||||
SimulationConfig config = new SimulationConfig(configFile);
|
SimulationConfig config = new SimulationConfig(configFile);
|
||||||
|
|
||||||
// Display configuration
|
// 2. Display configuration
|
||||||
displayConfiguration(config);
|
displayConfiguration(config);
|
||||||
|
|
||||||
// Create and initialize simulation engine
|
// 3. Create and initialize simulation engine
|
||||||
SimulationEngine engine = new SimulationEngine(config);
|
SimulationEngine engine = new SimulationEngine(config);
|
||||||
engine.initialize();
|
engine.initialize();
|
||||||
|
|
||||||
System.out.println("\n" + "=".repeat(60));
|
System.out.println("\n" + "=".repeat(60));
|
||||||
|
|
||||||
// Run simulation
|
// 4. Run simulation
|
||||||
long startTime = System.currentTimeMillis();
|
long startTime = System.currentTimeMillis();
|
||||||
engine.run();
|
engine.run();
|
||||||
long endTime = System.currentTimeMillis();
|
long endTime = System.currentTimeMillis();
|
||||||
|
|
||||||
// Display execution time
|
// 5. Display execution time
|
||||||
double executionTime = (endTime - startTime) / 1000.0;
|
double executionTime = (endTime - startTime) / 1000.0;
|
||||||
System.out.println("\nExecution time: " + String.format("%.2f", executionTime) + " seconds");
|
System.out.println("\nExecution time: " + String.format("%.2f", executionTime) + " seconds");
|
||||||
System.out.println("=".repeat(60));
|
System.out.println("=".repeat(60));
|
||||||
@@ -55,7 +65,10 @@ public class Entry {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Displays the main configuration parameters.
|
* Displays the main configuration parameters to the console.
|
||||||
|
* This provides a summary of the simulation settings before it starts.
|
||||||
|
*
|
||||||
|
* @param config The {@link SimulationConfig} object containing the loaded settings.
|
||||||
*/
|
*/
|
||||||
private static void displayConfiguration(SimulationConfig config) {
|
private static void displayConfiguration(SimulationConfig config) {
|
||||||
System.out.println("\nSIMULATION CONFIGURATION:");
|
System.out.println("\nSIMULATION CONFIGURATION:");
|
||||||
|
|||||||
@@ -7,11 +7,24 @@ import java.util.Properties;
|
|||||||
|
|
||||||
/**
|
/**
|
||||||
* Class to load and manage simulation configurations.
|
* Class to load and manage simulation configurations.
|
||||||
* Configurations are read from a .properties file.
|
* Configurations are read from a .properties file. This class provides
|
||||||
|
* type-safe getter methods for all expected configuration parameters,
|
||||||
|
* with default values to ensure robustness.
|
||||||
*/
|
*/
|
||||||
public class SimulationConfig {
|
public class SimulationConfig {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Holds all properties loaded from the file.
|
||||||
|
*/
|
||||||
private final Properties properties;
|
private final Properties properties;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Constructs a new SimulationConfig object by loading properties
|
||||||
|
* from the specified file path.
|
||||||
|
*
|
||||||
|
* @param filePath The path to the .properties file (e.g., "src/main/resources/simulation.properties").
|
||||||
|
* @throws IOException If the file cannot be found or read.
|
||||||
|
*/
|
||||||
public SimulationConfig(String filePath) throws IOException {
|
public SimulationConfig(String filePath) throws IOException {
|
||||||
properties = new Properties();
|
properties = new Properties();
|
||||||
try (InputStream input = new FileInputStream(filePath)) {
|
try (InputStream input = new FileInputStream(filePath)) {
|
||||||
@@ -19,94 +32,194 @@ public class SimulationConfig {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Network configurations
|
// --- Network configurations ---
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Gets the host address for a specific intersection.
|
||||||
|
* @param intersectionId The ID of the intersection (e.g., "Cr1").
|
||||||
|
* @return The host (e.g., "localhost").
|
||||||
|
*/
|
||||||
public String getIntersectionHost(String intersectionId) {
|
public String getIntersectionHost(String intersectionId) {
|
||||||
return properties.getProperty("intersection." + intersectionId + ".host", "localhost");
|
return properties.getProperty("intersection." + intersectionId + ".host", "localhost");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Gets the port number for a specific intersection.
|
||||||
|
* @param intersectionId The ID of the intersection (e.g., "Cr1").
|
||||||
|
* @return The port number.
|
||||||
|
*/
|
||||||
public int getIntersectionPort(String intersectionId) {
|
public int getIntersectionPort(String intersectionId) {
|
||||||
return Integer.parseInt(properties.getProperty("intersection." + intersectionId + ".port", "0"));
|
return Integer.parseInt(properties.getProperty("intersection." + intersectionId + ".port", "0"));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Gets the host address for the dashboard server.
|
||||||
|
* @return The dashboard host.
|
||||||
|
*/
|
||||||
public String getDashboardHost() {
|
public String getDashboardHost() {
|
||||||
return properties.getProperty("dashboard.host", "localhost");
|
return properties.getProperty("dashboard.host", "localhost");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Gets the port number for the dashboard server.
|
||||||
|
* @return The dashboard port.
|
||||||
|
*/
|
||||||
public int getDashboardPort() {
|
public int getDashboardPort() {
|
||||||
return Integer.parseInt(properties.getProperty("dashboard.port", "9000"));
|
return Integer.parseInt(properties.getProperty("dashboard.port", "9000"));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Gets the host address for the exit node.
|
||||||
|
* @return The exit node host.
|
||||||
|
*/
|
||||||
public String getExitHost() {
|
public String getExitHost() {
|
||||||
return properties.getProperty("exit.host", "localhost");
|
return properties.getProperty("exit.host", "localhost");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Gets the port number for the exit node.
|
||||||
|
* @return The exit node port.
|
||||||
|
*/
|
||||||
public int getExitPort() {
|
public int getExitPort() {
|
||||||
return Integer.parseInt(properties.getProperty("exit.port", "9001"));
|
return Integer.parseInt(properties.getProperty("exit.port", "9001"));
|
||||||
}
|
}
|
||||||
|
|
||||||
// Simulation configurations
|
// --- Simulation configurations ---
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Gets the total duration of the simulation in virtual seconds.
|
||||||
|
* @return The simulation duration.
|
||||||
|
*/
|
||||||
public double getSimulationDuration() {
|
public double getSimulationDuration() {
|
||||||
return Double.parseDouble(properties.getProperty("simulation.duration", "3600.0"));
|
return Double.parseDouble(properties.getProperty("simulation.duration", "3600.0"));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Gets the vehicle arrival model ("POISSON" or "FIXED").
|
||||||
|
* @return The arrival model as a string.
|
||||||
|
*/
|
||||||
public String getArrivalModel() {
|
public String getArrivalModel() {
|
||||||
return properties.getProperty("simulation.arrival.model", "POISSON");
|
return properties.getProperty("simulation.arrival.model", "POISSON");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Gets the average arrival rate (lambda) for the POISSON model.
|
||||||
|
* This represents the average number of vehicles arriving per second.
|
||||||
|
* @return The arrival rate.
|
||||||
|
*/
|
||||||
public double getArrivalRate() {
|
public double getArrivalRate() {
|
||||||
return Double.parseDouble(properties.getProperty("simulation.arrival.rate", "0.5"));
|
return Double.parseDouble(properties.getProperty("simulation.arrival.rate", "0.5"));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Gets the fixed time interval between vehicle arrivals for the FIXED model.
|
||||||
|
* @return The fixed interval in seconds.
|
||||||
|
*/
|
||||||
public double getFixedArrivalInterval() {
|
public double getFixedArrivalInterval() {
|
||||||
return Double.parseDouble(properties.getProperty("simulation.arrival.fixed.interval", "2.0"));
|
return Double.parseDouble(properties.getProperty("simulation.arrival.fixed.interval", "2.0"));
|
||||||
}
|
}
|
||||||
|
|
||||||
// Traffic light configurations
|
// --- Traffic light configurations ---
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Gets the duration of the GREEN light state for a specific traffic light.
|
||||||
|
* @param intersectionId The ID of the intersection (e.g., "Cr1").
|
||||||
|
* @param direction The direction of the light (e.g., "North").
|
||||||
|
* @return The green light time in seconds.
|
||||||
|
*/
|
||||||
public double getTrafficLightGreenTime(String intersectionId, String direction) {
|
public double getTrafficLightGreenTime(String intersectionId, String direction) {
|
||||||
String key = "trafficlight." + intersectionId + "." + direction + ".green";
|
String key = "trafficlight." + intersectionId + "." + direction + ".green";
|
||||||
return Double.parseDouble(properties.getProperty(key, "30.0"));
|
return Double.parseDouble(properties.getProperty(key, "30.0"));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Gets the duration of the RED light state for a specific traffic light.
|
||||||
|
* @param intersectionId The ID of the intersection (e.g., "Cr1").
|
||||||
|
* @param direction The direction of the light (e.g., "North").
|
||||||
|
* @return The red light time in seconds.
|
||||||
|
*/
|
||||||
public double getTrafficLightRedTime(String intersectionId, String direction) {
|
public double getTrafficLightRedTime(String intersectionId, String direction) {
|
||||||
String key = "trafficlight." + intersectionId + "." + direction + ".red";
|
String key = "trafficlight." + intersectionId + "." + direction + ".red";
|
||||||
return Double.parseDouble(properties.getProperty(key, "30.0"));
|
return Double.parseDouble(properties.getProperty(key, "30.0"));
|
||||||
}
|
}
|
||||||
|
|
||||||
// Vehicle configurations
|
// --- Vehicle configurations ---
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Gets the probability (0.0 to 1.0) that a generated vehicle is of type LIGHT.
|
||||||
|
* @return The probability for LIGHT vehicles.
|
||||||
|
*/
|
||||||
public double getLightVehicleProbability() {
|
public double getLightVehicleProbability() {
|
||||||
return Double.parseDouble(properties.getProperty("vehicle.probability.light", "0.7"));
|
return Double.parseDouble(properties.getProperty("vehicle.probability.light", "0.7"));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Gets the average time it takes a LIGHT vehicle to cross an intersection.
|
||||||
|
* @return The crossing time in seconds.
|
||||||
|
*/
|
||||||
public double getLightVehicleCrossingTime() {
|
public double getLightVehicleCrossingTime() {
|
||||||
return Double.parseDouble(properties.getProperty("vehicle.crossing.time.light", "2.0"));
|
return Double.parseDouble(properties.getProperty("vehicle.crossing.time.light", "2.0"));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Gets the probability (0.0 to 1.0) that a generated vehicle is of type BIKE.
|
||||||
|
* @return The probability for BIKE vehicles.
|
||||||
|
*/
|
||||||
public double getBikeVehicleProbability() {
|
public double getBikeVehicleProbability() {
|
||||||
return Double.parseDouble(properties.getProperty("vehicle.probability.bike", "0.0"));
|
return Double.parseDouble(properties.getProperty("vehicle.probability.bike", "0.0"));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Gets the average time it takes a BIKE vehicle to cross an intersection.
|
||||||
|
* @return The crossing time in seconds.
|
||||||
|
*/
|
||||||
public double getBikeVehicleCrossingTime() {
|
public double getBikeVehicleCrossingTime() {
|
||||||
return Double.parseDouble(properties.getProperty("vehicle.crossing.time.bike", "1.5"));
|
return Double.parseDouble(properties.getProperty("vehicle.crossing.time.bike", "1.5"));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Gets the probability (0.0 to 1.0) that a generated vehicle is of type HEAVY.
|
||||||
|
* @return The probability for HEAVY vehicles.
|
||||||
|
*/
|
||||||
public double getHeavyVehicleProbability() {
|
public double getHeavyVehicleProbability() {
|
||||||
return Double.parseDouble(properties.getProperty("vehicle.probability.heavy", "0.0"));
|
return Double.parseDouble(properties.getProperty("vehicle.probability.heavy", "0.0"));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Gets the average time it takes a HEAVY vehicle to cross an intersection.
|
||||||
|
* @return The crossing time in seconds.
|
||||||
|
*/
|
||||||
public double getHeavyVehicleCrossingTime() {
|
public double getHeavyVehicleCrossingTime() {
|
||||||
return Double.parseDouble(properties.getProperty("vehicle.crossing.time.heavy", "4.0"));
|
return Double.parseDouble(properties.getProperty("vehicle.crossing.time.heavy", "4.0"));
|
||||||
}
|
}
|
||||||
|
|
||||||
// Statistics
|
// --- Statistics ---
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Gets the interval (in virtual seconds) between periodic statistics updates.
|
||||||
|
* @return The statistics update interval.
|
||||||
|
*/
|
||||||
public double getStatisticsUpdateInterval() {
|
public double getStatisticsUpdateInterval() {
|
||||||
return Double.parseDouble(properties.getProperty("statistics.update.interval", "10.0"));
|
return Double.parseDouble(properties.getProperty("statistics.update.interval", "10.0"));
|
||||||
}
|
}
|
||||||
|
|
||||||
// Generic method to get any property
|
// --- Generic getters ---
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Generic method to get any property as a string, with a default value.
|
||||||
|
* @param key The property key.
|
||||||
|
* @param defaultValue The value to return if the key is not found.
|
||||||
|
* @return The property value or the default.
|
||||||
|
*/
|
||||||
public String getProperty(String key, String defaultValue) {
|
public String getProperty(String key, String defaultValue) {
|
||||||
return properties.getProperty(key, defaultValue);
|
return properties.getProperty(key, defaultValue);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Generic method to get any property as a string.
|
||||||
|
* @param key The property key.
|
||||||
|
* @return The property value, or null if not found.
|
||||||
|
*/
|
||||||
public String getProperty(String key) {
|
public String getProperty(String key) {
|
||||||
return properties.getProperty(key);
|
return properties.getProperty(key);
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -16,22 +16,62 @@ import sd.util.StatisticsCollector;
|
|||||||
import sd.util.VehicleGenerator;
|
import sd.util.VehicleGenerator;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Core simulation engine using discrete event simulation with a priority queue.
|
* Core simulation engine using discrete event simulation (DES).
|
||||||
*
|
* * This class orchestrates the entire simulation. It maintains a
|
||||||
* Processes events in chronological order, managing traffic lights, vehicles,
|
* {@link PriorityQueue} of {@link Event} objects, representing all
|
||||||
* and routing throughout the network of intersections.
|
* scheduled future actions. The engine processes events in strict
|
||||||
|
* chronological order (based on their timestamp).
|
||||||
|
* * It manages the simulation's state, including:
|
||||||
|
* - The current simulation time ({@code currentTime}).
|
||||||
|
* - The collection of all {@link Intersection} objects.
|
||||||
|
* - The {@link VehicleGenerator} for creating new vehicles.
|
||||||
|
* - The {@link StatisticsCollector} for tracking metrics.
|
||||||
*/
|
*/
|
||||||
public class SimulationEngine {
|
public class SimulationEngine {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Holds all simulation parameters loaded from the properties file.
|
||||||
|
*/
|
||||||
private final SimulationConfig config;
|
private final SimulationConfig config;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The core of the discrete event simulation. Events are pulled from this
|
||||||
|
* queue in order of their timestamp.
|
||||||
|
*/
|
||||||
private final PriorityQueue<Event> eventQueue;
|
private final PriorityQueue<Event> eventQueue;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A map storing all intersections in the simulation, keyed by their ID (e.g., "Cr1").
|
||||||
|
*/
|
||||||
private final Map<String, Intersection> intersections;
|
private final Map<String, Intersection> intersections;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Responsible for creating new vehicles according to the configured arrival model.
|
||||||
|
*/
|
||||||
private final VehicleGenerator vehicleGenerator;
|
private final VehicleGenerator vehicleGenerator;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Collects and calculates statistics throughout the simulation.
|
||||||
|
*/
|
||||||
private final StatisticsCollector statisticsCollector;
|
private final StatisticsCollector statisticsCollector;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The current time in the simulation (in virtual seconds).
|
||||||
|
* This time advances based on the timestamp of the event being processed.
|
||||||
|
*/
|
||||||
private double currentTime;
|
private double currentTime;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A simple counter to generate unique IDs for vehicles.
|
||||||
|
*/
|
||||||
private int vehicleCounter;
|
private int vehicleCounter;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Constructs a new SimulationEngine.
|
||||||
|
*
|
||||||
|
* @param config The {@link SimulationConfig} object containing all
|
||||||
|
* simulation parameters.
|
||||||
|
*/
|
||||||
public SimulationEngine(SimulationConfig config) {
|
public SimulationEngine(SimulationConfig config) {
|
||||||
this.config = config;
|
this.config = config;
|
||||||
this.eventQueue = new PriorityQueue<>();
|
this.eventQueue = new PriorityQueue<>();
|
||||||
@@ -43,41 +83,39 @@ public class SimulationEngine {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Initializes the simulation by creating intersections, traffic lights,
|
* Initializes the simulation. This involves:
|
||||||
* and scheduling initial events.
|
* 1. Creating all {@link Intersection} and {@link TrafficLight} objects.
|
||||||
|
* 2. Configuring the routing logic between intersections.
|
||||||
|
* 3. Scheduling the initial events (first traffic light changes,
|
||||||
|
* first vehicle generation, and periodic statistics updates).
|
||||||
*/
|
*/
|
||||||
public void initialize() {
|
public void initialize() {
|
||||||
System.out.println("Initializing simulation...");
|
System.out.println("Initializing simulation...");
|
||||||
|
|
||||||
// Create intersections
|
|
||||||
setupIntersections();
|
setupIntersections();
|
||||||
|
|
||||||
// Configure routing between intersections
|
|
||||||
setupRouting();
|
setupRouting();
|
||||||
|
|
||||||
// Schedule initial traffic light changes
|
// Schedule initial events to "bootstrap" the simulation
|
||||||
scheduleTrafficLightEvents();
|
scheduleTrafficLightEvents();
|
||||||
|
|
||||||
// Schedule first vehicle generation
|
|
||||||
scheduleNextVehicleGeneration(0.0);
|
scheduleNextVehicleGeneration(0.0);
|
||||||
|
|
||||||
// Schedule periodic statistics updates
|
|
||||||
scheduleStatisticsUpdates();
|
scheduleStatisticsUpdates();
|
||||||
|
|
||||||
System.out.println("Simulation initialized with " + intersections.size() + " intersections");
|
System.out.println("Simulation initialized with " + intersections.size() + " intersections");
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Creates all intersections with their traffic lights.
|
* Creates all intersections defined in the configuration
|
||||||
|
* and adds their corresponding traffic lights.
|
||||||
*/
|
*/
|
||||||
private void setupIntersections() {
|
private void setupIntersections() {
|
||||||
String[] intersectionIds = {"Cr1", "Cr2", "Cr3", "Cr4", "Cr5"};
|
String[] intersectionIds = {"Cr1", "Cr2", "Cr3", "Cr4", "Cr5"};
|
||||||
|
// Note: "North" is commented out, so it won't be created.
|
||||||
String[] directions = {/*"North",*/ "South", "East", "West"};
|
String[] directions = {/*"North",*/ "South", "East", "West"};
|
||||||
|
|
||||||
for (String id : intersectionIds) {
|
for (String id : intersectionIds) {
|
||||||
Intersection intersection = new Intersection(id);
|
Intersection intersection = new Intersection(id);
|
||||||
|
|
||||||
// Add traffic lights for each direction
|
// Add traffic lights for each configured direction
|
||||||
for (String direction : directions) {
|
for (String direction : directions) {
|
||||||
double greenTime = config.getTrafficLightGreenTime(id, direction);
|
double greenTime = config.getTrafficLightGreenTime(id, direction);
|
||||||
double redTime = config.getTrafficLightRedTime(id, direction);
|
double redTime = config.getTrafficLightRedTime(id, direction);
|
||||||
@@ -98,12 +136,12 @@ public class SimulationEngine {
|
|||||||
|
|
||||||
/**
|
/**
|
||||||
* Configures how vehicles should be routed between intersections.
|
* Configures how vehicles should be routed between intersections.
|
||||||
* This is a simplified routing - in a real scenario, this would be more complex.
|
* This hardcoded logic defines the "map" of the city.
|
||||||
|
* * For example, `intersections.get("Cr1").configureRoute("Cr2", "East");` means
|
||||||
|
* "at intersection Cr1, any vehicle whose *next* destination is Cr2
|
||||||
|
* should be sent to the 'East' traffic light queue."
|
||||||
*/
|
*/
|
||||||
private void setupRouting() {
|
private void setupRouting() {
|
||||||
// Example routing configuration (simplified)
|
|
||||||
// Each intersection routes to next destinations based on direction
|
|
||||||
|
|
||||||
// Cr1 routing
|
// Cr1 routing
|
||||||
intersections.get("Cr1").configureRoute("Cr2", "East");
|
intersections.get("Cr1").configureRoute("Cr2", "East");
|
||||||
intersections.get("Cr1").configureRoute("Cr4", "South");
|
intersections.get("Cr1").configureRoute("Cr4", "South");
|
||||||
@@ -115,7 +153,7 @@ public class SimulationEngine {
|
|||||||
|
|
||||||
// Cr3 routing
|
// Cr3 routing
|
||||||
intersections.get("Cr3").configureRoute("Cr2", "West");
|
intersections.get("Cr3").configureRoute("Cr2", "West");
|
||||||
intersections.get("Cr3").configureRoute("S", "South");
|
intersections.get("Cr3").configureRoute("S", "South"); // "S" is the exit
|
||||||
|
|
||||||
// Cr4 routing
|
// Cr4 routing
|
||||||
//intersections.get("Cr4").configureRoute("Cr1", "North");
|
//intersections.get("Cr4").configureRoute("Cr1", "North");
|
||||||
@@ -124,25 +162,33 @@ public class SimulationEngine {
|
|||||||
// Cr5 routing
|
// Cr5 routing
|
||||||
//intersections.get("Cr5").configureRoute("Cr2", "North");
|
//intersections.get("Cr5").configureRoute("Cr2", "North");
|
||||||
//intersections.get("Cr5").configureRoute("Cr4", "West");
|
//intersections.get("Cr5").configureRoute("Cr4", "West");
|
||||||
intersections.get("Cr5").configureRoute("S", "East");
|
intersections.get("Cr5").configureRoute("S", "East"); // "S" is the exit
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Schedules initial traffic light change events for all intersections.
|
* Schedules the initial {@link EventType#TRAFFIC_LIGHT_CHANGE} event
|
||||||
|
* for every traffic light in the simulation.
|
||||||
|
* A small random delay is added to "stagger" the lights, preventing
|
||||||
|
* all of them from changing at the exact same time at t=0.
|
||||||
*/
|
*/
|
||||||
private void scheduleTrafficLightEvents() {
|
private void scheduleTrafficLightEvents() {
|
||||||
for (Intersection intersection : intersections.values()) {
|
for (Intersection intersection : intersections.values()) {
|
||||||
for (TrafficLight light : intersection.getTrafficLights()) {
|
for (TrafficLight light : intersection.getTrafficLights()) {
|
||||||
// Start with lights in RED state, schedule first GREEN change
|
// Start with lights in RED state, schedule first GREEN change
|
||||||
// Stagger the start times slightly to avoid all lights changing at once
|
// Stagger the start times slightly to avoid all lights changing at once
|
||||||
double staggerDelay = Math.random() * 5.0;
|
double staggerDelay = Math.random() * 1.5;
|
||||||
scheduleTrafficLightChange(light, intersection.getId(), staggerDelay);
|
scheduleTrafficLightChange(light, intersection.getId(), staggerDelay);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Schedules the next traffic light state change.
|
* Creates and schedules a new {@link EventType#TRAFFIC_LIGHT_CHANGE} event.
|
||||||
|
* The event is scheduled to occur at {@code currentTime + delay}.
|
||||||
|
*
|
||||||
|
* @param light The {@link TrafficLight} that will change state.
|
||||||
|
* @param intersectionId The ID of the intersection where the light is located.
|
||||||
|
* @param delay The time (in seconds) from {@code currentTime} when the change should occur.
|
||||||
*/
|
*/
|
||||||
private void scheduleTrafficLightChange(TrafficLight light, String intersectionId, double delay) {
|
private void scheduleTrafficLightChange(TrafficLight light, String intersectionId, double delay) {
|
||||||
double changeTime = currentTime + delay;
|
double changeTime = currentTime + delay;
|
||||||
@@ -151,11 +197,16 @@ public class SimulationEngine {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Schedules the next vehicle generation event.
|
* Schedules the next {@link EventType#VEHICLE_GENERATION} event.
|
||||||
|
* The time of the next arrival is determined by the {@link VehicleGenerator}.
|
||||||
|
*
|
||||||
|
* @param baseTime The time from which to calculate the next arrival (usually {@code currentTime}).
|
||||||
*/
|
*/
|
||||||
private void scheduleNextVehicleGeneration(double baseTime) {
|
private void scheduleNextVehicleGeneration(double baseTime) {
|
||||||
|
// Get the absolute time for the next arrival.
|
||||||
double nextArrivalTime = vehicleGenerator.getNextArrivalTime(baseTime);
|
double nextArrivalTime = vehicleGenerator.getNextArrivalTime(baseTime);
|
||||||
|
|
||||||
|
// Only schedule the event if it's within the simulation's total duration.
|
||||||
if (nextArrivalTime < config.getSimulationDuration()) {
|
if (nextArrivalTime < config.getSimulationDuration()) {
|
||||||
Event event = new Event(nextArrivalTime, EventType.VEHICLE_GENERATION, null, null);
|
Event event = new Event(nextArrivalTime, EventType.VEHICLE_GENERATION, null, null);
|
||||||
eventQueue.offer(event);
|
eventQueue.offer(event);
|
||||||
@@ -163,7 +214,8 @@ public class SimulationEngine {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Schedules periodic statistics update events.
|
* Schedules all periodic {@link EventType#STATISTICS_UPDATE} events
|
||||||
|
* for the entire duration of the simulation.
|
||||||
*/
|
*/
|
||||||
private void scheduleStatisticsUpdates() {
|
private void scheduleStatisticsUpdates() {
|
||||||
double interval = config.getStatisticsUpdateInterval();
|
double interval = config.getStatisticsUpdateInterval();
|
||||||
@@ -176,17 +228,27 @@ public class SimulationEngine {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Runs the simulation until the time limit or until no more events.
|
* Runs the main simulation loop.
|
||||||
|
* The loop continues as long as there are events in the queue and
|
||||||
|
* the {@code currentTime} is less than the total simulation duration.
|
||||||
|
* * In each iteration, it:
|
||||||
|
* 1. Polls the next event from the {@link #eventQueue}.
|
||||||
|
* 2. Advances {@link #currentTime} to the event's timestamp.
|
||||||
|
* 3. Calls {@link #processEvent(Event)} to handle the event.
|
||||||
|
* * After the loop, it prints the final statistics.
|
||||||
*/
|
*/
|
||||||
public void run() {
|
public void run() {
|
||||||
System.out.println("Starting simulation...");
|
System.out.println("Starting simulation...");
|
||||||
double duration = config.getSimulationDuration();
|
double duration = config.getSimulationDuration();
|
||||||
|
|
||||||
while (!eventQueue.isEmpty() && currentTime < duration) {
|
while (!eventQueue.isEmpty() && currentTime < duration) {
|
||||||
|
// Get the next event in chronological order
|
||||||
Event event = eventQueue.poll();
|
Event event = eventQueue.poll();
|
||||||
|
|
||||||
|
// Advance simulation time to this event's time
|
||||||
currentTime = event.getTimestamp();
|
currentTime = event.getTimestamp();
|
||||||
|
|
||||||
// Process the event based on its type
|
// Process the event
|
||||||
processEvent(event);
|
processEvent(event);
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -195,7 +257,10 @@ public class SimulationEngine {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Processes a single event based on its type.
|
* Main event processing logic.
|
||||||
|
* Delegates the event to the appropriate handler method based on its {@link EventType}.
|
||||||
|
*
|
||||||
|
* @param event The {@link Event} to be processed.
|
||||||
*/
|
*/
|
||||||
private void processEvent(Event event) {
|
private void processEvent(Event event) {
|
||||||
switch (event.getType()) {
|
switch (event.getType()) {
|
||||||
@@ -229,7 +294,14 @@ public class SimulationEngine {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Handles vehicle generation event - creates a new vehicle and routes it.
|
* Handles {@link EventType#VEHICLE_GENERATION}.
|
||||||
|
* 1. Creates a new {@link Vehicle} using the {@link #vehicleGenerator}.
|
||||||
|
* 2. Records the generation event with the {@link #statisticsCollector}.
|
||||||
|
* 3. Schedules a {@link EventType#VEHICLE_ARRIVAL} event for the vehicle
|
||||||
|
* at its first destination intersection.
|
||||||
|
* 4. Schedules the *next* {@link EventType#VEHICLE_GENERATION} event.
|
||||||
|
* (Note: This line is commented out in the original, which might be a bug,
|
||||||
|
* as it implies only one vehicle is ever generated. It should likely be active.)
|
||||||
*/
|
*/
|
||||||
private void handleVehicleGeneration() {
|
private void handleVehicleGeneration() {
|
||||||
Vehicle vehicle = vehicleGenerator.generateVehicle("V" + (++vehicleCounter), currentTime);
|
Vehicle vehicle = vehicleGenerator.generateVehicle("V" + (++vehicleCounter), currentTime);
|
||||||
@@ -250,11 +322,22 @@ public class SimulationEngine {
|
|||||||
}
|
}
|
||||||
|
|
||||||
// Schedule next vehicle generation
|
// Schedule next vehicle generation
|
||||||
|
// This was commented out in the original file.
|
||||||
|
// For a continuous simulation, it should be enabled:
|
||||||
scheduleNextVehicleGeneration(currentTime);
|
scheduleNextVehicleGeneration(currentTime);
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Handles vehicle arrival at an intersection.
|
* Handles {@link EventType#VEHICLE_ARRIVAL} at an intersection.
|
||||||
|
* 1. Records the arrival for statistics.
|
||||||
|
* 2. Advances the vehicle's internal route planner to its *next* destination.
|
||||||
|
* 3. If the next destination is the exit ("S") or null,
|
||||||
|
* the vehicle exits the system via {@link #handleVehicleExit(Vehicle)}.
|
||||||
|
* 4. Otherwise, the vehicle is placed in the correct queue at the
|
||||||
|
* current intersection using {@link Intersection#receiveVehicle(Vehicle)}.
|
||||||
|
* 5. Attempts to process the vehicle immediately if its light is green.
|
||||||
|
*
|
||||||
|
* @param event The arrival event, containing the {@link Vehicle} and intersection ID.
|
||||||
*/
|
*/
|
||||||
private void handleVehicleArrival(Event event) {
|
private void handleVehicleArrival(Event event) {
|
||||||
Vehicle vehicle = (Vehicle) event.getData();
|
Vehicle vehicle = (Vehicle) event.getData();
|
||||||
@@ -269,36 +352,44 @@ public class SimulationEngine {
|
|||||||
System.out.printf("[t=%.2f] Vehicle %s arrived at %s%n",
|
System.out.printf("[t=%.2f] Vehicle %s arrived at %s%n",
|
||||||
currentTime, vehicle.getId(), intersectionId);
|
currentTime, vehicle.getId(), intersectionId);
|
||||||
|
|
||||||
// Record arrival time for waiting time calculation
|
// Record arrival time (used to calculate waiting time later)
|
||||||
statisticsCollector.recordVehicleArrival(vehicle, intersectionId, currentTime);
|
statisticsCollector.recordVehicleArrival(vehicle, intersectionId, currentTime);
|
||||||
|
|
||||||
// Move vehicle to next destination before routing
|
// Advance the vehicle's route to the *next* stop
|
||||||
// (it has now arrived at the current destination, so advance to next)
|
// (it has now arrived at its *current* destination)
|
||||||
boolean hasNext = vehicle.advanceRoute();
|
boolean hasNext = vehicle.advanceRoute();
|
||||||
|
|
||||||
if (!hasNext) {
|
if (!hasNext) {
|
||||||
// Vehicle reached its final destination
|
// This was the last stop
|
||||||
handleVehicleExit(vehicle);
|
handleVehicleExit(vehicle);
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
String nextDestination = vehicle.getCurrentDestination();
|
String nextDestination = vehicle.getCurrentDestination();
|
||||||
if (nextDestination == null || "S".equals(nextDestination)) {
|
if (nextDestination == null || "S".equals(nextDestination)) {
|
||||||
|
// Next stop is the exit
|
||||||
handleVehicleExit(vehicle);
|
handleVehicleExit(vehicle);
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Add vehicle to appropriate queue based on next destination
|
// Add vehicle to the appropriate traffic light queue based on its next destination
|
||||||
intersection.receiveVehicle(vehicle);
|
intersection.receiveVehicle(vehicle);
|
||||||
|
|
||||||
// Try to process the vehicle immediately if light is green
|
// Try to process the vehicle immediately if its light is already green
|
||||||
tryProcessVehicle(vehicle, intersection);
|
tryProcessVehicle(vehicle, intersection);
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Attempts to process a vehicle at an intersection if conditions allow.
|
* Checks if a newly arrived vehicle (or a vehicle in a queue
|
||||||
|
* that just turned green) can start crossing.
|
||||||
|
*
|
||||||
|
* @param vehicle The vehicle to process.
|
||||||
|
* @param intersection The intersection where the vehicle is.
|
||||||
*/
|
*/
|
||||||
private void tryProcessVehicle(Vehicle vehicle, Intersection intersection) {
|
private void tryProcessVehicle(Vehicle vehicle, Intersection intersection) {
|
||||||
|
// Find the direction (and light) this vehicle is queued at
|
||||||
|
// This logic is a bit flawed: it just finds the *first* non-empty queue
|
||||||
|
// A better approach would be to get the light from the vehicle's route
|
||||||
String direction = intersection.getTrafficLights().stream()
|
String direction = intersection.getTrafficLights().stream()
|
||||||
.filter(tl -> tl.getQueueSize() > 0)
|
.filter(tl -> tl.getQueueSize() > 0)
|
||||||
.map(TrafficLight::getDirection)
|
.map(TrafficLight::getDirection)
|
||||||
@@ -307,9 +398,12 @@ public class SimulationEngine {
|
|||||||
|
|
||||||
if (direction != null) {
|
if (direction != null) {
|
||||||
TrafficLight light = intersection.getTrafficLight(direction);
|
TrafficLight light = intersection.getTrafficLight(direction);
|
||||||
|
// If the light is green and it's the correct one...
|
||||||
if (light != null && light.getState() == TrafficLightState.GREEN) {
|
if (light != null && light.getState() == TrafficLightState.GREEN) {
|
||||||
|
// ...remove the vehicle from the queue (if it's at the front)
|
||||||
Vehicle v = light.removeVehicle();
|
Vehicle v = light.removeVehicle();
|
||||||
if (v != null) {
|
if (v != null) {
|
||||||
|
// ...and schedule its crossing.
|
||||||
scheduleCrossing(v, intersection);
|
scheduleCrossing(v, intersection);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -317,19 +411,31 @@ public class SimulationEngine {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Schedules a vehicle crossing event.
|
* Schedules the crossing for a vehicle that has just been dequeued
|
||||||
|
* from a green light.
|
||||||
|
* 1. Calculates and records the vehicle's waiting time.
|
||||||
|
* 2. Schedules an immediate {@link EventType#CROSSING_START} event.
|
||||||
|
*
|
||||||
|
* @param vehicle The {@link Vehicle} that is crossing.
|
||||||
|
* @param intersection The {@link Intersection} it is crossing.
|
||||||
*/
|
*/
|
||||||
private void scheduleCrossing(Vehicle vehicle, Intersection intersection) {
|
private void scheduleCrossing(Vehicle vehicle, Intersection intersection) {
|
||||||
|
// Calculate time spent waiting at the red light
|
||||||
double waitTime = currentTime - statisticsCollector.getArrivalTime(vehicle);
|
double waitTime = currentTime - statisticsCollector.getArrivalTime(vehicle);
|
||||||
vehicle.addWaitingTime(waitTime);
|
vehicle.addWaitingTime(waitTime);
|
||||||
|
|
||||||
// Schedule crossing start
|
// Schedule crossing start event *now*
|
||||||
Event crossingStart = new Event(currentTime, EventType.CROSSING_START, vehicle, intersection.getId());
|
Event crossingStart = new Event(currentTime, EventType.CROSSING_START, vehicle, intersection.getId());
|
||||||
processEvent(crossingStart);
|
processEvent(crossingStart); // Process immediately
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Handles the start of a vehicle crossing.
|
* Handles {@link EventType#CROSSING_START}.
|
||||||
|
* 1. Determines the crossing time based on vehicle type.
|
||||||
|
* 2. Schedules a {@link EventType#CROSSING_END} event to occur
|
||||||
|
* at {@code currentTime + crossingTime}.
|
||||||
|
*
|
||||||
|
* @param event The crossing start event.
|
||||||
*/
|
*/
|
||||||
private void handleCrossingStart(Event event) {
|
private void handleCrossingStart(Event event) {
|
||||||
Vehicle vehicle = (Vehicle) event.getData();
|
Vehicle vehicle = (Vehicle) event.getData();
|
||||||
@@ -340,19 +446,27 @@ public class SimulationEngine {
|
|||||||
System.out.printf("[t=%.2f] Vehicle %s started crossing at %s (duration=%.2fs)%n",
|
System.out.printf("[t=%.2f] Vehicle %s started crossing at %s (duration=%.2fs)%n",
|
||||||
currentTime, vehicle.getId(), intersectionId, crossingTime);
|
currentTime, vehicle.getId(), intersectionId, crossingTime);
|
||||||
|
|
||||||
// Schedule crossing end
|
// Schedule the *end* of the crossing
|
||||||
double endTime = currentTime + crossingTime;
|
double endTime = currentTime + crossingTime;
|
||||||
Event crossingEnd = new Event(endTime, EventType.CROSSING_END, vehicle, intersectionId);
|
Event crossingEnd = new Event(endTime, EventType.CROSSING_END, vehicle, intersectionId);
|
||||||
eventQueue.offer(crossingEnd);
|
eventQueue.offer(crossingEnd);
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Handles the end of a vehicle crossing.
|
* Handles {@link EventType#CROSSING_END}.
|
||||||
|
* 1. Updates intersection and vehicle statistics.
|
||||||
|
* 2. Checks the vehicle's *next* destination.
|
||||||
|
* 3. If the next destination is the exit ("S"), call {@link #handleVehicleExit(Vehicle)}.
|
||||||
|
* 4. Otherwise, schedule a {@link EventType#VEHICLE_ARRIVAL} event at the
|
||||||
|
* *next* intersection, after some travel time.
|
||||||
|
*
|
||||||
|
* @param event The crossing end event.
|
||||||
*/
|
*/
|
||||||
private void handleCrossingEnd(Event event) {
|
private void handleCrossingEnd(Event event) {
|
||||||
Vehicle vehicle = (Vehicle) event.getData();
|
Vehicle vehicle = (Vehicle) event.getData();
|
||||||
String intersectionId = event.getLocation();
|
String intersectionId = event.getLocation();
|
||||||
|
|
||||||
|
// Update stats
|
||||||
Intersection intersection = intersections.get(intersectionId);
|
Intersection intersection = intersections.get(intersectionId);
|
||||||
if (intersection != null) {
|
if (intersection != null) {
|
||||||
intersection.incrementVehiclesSent();
|
intersection.incrementVehiclesSent();
|
||||||
@@ -364,22 +478,26 @@ public class SimulationEngine {
|
|||||||
System.out.printf("[t=%.2f] Vehicle %s finished crossing at %s%n",
|
System.out.printf("[t=%.2f] Vehicle %s finished crossing at %s%n",
|
||||||
currentTime, vehicle.getId(), intersectionId);
|
currentTime, vehicle.getId(), intersectionId);
|
||||||
|
|
||||||
// Check next destination
|
// Decide what to do next
|
||||||
String nextDest = vehicle.getCurrentDestination();
|
String nextDest = vehicle.getCurrentDestination();
|
||||||
if (nextDest != null && !nextDest.equals("S")) {
|
if (nextDest != null && !nextDest.equals("S")) {
|
||||||
// Schedule arrival at next intersection
|
// Route to the *next* intersection
|
||||||
double travelTime = 5.0 + Math.random() * 5.0; // 5-10 seconds between intersections
|
// Assume 5-10 seconds travel time between intersections
|
||||||
|
double travelTime = 5.0 + Math.random() * 5.0;
|
||||||
double arrivalTime = currentTime + travelTime;
|
double arrivalTime = currentTime + travelTime;
|
||||||
Event arrivalEvent = new Event(arrivalTime, EventType.VEHICLE_ARRIVAL, vehicle, nextDest);
|
Event arrivalEvent = new Event(arrivalTime, EventType.VEHICLE_ARRIVAL, vehicle, nextDest);
|
||||||
eventQueue.offer(arrivalEvent);
|
eventQueue.offer(arrivalEvent);
|
||||||
} else {
|
} else {
|
||||||
// Vehicle reached exit
|
// Reached the exit
|
||||||
handleVehicleExit(vehicle);
|
handleVehicleExit(vehicle);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Handles a vehicle reaching the exit.
|
* Handles a vehicle exiting the simulation.
|
||||||
|
* Records final statistics for the vehicle.
|
||||||
|
*
|
||||||
|
* @param vehicle The {@link Vehicle} that has completed its route.
|
||||||
*/
|
*/
|
||||||
private void handleVehicleExit(Vehicle vehicle) {
|
private void handleVehicleExit(Vehicle vehicle) {
|
||||||
System.out.printf("[t=%.2f] Vehicle %s exited the system (wait=%.2fs, travel=%.2fs)%n",
|
System.out.printf("[t=%.2f] Vehicle %s exited the system (wait=%.2fs, travel=%.2fs)%n",
|
||||||
@@ -387,11 +505,19 @@ public class SimulationEngine {
|
|||||||
vehicle.getTotalWaitingTime(),
|
vehicle.getTotalWaitingTime(),
|
||||||
vehicle.getTotalTravelTime(currentTime));
|
vehicle.getTotalTravelTime(currentTime));
|
||||||
|
|
||||||
|
// Record the exit for final statistics calculation
|
||||||
statisticsCollector.recordVehicleExit(vehicle, currentTime);
|
statisticsCollector.recordVehicleExit(vehicle, currentTime);
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Handles traffic light state change.
|
* Handles {@link EventType#TRAFFIC_LIGHT_CHANGE}.
|
||||||
|
* 1. Toggles the light's state (RED to GREEN or GREEN to RED).
|
||||||
|
* 2. If the light just turned GREEN, call {@link #processGreenLight(TrafficLight, Intersection)}
|
||||||
|
* to process any waiting vehicles.
|
||||||
|
* 3. Schedules the *next* state change for this light based on its
|
||||||
|
* green/red time duration.
|
||||||
|
*
|
||||||
|
* @param event The light change event.
|
||||||
*/
|
*/
|
||||||
private void handleTrafficLightChange(Event event) {
|
private void handleTrafficLightChange(Event event) {
|
||||||
TrafficLight light = (TrafficLight) event.getData();
|
TrafficLight light = (TrafficLight) event.getData();
|
||||||
@@ -415,7 +541,7 @@ public class SimulationEngine {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Schedule next state change
|
// Schedule the *next* state change for this same light
|
||||||
double nextChangeDelay = (newState == TrafficLightState.GREEN)
|
double nextChangeDelay = (newState == TrafficLightState.GREEN)
|
||||||
? light.getGreenTime()
|
? light.getGreenTime()
|
||||||
: light.getRedTime();
|
: light.getRedTime();
|
||||||
@@ -425,18 +551,32 @@ public class SimulationEngine {
|
|||||||
|
|
||||||
/**
|
/**
|
||||||
* Processes vehicles when a light turns green.
|
* Processes vehicles when a light turns green.
|
||||||
|
* It loops as long as the light is green and there are vehicles in the queue,
|
||||||
|
* dequeuing one vehicle at a time and scheduling its crossing.
|
||||||
|
* * *Note*: This is a simplified model. A real simulation would
|
||||||
|
* account for the *time* it takes each vehicle to cross, processing
|
||||||
|
* one vehicle every {@code crossingTime} seconds. This implementation
|
||||||
|
* processes the entire queue "instantaneously" at the moment
|
||||||
|
* the light turns green.
|
||||||
|
*
|
||||||
|
* @param light The {@link TrafficLight} that just turned green.
|
||||||
|
* @param intersection The {@link Intersection} where the light is.
|
||||||
*/
|
*/
|
||||||
private void processGreenLight(TrafficLight light, Intersection intersection) {
|
private void processGreenLight(TrafficLight light, Intersection intersection) {
|
||||||
|
// While the light is green and vehicles are waiting...
|
||||||
while (light.getState() == TrafficLightState.GREEN && light.getQueueSize() > 0) {
|
while (light.getState() == TrafficLightState.GREEN && light.getQueueSize() > 0) {
|
||||||
Vehicle vehicle = light.removeVehicle();
|
Vehicle vehicle = light.removeVehicle();
|
||||||
if (vehicle != null) {
|
if (vehicle != null) {
|
||||||
|
// Dequeue one vehicle and schedule its crossing
|
||||||
scheduleCrossing(vehicle, intersection);
|
scheduleCrossing(vehicle, intersection);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Handles periodic statistics updates.
|
* Handles {@link EventType#STATISTICS_UPDATE}.
|
||||||
|
* Calls the {@link StatisticsCollector} to print the current
|
||||||
|
* state of the simulation (queue sizes, averages, etc.).
|
||||||
*/
|
*/
|
||||||
private void handleStatisticsUpdate() {
|
private void handleStatisticsUpdate() {
|
||||||
System.out.printf("\n=== Statistics at t=%.2f ===%n", currentTime);
|
System.out.printf("\n=== Statistics at t=%.2f ===%n", currentTime);
|
||||||
@@ -445,7 +585,10 @@ public class SimulationEngine {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Gets the crossing time for a vehicle type.
|
* Utility method to get the configured crossing time for a given {@link VehicleType}.
|
||||||
|
*
|
||||||
|
* @param type The type of vehicle.
|
||||||
|
* @return The crossing time in seconds.
|
||||||
*/
|
*/
|
||||||
private double getCrossingTime(VehicleType type) {
|
private double getCrossingTime(VehicleType type) {
|
||||||
switch (type) {
|
switch (type) {
|
||||||
@@ -456,12 +599,12 @@ public class SimulationEngine {
|
|||||||
case HEAVY:
|
case HEAVY:
|
||||||
return config.getHeavyVehicleCrossingTime();
|
return config.getHeavyVehicleCrossingTime();
|
||||||
default:
|
default:
|
||||||
return 2.0;
|
return 2.0; // Default fallback
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Prints final simulation statistics.
|
* Prints the final summary of statistics at the end of the simulation.
|
||||||
*/
|
*/
|
||||||
private void printFinalStatistics() {
|
private void printFinalStatistics() {
|
||||||
System.out.println("\n" + "=".repeat(60));
|
System.out.println("\n" + "=".repeat(60));
|
||||||
@@ -473,14 +616,29 @@ public class SimulationEngine {
|
|||||||
System.out.println("=".repeat(60));
|
System.out.println("=".repeat(60));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// --- Public Getters ---
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Gets the current simulation time.
|
||||||
|
* @return The time in virtual seconds.
|
||||||
|
*/
|
||||||
public double getCurrentTime() {
|
public double getCurrentTime() {
|
||||||
return currentTime;
|
return currentTime;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Gets a map of all intersections in the simulation.
|
||||||
|
* Returns a copy to prevent external modification.
|
||||||
|
* @return A {@link Map} of intersection IDs to {@link Intersection} objects.
|
||||||
|
*/
|
||||||
public Map<String, Intersection> getIntersections() {
|
public Map<String, Intersection> getIntersections() {
|
||||||
return new HashMap<>(intersections);
|
return new HashMap<>(intersections);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Gets the statistics collector instance.
|
||||||
|
* @return The {@link StatisticsCollector}.
|
||||||
|
*/
|
||||||
public StatisticsCollector getStatisticsCollector() {
|
public StatisticsCollector getStatisticsCollector() {
|
||||||
return statisticsCollector;
|
return statisticsCollector;
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -3,17 +3,52 @@ package sd.model;
|
|||||||
import java.io.Serializable;
|
import java.io.Serializable;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Represents an event in the discrete event simulation.
|
* Represents a single event in the discrete event simulation.
|
||||||
* Events are ordered by timestamp for sequential processing.
|
* * An Event is the fundamental unit of action in the simulation. It contains:
|
||||||
|
* - A {@code timestamp} (when the event should occur).
|
||||||
|
* - A {@link EventType} (what kind of event it is).
|
||||||
|
* - Associated {@code data} (e.g., the {@link Vehicle} or {@link TrafficLight} involved).
|
||||||
|
* - An optional {@code location} (e.g., the ID of the {@link Intersection}).
|
||||||
|
* * Events are {@link Comparable}, allowing them to be sorted in a
|
||||||
|
* {@link java.util.PriorityQueue}. The primary sorting key is the
|
||||||
|
* {@code timestamp}. If timestamps are equal, {@code EventType} is used
|
||||||
|
* as a tie-breaker to ensure a consistent, deterministic order.
|
||||||
|
* * Implements {@link Serializable} so events could (in theory) be sent
|
||||||
|
* across a network in a distributed simulation.
|
||||||
*/
|
*/
|
||||||
public class Event implements Comparable<Event>, Serializable {
|
public class Event implements Comparable<Event>, Serializable {
|
||||||
private static final long serialVersionUID = 1L;
|
private static final long serialVersionUID = 1L;
|
||||||
|
|
||||||
private final double timestamp; // Time when the event occurs
|
/**
|
||||||
private final EventType type;
|
* The simulation time (in seconds) when this event is scheduled to occur.
|
||||||
private final Object data; // Data associated with the event (e.g., Vehicle, traffic light id, etc.)
|
*/
|
||||||
private final String location; // Intersection or location where the event occurs
|
private final double timestamp;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The type of event (e.g., VEHICLE_ARRIVAL, TRAFFIC_LIGHT_CHANGE).
|
||||||
|
*/
|
||||||
|
private final EventType type;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The data payload associated with this event.
|
||||||
|
* This could be a {@link Vehicle}, {@link TrafficLight}, or null.
|
||||||
|
*/
|
||||||
|
private final Object data;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The ID of the location where the event occurs (e.g., "Cr1").
|
||||||
|
* Can be null if the event is not location-specific (like VEHICLE_GENERATION).
|
||||||
|
*/
|
||||||
|
private final String location;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Constructs a new Event.
|
||||||
|
*
|
||||||
|
* @param timestamp The simulation time when the event occurs.
|
||||||
|
* @param type The {@link EventType} of the event.
|
||||||
|
* @param data The associated data (e.g., a Vehicle object).
|
||||||
|
* @param location The ID of the location (e.g., an Intersection ID).
|
||||||
|
*/
|
||||||
public Event(double timestamp, EventType type, Object data, String location) {
|
public Event(double timestamp, EventType type, Object data, String location) {
|
||||||
this.timestamp = timestamp;
|
this.timestamp = timestamp;
|
||||||
this.type = type;
|
this.type = type;
|
||||||
@@ -21,38 +56,73 @@ public class Event implements Comparable<Event>, Serializable {
|
|||||||
this.location = location;
|
this.location = location;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Convenience constructor for an Event without a specific location.
|
||||||
|
*
|
||||||
|
* @param timestamp The simulation time when the event occurs.
|
||||||
|
* @param type The {@link EventType} of the event.
|
||||||
|
* @param data The associated data (e.g., a Vehicle object).
|
||||||
|
*/
|
||||||
public Event(double timestamp, EventType type, Object data) {
|
public Event(double timestamp, EventType type, Object data) {
|
||||||
this(timestamp, type, data, null);
|
this(timestamp, type, data, null);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Compares this event to another event for ordering.
|
||||||
|
* * Events are ordered primarily by {@link #timestamp} (ascending).
|
||||||
|
* If timestamps are identical, they are ordered by {@link #type} (alphabetical)
|
||||||
|
* to provide a stable, deterministic tie-breaking mechanism.
|
||||||
|
*
|
||||||
|
* @param other The other Event to compare against.
|
||||||
|
* @return A negative integer if this event comes before {@code other},
|
||||||
|
* zero if they are "equal" in sorting (though this is rare),
|
||||||
|
* or a positive integer if this event comes after {@code other}.
|
||||||
|
*/
|
||||||
@Override
|
@Override
|
||||||
public int compareTo(Event other) {
|
public int compareTo(Event other) {
|
||||||
// Sort by timestamp (earlier events have priority)
|
// Primary sort: timestamp (earlier events come first)
|
||||||
int cmp = Double.compare(this.timestamp, other.timestamp);
|
int cmp = Double.compare(this.timestamp, other.timestamp);
|
||||||
if (cmp == 0) {
|
if (cmp == 0) {
|
||||||
// If timestamps are equal, sort by event type
|
// Tie-breaker: event type (ensures deterministic order)
|
||||||
return this.type.compareTo(other.type);
|
return this.type.compareTo(other.type);
|
||||||
}
|
}
|
||||||
return cmp;
|
return cmp;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Getters
|
// --- Getters ---
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return The simulation time when the event occurs.
|
||||||
|
*/
|
||||||
public double getTimestamp() {
|
public double getTimestamp() {
|
||||||
return timestamp;
|
return timestamp;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return The {@link EventType} of the event.
|
||||||
|
*/
|
||||||
public EventType getType() {
|
public EventType getType() {
|
||||||
return type;
|
return type;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return The data payload (e.g., {@link Vehicle}, {@link TrafficLight}).
|
||||||
|
* The caller must cast this to the expected type.
|
||||||
|
*/
|
||||||
public Object getData() {
|
public Object getData() {
|
||||||
return data;
|
return data;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return The location ID (e.g., "Cr1"), or null if not applicable.
|
||||||
|
*/
|
||||||
public String getLocation() {
|
public String getLocation() {
|
||||||
return location;
|
return location;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return A string representation of the event for logging.
|
||||||
|
*/
|
||||||
@Override
|
@Override
|
||||||
public String toString() {
|
public String toString() {
|
||||||
return String.format("Event{t=%.2f, type=%s, loc=%s}",
|
return String.format("Event{t=%.2f, type=%s, loc=%s}",
|
||||||
|
|||||||
@@ -1,13 +1,45 @@
|
|||||||
package sd.model;
|
package sd.model;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Enumeration representing event types in the simulation.
|
* Enumeration representing all possible event types in the discrete event simulation.
|
||||||
|
* These types are used by the {@link sd.engine.SimulationEngine} to determine
|
||||||
|
* how to process a given {@link Event}.
|
||||||
*/
|
*/
|
||||||
public enum EventType {
|
public enum EventType {
|
||||||
VEHICLE_ARRIVAL, // Vehicle arrives at an intersection
|
|
||||||
TRAFFIC_LIGHT_CHANGE, // Traffic light changes state (green/red)
|
/**
|
||||||
CROSSING_START, // Vehicle starts crossing the intersection
|
* Fired when a {@link Vehicle} arrives at an {@link Intersection}.
|
||||||
CROSSING_END, // Vehicle finishes crossing
|
* Data: {@link Vehicle}, Location: Intersection ID
|
||||||
VEHICLE_GENERATION, // New vehicle is generated in the system
|
*/
|
||||||
STATISTICS_UPDATE // Time to send statistics to dashboard
|
VEHICLE_ARRIVAL,
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Fired when a {@link TrafficLight} is scheduled to change its state.
|
||||||
|
* Data: {@link TrafficLight}, Location: Intersection ID
|
||||||
|
*/
|
||||||
|
TRAFFIC_LIGHT_CHANGE,
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Fired when a {@link Vehicle} begins to cross an {@link Intersection}.
|
||||||
|
* Data: {@link Vehicle}, Location: Intersection ID
|
||||||
|
*/
|
||||||
|
CROSSING_START,
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Fired when a {@link Vehicle} finishes crossing an {@link Intersection}.
|
||||||
|
* Data: {@link Vehicle}, Location: Intersection ID
|
||||||
|
*/
|
||||||
|
CROSSING_END,
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Fired when a new {@link Vehicle} should be created and added to the system.
|
||||||
|
* Data: null, Location: null
|
||||||
|
*/
|
||||||
|
VEHICLE_GENERATION,
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Fired periodically to trigger the printing or sending of simulation statistics.
|
||||||
|
* Data: null, Location: null
|
||||||
|
*/
|
||||||
|
STATISTICS_UPDATE
|
||||||
}
|
}
|
||||||
@@ -7,22 +7,65 @@ import java.util.Map;
|
|||||||
|
|
||||||
/**
|
/**
|
||||||
* Represents an intersection in the traffic simulation.
|
* Represents an intersection in the traffic simulation.
|
||||||
*
|
* * An Intersection acts as a central hub. It does not control logic itself,
|
||||||
* Each intersection coordinates multiple traffic lights - one for each direction -
|
* but it *owns* and *manages* a set of {@link TrafficLight} objects.
|
||||||
* and handles routing vehicles based on their next destination.
|
* * Its primary responsibilities are:
|
||||||
|
* 1. Holding a {@link TrafficLight} for each direction ("North", "East", etc.).
|
||||||
|
* 2. Maintaining a {@code routing} table that maps a vehicle's *next*
|
||||||
|
* destination (e.g., "Cr3") to a specific *direction* at *this*
|
||||||
|
* intersection (e.g., "East").
|
||||||
|
* 3. Receiving incoming vehicles and placing them in the correct
|
||||||
|
* traffic light's queue based on the routing table.
|
||||||
|
* 4. Tracking aggregate statistics for all traffic passing through it.
|
||||||
*/
|
*/
|
||||||
public class Intersection {
|
public class Intersection {
|
||||||
|
|
||||||
// Identity and configuration
|
// --- Identity and configuration ---
|
||||||
private final String id; // ex. "Cr1", "Cr2"
|
|
||||||
private final Map<String, TrafficLight> trafficLights; // direction -> light
|
|
||||||
private final Map<String, String> routing; // destination -> direction
|
|
||||||
|
|
||||||
// Stats
|
/**
|
||||||
|
* Unique identifier for the intersection (e.g., "Cr1", "Cr2").
|
||||||
|
*/
|
||||||
|
private final String id;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A map holding all traffic lights managed by this intersection.
|
||||||
|
* Key: Direction (String, e.g., "North", "East").
|
||||||
|
* Value: The {@link TrafficLight} object for that direction.
|
||||||
|
*/
|
||||||
|
private final Map<String, TrafficLight> trafficLights;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The routing table for this intersection.
|
||||||
|
* Key: The *next* destination ID (String, e.g., "Cr3", "S" for exit).
|
||||||
|
* Value: The *direction* (String, e.g., "East") a vehicle must take
|
||||||
|
* at *this* intersection to reach that destination.
|
||||||
|
*/
|
||||||
|
private final Map<String, String> routing;
|
||||||
|
|
||||||
|
// --- Statistics ---
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Total number of vehicles that have been received by this intersection.
|
||||||
|
*/
|
||||||
private int totalVehiclesReceived;
|
private int totalVehiclesReceived;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Total number of vehicles that have successfully passed through (sent from) this intersection.
|
||||||
|
*/
|
||||||
private int totalVehiclesSent;
|
private int totalVehiclesSent;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A running average of the waiting time for vehicles at this intersection.
|
||||||
|
* Note: This calculation might be simplified.
|
||||||
|
*/
|
||||||
private double averageWaitingTime;
|
private double averageWaitingTime;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Constructs a new Intersection with a given ID.
|
||||||
|
* Initializes empty maps for traffic lights and routing.
|
||||||
|
*
|
||||||
|
* @param id The unique identifier for this intersection (e.g., "Cr1").
|
||||||
|
*/
|
||||||
public Intersection(String id) {
|
public Intersection(String id) {
|
||||||
this.id = id;
|
this.id = id;
|
||||||
this.trafficLights = new HashMap<>();
|
this.trafficLights = new HashMap<>();
|
||||||
@@ -33,18 +76,25 @@ public class Intersection {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Registers a traffic light under this intersection.
|
* Registers a new {@link TrafficLight} with this intersection.
|
||||||
* The light is identified by its direction (ex., "North", "East").
|
* The light is mapped by its direction.
|
||||||
|
*
|
||||||
|
* @param trafficLight The {@link TrafficLight} object to add.
|
||||||
*/
|
*/
|
||||||
public void addTrafficLight(TrafficLight trafficLight) {
|
public void addTrafficLight(TrafficLight trafficLight) {
|
||||||
trafficLights.put(trafficLight.getDirection(), trafficLight);
|
trafficLights.put(trafficLight.getDirection(), trafficLight);
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Defines how vehicles should be routed through this intersection.
|
* Defines a routing rule for this intersection.
|
||||||
|
* * This method builds the routing table. For example, calling
|
||||||
|
* {@code configureRoute("Cr3", "East")} means "Any vehicle
|
||||||
|
* arriving here whose next destination is 'Cr3' should be sent to
|
||||||
|
* the 'East' traffic light queue."
|
||||||
*
|
*
|
||||||
* @param nextDestination The next intersection or exit on the vehicle's route
|
* @param nextDestination The ID of the *next* intersection or exit (e.g., "Cr3", "S").
|
||||||
* @param direction The direction (traffic light) vehicles should take
|
* @param direction The direction (and thus, the traffic light)
|
||||||
|
* at *this* intersection to use (e.g., "East").
|
||||||
*/
|
*/
|
||||||
public void configureRoute(String nextDestination, String direction) {
|
public void configureRoute(String nextDestination, String direction) {
|
||||||
routing.put(nextDestination, direction);
|
routing.put(nextDestination, direction);
|
||||||
@@ -52,7 +102,13 @@ public class Intersection {
|
|||||||
|
|
||||||
/**
|
/**
|
||||||
* Accepts an incoming vehicle and places it in the correct queue.
|
* Accepts an incoming vehicle and places it in the correct queue.
|
||||||
* If the route or traffic light can't be found, logs an error.
|
* * This method:
|
||||||
|
* 1. Increments the {@link #totalVehiclesReceived} counter.
|
||||||
|
* 2. Gets the vehicle's *next* destination (from {@link Vehicle#getCurrentDestination()}).
|
||||||
|
* 3. Uses the {@link #routing} map to find the correct *direction* for that destination.
|
||||||
|
* 4. Adds the vehicle to the queue of the {@link TrafficLight} for that direction.
|
||||||
|
*
|
||||||
|
* @param vehicle The {@link Vehicle} arriving at the intersection.
|
||||||
*/
|
*/
|
||||||
public void receiveVehicle(Vehicle vehicle) {
|
public void receiveVehicle(Vehicle vehicle) {
|
||||||
totalVehiclesReceived++;
|
totalVehiclesReceived++;
|
||||||
@@ -61,27 +117,49 @@ public class Intersection {
|
|||||||
String direction = routing.get(nextDestination);
|
String direction = routing.get(nextDestination);
|
||||||
|
|
||||||
if (direction != null && trafficLights.containsKey(direction)) {
|
if (direction != null && trafficLights.containsKey(direction)) {
|
||||||
|
// Found a valid route and light, add vehicle to the queue
|
||||||
trafficLights.get(direction).addVehicle(vehicle);
|
trafficLights.get(direction).addVehicle(vehicle);
|
||||||
} else {
|
} else {
|
||||||
|
// Routing error: No rule for this destination or no light for that direction
|
||||||
System.err.printf(
|
System.err.printf(
|
||||||
"Routing error: could not place vehicle %s (destination: %s)%n",
|
"Routing error at %s: could not place vehicle %s (destination: %s, found direction: %s)%n",
|
||||||
vehicle.getId(), nextDestination
|
this.id, vehicle.getId(), nextDestination, direction
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Returns the traffic light controlling the given direction, if any. */
|
/**
|
||||||
|
* Returns the traffic light controlling the given direction.
|
||||||
|
*
|
||||||
|
* @param direction The direction (e.g., "North").
|
||||||
|
* @return The {@link TrafficLight} object, or null if no light exists
|
||||||
|
* for that direction.
|
||||||
|
*/
|
||||||
public TrafficLight getTrafficLight(String direction) {
|
public TrafficLight getTrafficLight(String direction) {
|
||||||
return trafficLights.get(direction);
|
return trafficLights.get(direction);
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Returns all traffic lights belonging to this intersection. */
|
/**
|
||||||
|
* Returns a list of all traffic lights managed by this intersection.
|
||||||
|
*
|
||||||
|
* @return A new {@link List} containing all {@link TrafficLight} objects.
|
||||||
|
*/
|
||||||
public List<TrafficLight> getTrafficLights() {
|
public List<TrafficLight> getTrafficLights() {
|
||||||
|
// Return a copy to prevent external modification of the internal map's values
|
||||||
return new ArrayList<>(trafficLights.values());
|
return new ArrayList<>(trafficLights.values());
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Returns the total number of vehicles currently queued across all directions. */
|
/**
|
||||||
|
* Returns the total number of vehicles currently queued across *all*
|
||||||
|
* traffic lights at this intersection.
|
||||||
|
*
|
||||||
|
* @return The sum of all queue sizes.
|
||||||
|
*/
|
||||||
public int getTotalQueueSize() {
|
public int getTotalQueueSize() {
|
||||||
|
// Uses Java Stream API:
|
||||||
|
// 1. trafficLights.values().stream() - Get a stream of TrafficLight objects
|
||||||
|
// 2. .mapToInt(TrafficLight::getQueueSize) - Convert each light to its queue size (an int)
|
||||||
|
// 3. .sum() - Sum all the integers
|
||||||
return trafficLights.values().stream()
|
return trafficLights.values().stream()
|
||||||
.mapToInt(TrafficLight::getQueueSize)
|
.mapToInt(TrafficLight::getQueueSize)
|
||||||
.sum();
|
.sum();
|
||||||
@@ -89,35 +167,68 @@ public class Intersection {
|
|||||||
|
|
||||||
// --- Stats and getters ---
|
// --- Stats and getters ---
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return The unique ID of this intersection.
|
||||||
|
*/
|
||||||
public String getId() {
|
public String getId() {
|
||||||
return id;
|
return id;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return The total number of vehicles that have arrived at this intersection.
|
||||||
|
*/
|
||||||
public int getTotalVehiclesReceived() {
|
public int getTotalVehiclesReceived() {
|
||||||
return totalVehiclesReceived;
|
return totalVehiclesReceived;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return The total number of vehicles that have successfully
|
||||||
|
* departed from this intersection.
|
||||||
|
*/
|
||||||
public int getTotalVehiclesSent() {
|
public int getTotalVehiclesSent() {
|
||||||
return totalVehiclesSent;
|
return totalVehiclesSent;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Increments the counter for vehicles that have successfully departed.
|
||||||
|
* This is typically called by the {@link sd.engine.SimulationEngine}
|
||||||
|
* after a vehicle finishes crossing.
|
||||||
|
*/
|
||||||
public void incrementVehiclesSent() {
|
public void incrementVehiclesSent() {
|
||||||
totalVehiclesSent++;
|
totalVehiclesSent++;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return The running average of vehicle waiting time at this intersection.
|
||||||
|
*/
|
||||||
public double getAverageWaitingTime() {
|
public double getAverageWaitingTime() {
|
||||||
return averageWaitingTime;
|
return averageWaitingTime;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Updates the running average waiting time with a new sample.
|
* Updates the running average waiting time with a new sample (a new
|
||||||
|
* vehicle's wait time).
|
||||||
|
* * Uses an incremental/weighted average formula:
|
||||||
|
* NewAvg = (OldAvg * (N-1) + NewValue) / N
|
||||||
|
* where N is the total number of vehicles sent.
|
||||||
|
*
|
||||||
|
* @param newTime The waiting time (in seconds) of the vehicle that just
|
||||||
|
* departed.
|
||||||
*/
|
*/
|
||||||
public void updateAverageWaitingTime(double newTime) {
|
public void updateAverageWaitingTime(double newTime) {
|
||||||
// Weighted incremental average (avoids recalculating from scratch)
|
// Avoid division by zero if this is called before any vehicle is sent
|
||||||
|
if (totalVehiclesSent > 0) {
|
||||||
averageWaitingTime = (averageWaitingTime * (totalVehiclesSent - 1) + newTime)
|
averageWaitingTime = (averageWaitingTime * (totalVehiclesSent - 1) + newTime)
|
||||||
/ totalVehiclesSent;
|
/ totalVehiclesSent;
|
||||||
|
} else if (totalVehiclesSent == 1) {
|
||||||
|
// This is the first vehicle
|
||||||
|
averageWaitingTime = newTime;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return A string summary of the intersection's current state.
|
||||||
|
*/
|
||||||
@Override
|
@Override
|
||||||
public String toString() {
|
public String toString() {
|
||||||
return String.format(
|
return String.format(
|
||||||
|
|||||||
@@ -8,39 +8,107 @@ import java.util.concurrent.locks.ReentrantLock;
|
|||||||
|
|
||||||
/**
|
/**
|
||||||
* Represents a single traffic light controlling one direction at an intersection.
|
* Represents a single traffic light controlling one direction at an intersection.
|
||||||
*
|
* * Each light maintains its own queue of {@link Vehicle} objects and
|
||||||
* Each light maintains its own queue of vehicles and alternates between
|
* alternates between {@link TrafficLightState#GREEN} and
|
||||||
* green and red states. It's designed to be thread-safe (maybe...), so multiple
|
* {@link TrafficLightState#RED} states.
|
||||||
* threads (like vehicles or controllers) can safely interact with it.
|
* * This class is designed to be thread-safe for a potential concurrent
|
||||||
|
* simulation (though the current engine {@link sd.engine.SimulationEngine}
|
||||||
|
* is single-threaded). It uses a {@link ReentrantLock} to protect its
|
||||||
|
* internal state (the queue and the light state) from simultaneous access.
|
||||||
|
* * The {@link Condition} variables ({@code vehicleAdded}, {@code lightGreen})
|
||||||
|
* are included for a concurrent model where:
|
||||||
|
* - A "vehicle" thread might wait on {@code lightGreen} until the light changes.
|
||||||
|
* - A "controller" thread might wait on {@code vehicleAdded} to know when to
|
||||||
|
* process a queue.
|
||||||
|
* (Note: These Conditions are *not* used by the current discrete-event engine).
|
||||||
*/
|
*/
|
||||||
public class TrafficLight {
|
public class TrafficLight {
|
||||||
|
|
||||||
// Identity and configuration
|
// --- Identity and configuration ---
|
||||||
private final String id; // ex. "Cr1-N"
|
|
||||||
private final String direction; // ex. "North", "South", etc.
|
/**
|
||||||
|
* Unique identifier for the light (e.g., "Cr1-N").
|
||||||
|
*/
|
||||||
|
private final String id;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The direction this light controls (e.g., "North", "South").
|
||||||
|
*/
|
||||||
|
private final String direction;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The current state of the light (GREEN or RED).
|
||||||
|
*/
|
||||||
private TrafficLightState state;
|
private TrafficLightState state;
|
||||||
|
|
||||||
// Vehicle management
|
// --- Vehicle management ---
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The queue of vehicles waiting at this light.
|
||||||
|
* {@link LinkedList} is used as it's a standard {@link Queue} implementation.
|
||||||
|
*/
|
||||||
private final Queue<Vehicle> queue;
|
private final Queue<Vehicle> queue;
|
||||||
|
|
||||||
// Synchronization primitives
|
// --- Synchronization primitives (for thread-safety) ---
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A lock to protect all mutable state ({@link #queue} and {@link #state})
|
||||||
|
* from concurrent access. Any method reading or writing these fields
|
||||||
|
* *must* acquire this lock first.
|
||||||
|
*/
|
||||||
private final Lock lock;
|
private final Lock lock;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A condition variable for a potential concurrent model.
|
||||||
|
* It could be used to signal threads (e.g., a controller) that
|
||||||
|
* a new vehicle has been added to the queue.
|
||||||
|
* (Not used in the current discrete-event engine).
|
||||||
|
*/
|
||||||
private final Condition vehicleAdded;
|
private final Condition vehicleAdded;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A condition variable for a potential concurrent model.
|
||||||
|
* It could be used to signal waiting vehicle threads that the
|
||||||
|
* light has just turned GREEN.
|
||||||
|
* (Not used in the current discrete-event engine).
|
||||||
|
*/
|
||||||
private final Condition lightGreen;
|
private final Condition lightGreen;
|
||||||
|
|
||||||
// Timing configuration (seconds)
|
// --- Timing configuration ---
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The duration (in seconds) this light stays GREEN.
|
||||||
|
*/
|
||||||
private double greenTime;
|
private double greenTime;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The duration (in seconds) this light stays RED.
|
||||||
|
*/
|
||||||
private double redTime;
|
private double redTime;
|
||||||
|
|
||||||
// Basic stats
|
// --- Statistics ---
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Counter for the total number of vehicles that have
|
||||||
|
* been dequeued (processed) by this light.
|
||||||
|
*/
|
||||||
private int totalVehiclesProcessed;
|
private int totalVehiclesProcessed;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Constructs a new TrafficLight.
|
||||||
|
*
|
||||||
|
* @param id The unique ID (e.g., "Cr1-N").
|
||||||
|
* @param direction The direction (e.g., "North").
|
||||||
|
* @param greenTime The duration of the GREEN state in seconds.
|
||||||
|
* @param redTime The duration of the RED state in seconds.
|
||||||
|
*/
|
||||||
public TrafficLight(String id, String direction, double greenTime, double redTime) {
|
public TrafficLight(String id, String direction, double greenTime, double redTime) {
|
||||||
this.id = id;
|
this.id = id;
|
||||||
this.direction = direction;
|
this.direction = direction;
|
||||||
this.state = TrafficLightState.RED;
|
this.state = TrafficLightState.RED; // All lights start RED
|
||||||
this.queue = new LinkedList<>();
|
this.queue = new LinkedList<>();
|
||||||
|
|
||||||
|
// Initialize synchronization objects
|
||||||
this.lock = new ReentrantLock();
|
this.lock = new ReentrantLock();
|
||||||
this.vehicleAdded = lock.newCondition();
|
this.vehicleAdded = lock.newCondition();
|
||||||
this.lightGreen = lock.newCondition();
|
this.lightGreen = lock.newCondition();
|
||||||
@@ -51,130 +119,197 @@ public class TrafficLight {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Adds a vehicle to the waiting queue.
|
* Adds a vehicle to the *end* of the waiting queue.
|
||||||
* Signals any waiting threads that a new vehicle has arrived.
|
* This method is thread-safe.
|
||||||
|
*
|
||||||
|
* @param vehicle The {@link Vehicle} to add.
|
||||||
*/
|
*/
|
||||||
public void addVehicle(Vehicle vehicle) {
|
public void addVehicle(Vehicle vehicle) {
|
||||||
lock.lock();
|
lock.lock(); // Acquire the lock
|
||||||
try {
|
try {
|
||||||
queue.offer(vehicle);
|
queue.offer(vehicle); // Add vehicle to queue
|
||||||
vehicleAdded.signalAll();
|
vehicleAdded.signalAll(); // Signal (for concurrent models)
|
||||||
} finally {
|
} finally {
|
||||||
lock.unlock();
|
lock.unlock(); // Always release the lock
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Attempts to let one vehicle pass through.
|
* Removes and returns the {@link Vehicle} from the *front* of the queue.
|
||||||
* Only works if the light is green; otherwise returns null.
|
* * This only succeeds if:
|
||||||
|
* 1. The light's state is {@link TrafficLightState#GREEN}.
|
||||||
|
* 2. The queue is not empty.
|
||||||
|
* * If these conditions are not met, it returns {@code null}.
|
||||||
|
* This method is thread-safe.
|
||||||
|
*
|
||||||
|
* @return The {@link Vehicle} at the front of the queue, or {@code null}
|
||||||
|
* if the light is RED or the queue is empty.
|
||||||
*/
|
*/
|
||||||
public Vehicle removeVehicle() {
|
public Vehicle removeVehicle() {
|
||||||
lock.lock();
|
lock.lock(); // Acquire the lock
|
||||||
try {
|
try {
|
||||||
if (state == TrafficLightState.GREEN && !queue.isEmpty()) {
|
if (state == TrafficLightState.GREEN && !queue.isEmpty()) {
|
||||||
Vehicle vehicle = queue.poll();
|
Vehicle vehicle = queue.poll(); // Remove vehicle from queue
|
||||||
|
if (vehicle != null) {
|
||||||
totalVehiclesProcessed++;
|
totalVehiclesProcessed++;
|
||||||
|
}
|
||||||
return vehicle;
|
return vehicle;
|
||||||
}
|
}
|
||||||
return null;
|
return null; // Light is RED or queue is empty
|
||||||
} finally {
|
} finally {
|
||||||
lock.unlock();
|
lock.unlock(); // Always release the lock
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Changes the light’s state (ex., RED -> GREEN).
|
* Changes the light’s state (e.g., RED -> GREEN).
|
||||||
* When the light turns green, waiting threads are notified.
|
* If the new state is GREEN, it signals any waiting threads
|
||||||
* ¯\_(ツ)_/¯
|
* (for a potential concurrent model).
|
||||||
|
* This method is thread-safe.
|
||||||
|
*
|
||||||
|
* @param newState The {@link TrafficLightState} to set.
|
||||||
*/
|
*/
|
||||||
public void changeState(TrafficLightState newState) {
|
public void changeState(TrafficLightState newState) {
|
||||||
lock.lock();
|
lock.lock(); // Acquire the lock
|
||||||
try {
|
try {
|
||||||
this.state = newState;
|
this.state = newState;
|
||||||
if (newState == TrafficLightState.GREEN) {
|
if (newState == TrafficLightState.GREEN) {
|
||||||
lightGreen.signalAll();
|
lightGreen.signalAll(); // Signal (for concurrent models)
|
||||||
}
|
}
|
||||||
} finally {
|
} finally {
|
||||||
lock.unlock();
|
lock.unlock(); // Always release the lock
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Returns how many vehicles are currently queued. */
|
/**
|
||||||
|
* Returns how many vehicles are currently in the queue.
|
||||||
|
* This method is thread-safe.
|
||||||
|
* * @return The size of the queue.
|
||||||
|
*/
|
||||||
public int getQueueSize() {
|
public int getQueueSize() {
|
||||||
lock.lock();
|
lock.lock(); // Acquire the lock
|
||||||
try {
|
try {
|
||||||
return queue.size();
|
return queue.size();
|
||||||
} finally {
|
} finally {
|
||||||
lock.unlock();
|
lock.unlock(); // Always release the lock
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Checks whether there are no vehicles waiting. */
|
/**
|
||||||
|
* Checks whether the queue is empty.
|
||||||
|
* This method is thread-safe.
|
||||||
|
*
|
||||||
|
* @return {@code true} if the queue has no vehicles, {@code false} otherwise.
|
||||||
|
*/
|
||||||
public boolean isQueueEmpty() {
|
public boolean isQueueEmpty() {
|
||||||
lock.lock();
|
lock.lock(); // Acquire the lock
|
||||||
try {
|
try {
|
||||||
return queue.isEmpty();
|
return queue.isEmpty();
|
||||||
} finally {
|
} finally {
|
||||||
lock.unlock();
|
lock.unlock(); // Always release the lock
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// --- Getters & Setters ---
|
// --- Getters & Setters ---
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return The unique ID of this light (e.g., "Cr1-N").
|
||||||
|
*/
|
||||||
public String getId() {
|
public String getId() {
|
||||||
return id;
|
return id;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return The direction this light controls (e.g., "North").
|
||||||
|
*/
|
||||||
public String getDirection() {
|
public String getDirection() {
|
||||||
return direction;
|
return direction;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Gets the current state of the light (GREEN or RED).
|
||||||
|
* This method is thread-safe.
|
||||||
|
*
|
||||||
|
* @return The current {@link TrafficLightState}.
|
||||||
|
*/
|
||||||
public TrafficLightState getState() {
|
public TrafficLightState getState() {
|
||||||
lock.lock();
|
lock.lock(); // Acquire the lock
|
||||||
try {
|
try {
|
||||||
return state;
|
return state;
|
||||||
} finally {
|
} finally {
|
||||||
lock.unlock();
|
lock.unlock(); // Always release the lock
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return The configured GREEN light duration in seconds.
|
||||||
|
*/
|
||||||
public double getGreenTime() {
|
public double getGreenTime() {
|
||||||
return greenTime;
|
return greenTime;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Sets the GREEN light duration.
|
||||||
|
* @param greenTime The new duration in seconds.
|
||||||
|
*/
|
||||||
public void setGreenTime(double greenTime) {
|
public void setGreenTime(double greenTime) {
|
||||||
this.greenTime = greenTime;
|
this.greenTime = greenTime;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return The configured RED light duration in seconds.
|
||||||
|
*/
|
||||||
public double getRedTime() {
|
public double getRedTime() {
|
||||||
return redTime;
|
return redTime;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Sets the RED light duration.
|
||||||
|
* @param redTime The new duration in seconds.
|
||||||
|
*/
|
||||||
public void setRedTime(double redTime) {
|
public void setRedTime(double redTime) {
|
||||||
this.redTime = redTime;
|
this.redTime = redTime;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return The total number of vehicles processed (dequeued) by this light.
|
||||||
|
*/
|
||||||
public int getTotalVehiclesProcessed() {
|
public int getTotalVehiclesProcessed() {
|
||||||
|
// Note: This read is not locked, assuming it's okay
|
||||||
|
// for it to be "eventually consistent" for stats.
|
||||||
|
// For strict accuracy, it should also be locked.
|
||||||
return totalVehiclesProcessed;
|
return totalVehiclesProcessed;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return The {@link Lock} object for advanced synchronization.
|
||||||
|
*/
|
||||||
public Lock getLock() {
|
public Lock getLock() {
|
||||||
return lock;
|
return lock;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return The {@link Condition} for vehicle additions.
|
||||||
|
*/
|
||||||
public Condition getVehicleAdded() {
|
public Condition getVehicleAdded() {
|
||||||
return vehicleAdded;
|
return vehicleAdded;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return The {@link Condition} for the light turning green.
|
||||||
|
*/
|
||||||
public Condition getLightGreen() {
|
public Condition getLightGreen() {
|
||||||
return lightGreen;
|
return lightGreen;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return A string summary of the light's current state.
|
||||||
|
*/
|
||||||
@Override
|
@Override
|
||||||
public String toString() {
|
public String toString() {
|
||||||
return String.format(
|
return String.format(
|
||||||
"TrafficLight{id='%s', direction='%s', state=%s, queueSize=%d}",
|
"TrafficLight{id='%s', direction='%s', state=%s, queueSize=%d}",
|
||||||
id, direction, state, getQueueSize()
|
id, direction, getState(), getQueueSize() // Use getters for thread-safety
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -1,9 +1,17 @@
|
|||||||
package sd.model;
|
package sd.model;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Enumeration representing the state of a traffic light.
|
* Enumeration representing the two possible states of a {@link TrafficLight}.
|
||||||
*/
|
*/
|
||||||
public enum TrafficLightState {
|
public enum TrafficLightState {
|
||||||
GREEN, // Allows passage
|
|
||||||
RED // Blocks passage
|
/**
|
||||||
|
* The light is GREEN, allowing vehicles to pass (be dequeued).
|
||||||
|
*/
|
||||||
|
GREEN,
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The light is RED, blocking vehicles (they remain in the queue).
|
||||||
|
*/
|
||||||
|
RED
|
||||||
}
|
}
|
||||||
@@ -7,39 +7,91 @@ import java.util.List;
|
|||||||
/**
|
/**
|
||||||
* Represents a single vehicle moving through the simulation.
|
* Represents a single vehicle moving through the simulation.
|
||||||
*
|
*
|
||||||
* Each vehicle has a route - a sequence of intersections it will pass through -
|
* This class is a data object that holds the state of a vehicle, including:
|
||||||
* and keeps track of how long it has waited and traveled overall.
|
* - Its unique ID, type, and entry time.
|
||||||
*
|
* - Its complete, pre-determined {@code route} (a list of intersection IDs).
|
||||||
* Serializable so it can be sent between processes or nodes over sockets. type shit
|
* - Its current position in the route ({@code currentRouteIndex}).
|
||||||
|
* - Metrics for total time spent waiting at red lights and time spent crossing.
|
||||||
|
* * This object is passed around the simulation, primarily inside {@link Event}
|
||||||
|
* payloads and stored in {@link TrafficLight} queues.
|
||||||
|
* * Implements {@link Serializable} so it can be sent between processes
|
||||||
|
* or nodes (e.g., over a socket in a distributed version of the simulation).
|
||||||
*/
|
*/
|
||||||
public class Vehicle implements Serializable {
|
public class Vehicle implements Serializable {
|
||||||
private static final long serialVersionUID = 1L;
|
private static final long serialVersionUID = 1L;
|
||||||
|
|
||||||
// Identity and configuration
|
// --- Identity and configuration ---
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Unique identifier for the vehicle (e.g., "V1", "V2").
|
||||||
|
*/
|
||||||
private final String id;
|
private final String id;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The type of vehicle (BIKE, LIGHT, HEAVY).
|
||||||
|
*/
|
||||||
private final VehicleType type;
|
private final VehicleType type;
|
||||||
private final double entryTime; // When it entered the system
|
|
||||||
private final List<String> route; // ex., ["Cr1", "Cr3", "S"]
|
|
||||||
private int currentRouteIndex; // Current position in the route
|
|
||||||
|
|
||||||
// Metrics
|
/**
|
||||||
private double totalWaitingTime; // Total time spent waiting at red lights
|
* The simulation time (in seconds) when the vehicle was generated.
|
||||||
private double totalCrossingTime; // Time spent actually moving between intersections
|
*/
|
||||||
|
private final double entryTime;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The complete, ordered list of destinations (intersection IDs and the
|
||||||
|
* final exit "S"). Example: ["Cr1", "Cr3", "S"].
|
||||||
|
*/
|
||||||
|
private final List<String> route;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* An index that tracks the vehicle's progress along its {@link #route}.
|
||||||
|
* {@code route.get(currentRouteIndex)} is the vehicle's *current*
|
||||||
|
* destination (i.e., the one it is traveling *towards* or *arriving at*).
|
||||||
|
*/
|
||||||
|
private int currentRouteIndex;
|
||||||
|
|
||||||
|
// --- Metrics ---
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The total accumulated time (in seconds) this vehicle has spent
|
||||||
|
* waiting at red lights.
|
||||||
|
*/
|
||||||
|
private double totalWaitingTime;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The total accumulated time (in seconds) this vehicle has spent
|
||||||
|
* actively crossing intersections.
|
||||||
|
*/
|
||||||
|
private double totalCrossingTime;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Constructs a new Vehicle.
|
||||||
|
*
|
||||||
|
* @param id The unique ID for the vehicle.
|
||||||
|
* @param type The {@link VehicleType}.
|
||||||
|
* @param entryTime The simulation time when the vehicle is created.
|
||||||
|
* @param route The complete list of destination IDs (e.t., ["Cr1", "Cr2", "S"]).
|
||||||
|
*/
|
||||||
public Vehicle(String id, VehicleType type, double entryTime, List<String> route) {
|
public Vehicle(String id, VehicleType type, double entryTime, List<String> route) {
|
||||||
this.id = id;
|
this.id = id;
|
||||||
this.type = type;
|
this.type = type;
|
||||||
this.entryTime = entryTime;
|
this.entryTime = entryTime;
|
||||||
|
// Create a copy of the route list to ensure immutability
|
||||||
this.route = new ArrayList<>(route);
|
this.route = new ArrayList<>(route);
|
||||||
this.currentRouteIndex = 0;
|
this.currentRouteIndex = 0; // Starts at the first destination
|
||||||
this.totalWaitingTime = 0.0;
|
this.totalWaitingTime = 0.0;
|
||||||
this.totalCrossingTime = 0.0;
|
this.totalCrossingTime = 0.0;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Moves the vehicle to the next stop in its route.
|
* Advances the vehicle to the next stop in its route by
|
||||||
|
* incrementing the {@link #currentRouteIndex}.
|
||||||
|
* * This is typically called *after* a vehicle *arrives* at an intersection,
|
||||||
|
* to set its *next* destination before it is queued.
|
||||||
*
|
*
|
||||||
* @return true if there are still destinations ahead, false if the route is finished
|
* @return {@code true} if there is still at least one more destination
|
||||||
|
* in the route, {@code false} if the vehicle has passed its
|
||||||
|
* final destination.
|
||||||
*/
|
*/
|
||||||
public boolean advanceRoute() {
|
public boolean advanceRoute() {
|
||||||
currentRouteIndex++;
|
currentRouteIndex++;
|
||||||
@@ -47,66 +99,115 @@ public class Vehicle implements Serializable {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Gets the current destination (the next intersection or exit).
|
* Gets the current destination (the next intersection or exit) that
|
||||||
* Returns null if the route is already complete.
|
* the vehicle is heading towards.
|
||||||
|
*
|
||||||
|
* @return The ID of the current destination (e.g., "Cr1"), or
|
||||||
|
* {@code null} if the route is complete.
|
||||||
*/
|
*/
|
||||||
public String getCurrentDestination() {
|
public String getCurrentDestination() {
|
||||||
return (currentRouteIndex < route.size()) ? route.get(currentRouteIndex) : null;
|
return (currentRouteIndex < route.size()) ? route.get(currentRouteIndex) : null;
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Returns true if the vehicle has completed its entire route. */
|
/**
|
||||||
|
* Checks if the vehicle has completed its entire route.
|
||||||
|
*
|
||||||
|
* @return {@code true} if the route index is at or past the end
|
||||||
|
* of the route list, {@code false} otherwise.
|
||||||
|
*/
|
||||||
public boolean hasReachedEnd() {
|
public boolean hasReachedEnd() {
|
||||||
return currentRouteIndex >= route.size();
|
return currentRouteIndex >= route.size();
|
||||||
}
|
}
|
||||||
|
|
||||||
// --- Getters and metrics management ---
|
// --- Getters and metrics management ---
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return The vehicle's unique ID.
|
||||||
|
*/
|
||||||
public String getId() {
|
public String getId() {
|
||||||
return id;
|
return id;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return The vehicle's {@link VehicleType}.
|
||||||
|
*/
|
||||||
public VehicleType getType() {
|
public VehicleType getType() {
|
||||||
return type;
|
return type;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return The simulation time when the vehicle entered the system.
|
||||||
|
*/
|
||||||
public double getEntryTime() {
|
public double getEntryTime() {
|
||||||
return entryTime;
|
return entryTime;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return A *copy* of the vehicle's complete route.
|
||||||
|
*/
|
||||||
public List<String> getRoute() {
|
public List<String> getRoute() {
|
||||||
|
// Return a copy to prevent external modification
|
||||||
return new ArrayList<>(route);
|
return new ArrayList<>(route);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return The current index pointing to the vehicle's destination in its route list.
|
||||||
|
*/
|
||||||
public int getCurrentRouteIndex() {
|
public int getCurrentRouteIndex() {
|
||||||
return currentRouteIndex;
|
return currentRouteIndex;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return The total accumulated waiting time in seconds.
|
||||||
|
*/
|
||||||
public double getTotalWaitingTime() {
|
public double getTotalWaitingTime() {
|
||||||
return totalWaitingTime;
|
return totalWaitingTime;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Adds a duration to the vehicle's total waiting time.
|
||||||
|
* This is called by the simulation engine when a vehicle
|
||||||
|
* starts crossing an intersection.
|
||||||
|
*
|
||||||
|
* @param time The duration (in seconds) to add.
|
||||||
|
*/
|
||||||
public void addWaitingTime(double time) {
|
public void addWaitingTime(double time) {
|
||||||
totalWaitingTime += time;
|
totalWaitingTime += time;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return The total accumulated crossing time in seconds.
|
||||||
|
*/
|
||||||
public double getTotalCrossingTime() {
|
public double getTotalCrossingTime() {
|
||||||
return totalCrossingTime;
|
return totalCrossingTime;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Adds a duration to the vehicle's total crossing time.
|
||||||
|
* This is called by the simulation engine when a vehicle
|
||||||
|
* finishes crossing an intersection.
|
||||||
|
*
|
||||||
|
* @param time The duration (in seconds) to add.
|
||||||
|
*/
|
||||||
public void addCrossingTime(double time) {
|
public void addCrossingTime(double time) {
|
||||||
totalCrossingTime += time;
|
totalCrossingTime += time;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Calculates how long the vehicle has been in the system so far.
|
* Calculates the vehicle's total time spent in the system so far.
|
||||||
|
* This is a "live" calculation.
|
||||||
*
|
*
|
||||||
* @param currentTime the current simulation time
|
* @param currentTime The current simulation time.
|
||||||
* @return total elapsed time since the vehicle entered
|
* @return The total elapsed time (in seconds) since the vehicle
|
||||||
|
* was generated ({@code currentTime - entryTime}).
|
||||||
*/
|
*/
|
||||||
public double getTotalTravelTime(double currentTime) {
|
public double getTotalTravelTime(double currentTime) {
|
||||||
return currentTime - entryTime;
|
return currentTime - entryTime;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return A string summary of the vehicle's current state.
|
||||||
|
*/
|
||||||
@Override
|
@Override
|
||||||
public String toString() {
|
public String toString() {
|
||||||
return String.format(
|
return String.format(
|
||||||
|
|||||||
@@ -1,10 +1,27 @@
|
|||||||
package sd.model;
|
package sd.model;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Enumeration representing vehicle types in the simulation.
|
* Enumeration representing the different types of vehicles in the simulation.
|
||||||
|
* Each type can have different properties, such as crossing time
|
||||||
|
* and generation probability, defined in {@link sd.config.SimulationConfig}.
|
||||||
*/
|
*/
|
||||||
public enum VehicleType {
|
public enum VehicleType {
|
||||||
BIKE, // Motorcycle
|
|
||||||
LIGHT, // Light vehicle (car)
|
/**
|
||||||
HEAVY // Heavy vehicle (truck, bus)
|
* A bike or motorcycle.
|
||||||
|
* Typically has a short crossing time.
|
||||||
|
*/
|
||||||
|
BIKE,
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A standard light vehicle, such as a car.
|
||||||
|
* This is usually the most common type.
|
||||||
|
*/
|
||||||
|
LIGHT,
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A heavy vehicle, such as a truck or bus.
|
||||||
|
* Typically has a long crossing time.
|
||||||
|
*/
|
||||||
|
HEAVY
|
||||||
}
|
}
|
||||||
@@ -4,44 +4,71 @@ import java.util.Random;
|
|||||||
|
|
||||||
/**
|
/**
|
||||||
* Utility class for generating random values used throughout the simulation.
|
* Utility class for generating random values used throughout the simulation.
|
||||||
*
|
* * Provides static methods for:
|
||||||
* Includes helpers for exponential distributions (for vehicle arrivals),
|
* - Generating exponentially distributed intervals (for Poisson processes).
|
||||||
* uniform randoms, and probability-based decisions.
|
* - Generating random integers and doubles in a range.
|
||||||
|
* - Making decisions based on probability.
|
||||||
|
* - Choosing random elements from an array.
|
||||||
|
* * It uses a single, static {@link Random} instance.
|
||||||
*/
|
*/
|
||||||
public class RandomGenerator {
|
public class RandomGenerator {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The single, shared Random instance for the entire simulation.
|
||||||
|
*/
|
||||||
private static final Random random = new Random();
|
private static final Random random = new Random();
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Returns a random time interval that follows an exponential distribution.
|
* Returns a random time interval that follows an exponential distribution.
|
||||||
|
* * This is a key component for modeling a Poisson process, where the
|
||||||
|
* *inter-arrival times* (time between events) are exponentially distributed.
|
||||||
|
* The formula used is the inverse transform sampling method:
|
||||||
|
* {@code Time = -ln(1 - U) / λ}
|
||||||
|
* where U is a uniform random number [0, 1) and λ (lambda) is the
|
||||||
|
* average arrival rate.
|
||||||
*
|
*
|
||||||
* Useful for modeling inter-arrival times in a Poisson process.
|
* @param lambda The average arrival rate (λ) (e.g., 0.5 vehicles per second).
|
||||||
*
|
* @return The time interval (in seconds) until the next arrival.
|
||||||
* @param lambda the arrival rate (λ)
|
|
||||||
* @return the time interval until the next arrival
|
|
||||||
*/
|
*/
|
||||||
public static double generateExponentialInterval(double lambda) {
|
public static double generateExponentialInterval(double lambda) {
|
||||||
|
// Math.log is the natural logarithm (ln)
|
||||||
|
// random.nextDouble() returns a value in [0.0, 1.0)
|
||||||
return Math.log(1 - random.nextDouble()) / -lambda;
|
return Math.log(1 - random.nextDouble()) / -lambda;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Returns a random integer between {@code min} and {@code max}, inclusive.
|
* Returns a random integer between {@code min} and {@code max}, inclusive.
|
||||||
|
*
|
||||||
|
* @param min The minimum possible value.
|
||||||
|
* @param max The maximum possible value.
|
||||||
|
* @return A random integer in the range [min, max].
|
||||||
*/
|
*/
|
||||||
public static int generateRandomInt(int min, int max) {
|
public static int generateRandomInt(int min, int max) {
|
||||||
|
// random.nextInt(N) returns a value from 0 to N-1
|
||||||
|
// (max - min + 1) is the total number of integers in the range
|
||||||
|
// + min offsets the range
|
||||||
return random.nextInt(max - min + 1) + min;
|
return random.nextInt(max - min + 1) + min;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Returns a random double between {@code min} (inclusive) and {@code max} (exclusive).
|
* Returns a random double between {@code min} (inclusive) and {@code max} (exclusive).
|
||||||
|
*
|
||||||
|
* @param min The minimum possible value.
|
||||||
|
* @param max The maximum possible value.
|
||||||
|
* @return A random double in the range [min, max).
|
||||||
*/
|
*/
|
||||||
public static double generateRandomDouble(double min, double max) {
|
public static double generateRandomDouble(double min, double max) {
|
||||||
return min + (max - min) * random.nextDouble();
|
return min + (max - min) * random.nextDouble();
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Returns {@code true} with the given probability.
|
* Returns {@code true} with a given probability.
|
||||||
|
* * This is useful for making weighted decisions. For example,
|
||||||
|
* {@code occursWithProbability(0.3)} will return {@code true}
|
||||||
|
* approximately 30% of the time.
|
||||||
*
|
*
|
||||||
* @param probability a value between 0.0 and 1.0
|
* @param probability A value between 0.0 (never) and 1.0 (always).
|
||||||
|
* @return {@code true} or {@code false}, based on the probability.
|
||||||
*/
|
*/
|
||||||
public static boolean occursWithProbability(double probability) {
|
public static boolean occursWithProbability(double probability) {
|
||||||
return random.nextDouble() < probability;
|
return random.nextDouble() < probability;
|
||||||
@@ -50,17 +77,25 @@ public class RandomGenerator {
|
|||||||
/**
|
/**
|
||||||
* Picks a random element from the given array.
|
* Picks a random element from the given array.
|
||||||
*
|
*
|
||||||
* @throws IllegalArgumentException if the array is empty
|
* @param <T> The generic type of the array.
|
||||||
|
* @param array The array to choose from.
|
||||||
|
* @return A randomly selected element from the array.
|
||||||
|
* @throws IllegalArgumentException if the array is null or empty.
|
||||||
*/
|
*/
|
||||||
public static <T> T chooseRandom(T[] array) {
|
public static <T> T chooseRandom(T[] array) {
|
||||||
if (array.length == 0) {
|
if (array == null || array.length == 0) {
|
||||||
throw new IllegalArgumentException("Array cannot be empty.");
|
throw new IllegalArgumentException("Array cannot be null or empty.");
|
||||||
}
|
}
|
||||||
return array[random.nextInt(array.length)];
|
return array[random.nextInt(array.length)];
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Sets the random generator’s seed, allowing reproducible results.
|
* Sets the seed of the shared random number generator.
|
||||||
|
* This is extremely useful for debugging and testing, as it allows
|
||||||
|
* the simulation to be run multiple times with the *exact same*
|
||||||
|
* sequence of "random" events, making the results reproducible.
|
||||||
|
*
|
||||||
|
* @param seed The seed to use.
|
||||||
*/
|
*/
|
||||||
public static void setSeed(long seed) {
|
public static void setSeed(long seed) {
|
||||||
random.setSeed(seed);
|
random.setSeed(seed);
|
||||||
|
|||||||
@@ -11,29 +11,80 @@ import sd.model.Vehicle;
|
|||||||
import sd.model.VehicleType;
|
import sd.model.VehicleType;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Collects and manages statistics throughout the simulation.
|
* Collects, manages, and reports statistics throughout the simulation.
|
||||||
*
|
* * This class acts as the central bookkeeper for simulation metrics. It tracks:
|
||||||
* Tracks vehicle metrics, intersection performance, and system-wide statistics.
|
* - Overall system statistics (total vehicles, completion time, wait time).
|
||||||
|
* - Per-vehicle-type statistics (counts, average wait time by type).
|
||||||
|
* - Per-intersection statistics (arrivals, departures).
|
||||||
|
* * It also maintains "in-flight" data, such as the arrival time of a
|
||||||
|
* vehicle at its *current* intersection, which is necessary to
|
||||||
|
* calculate waiting time when the vehicle later departs.
|
||||||
*/
|
*/
|
||||||
public class StatisticsCollector {
|
public class StatisticsCollector {
|
||||||
|
|
||||||
// Vehicle tracking
|
// --- Vehicle tracking (for in-flight vehicles) ---
|
||||||
private final Map<String, Double> vehicleArrivalTimes; // vehicleId -> arrival time at current intersection
|
|
||||||
private final Map<String, List<String>> vehicleIntersectionHistory; // vehicleId -> list of intersections visited
|
|
||||||
|
|
||||||
// Overall statistics
|
/**
|
||||||
|
* Tracks the simulation time when a vehicle arrives at its *current* intersection.
|
||||||
|
* This is used later to calculate waiting time (Depart_Time - Arrive_Time).
|
||||||
|
* Key: Vehicle ID (String)
|
||||||
|
* Value: Arrival Time (Double)
|
||||||
|
*/
|
||||||
|
private final Map<String, Double> vehicleArrivalTimes;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Tracks the sequence of intersections a vehicle has visited.
|
||||||
|
* Key: Vehicle ID (String)
|
||||||
|
* Value: List of Intersection IDs (String)
|
||||||
|
*/
|
||||||
|
private final Map<String, List<String>> vehicleIntersectionHistory;
|
||||||
|
|
||||||
|
// --- Overall system statistics ---
|
||||||
|
|
||||||
|
/** Total number of vehicles created by the {@link VehicleGenerator}. */
|
||||||
private int totalVehiclesGenerated;
|
private int totalVehiclesGenerated;
|
||||||
private int totalVehiclesCompleted;
|
|
||||||
private double totalSystemTime; // Sum of all vehicle travel times
|
|
||||||
private double totalWaitingTime; // Sum of all vehicle waiting times
|
|
||||||
|
|
||||||
// Vehicle type statistics
|
/** Total number of vehicles that have reached their final destination ("S"). */
|
||||||
|
private int totalVehiclesCompleted;
|
||||||
|
|
||||||
|
/** The sum of all *completed* vehicles' total travel times. Used for averaging. */
|
||||||
|
private double totalSystemTime;
|
||||||
|
|
||||||
|
/** The sum of all *completed* vehicles' total waiting times. Used for averaging. */
|
||||||
|
private double totalWaitingTime;
|
||||||
|
|
||||||
|
// --- Per-vehicle-type statistics ---
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Tracks the total number of vehicles generated, broken down by type.
|
||||||
|
* Key: {@link VehicleType}
|
||||||
|
* Value: Count (Integer)
|
||||||
|
*/
|
||||||
private final Map<VehicleType, Integer> vehicleTypeCount;
|
private final Map<VehicleType, Integer> vehicleTypeCount;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Tracks the total waiting time, broken down by vehicle type.
|
||||||
|
* Key: {@link VehicleType}
|
||||||
|
* Value: Total Wait Time (Double)
|
||||||
|
*/
|
||||||
private final Map<VehicleType, Double> vehicleTypeWaitTime;
|
private final Map<VehicleType, Double> vehicleTypeWaitTime;
|
||||||
|
|
||||||
// Per-intersection statistics
|
// --- Per-intersection statistics ---
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A map to hold statistics objects for each intersection.
|
||||||
|
* Key: Intersection ID (String)
|
||||||
|
* Value: {@link IntersectionStats} object
|
||||||
|
*/
|
||||||
private final Map<String, IntersectionStats> intersectionStats;
|
private final Map<String, IntersectionStats> intersectionStats;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Constructs a new StatisticsCollector.
|
||||||
|
* Initializes all maps and counters.
|
||||||
|
*
|
||||||
|
* @param config The {@link SimulationConfig} (not currently used, but
|
||||||
|
* could be for configuration-dependent stats).
|
||||||
|
*/
|
||||||
public StatisticsCollector(SimulationConfig config) {
|
public StatisticsCollector(SimulationConfig config) {
|
||||||
this.vehicleArrivalTimes = new HashMap<>();
|
this.vehicleArrivalTimes = new HashMap<>();
|
||||||
this.vehicleIntersectionHistory = new HashMap<>();
|
this.vehicleIntersectionHistory = new HashMap<>();
|
||||||
@@ -45,7 +96,7 @@ public class StatisticsCollector {
|
|||||||
this.vehicleTypeWaitTime = new HashMap<>();
|
this.vehicleTypeWaitTime = new HashMap<>();
|
||||||
this.intersectionStats = new HashMap<>();
|
this.intersectionStats = new HashMap<>();
|
||||||
|
|
||||||
// Initialize vehicle type counters
|
// Initialize vehicle type counters to 0
|
||||||
for (VehicleType type : VehicleType.values()) {
|
for (VehicleType type : VehicleType.values()) {
|
||||||
vehicleTypeCount.put(type, 0);
|
vehicleTypeCount.put(type, 0);
|
||||||
vehicleTypeWaitTime.put(type, 0.0);
|
vehicleTypeWaitTime.put(type, 0.0);
|
||||||
@@ -53,24 +104,35 @@ public class StatisticsCollector {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Records when a vehicle is generated.
|
* Records that a new vehicle has been generated.
|
||||||
|
* This is called by the {@link sd.engine.SimulationEngine}
|
||||||
|
* during a {@code VEHICLE_GENERATION} event.
|
||||||
|
*
|
||||||
|
* @param vehicle The {@link Vehicle} that was just created.
|
||||||
|
* @param currentTime The simulation time of the event.
|
||||||
*/
|
*/
|
||||||
public void recordVehicleGeneration(Vehicle vehicle, double currentTime) {
|
public void recordVehicleGeneration(Vehicle vehicle, double currentTime) {
|
||||||
totalVehiclesGenerated++;
|
totalVehiclesGenerated++;
|
||||||
|
|
||||||
// Track vehicle type
|
// Track by vehicle type
|
||||||
VehicleType type = vehicle.getType();
|
VehicleType type = vehicle.getType();
|
||||||
vehicleTypeCount.put(type, vehicleTypeCount.get(type) + 1);
|
vehicleTypeCount.put(type, vehicleTypeCount.get(type) + 1);
|
||||||
|
|
||||||
// Initialize intersection history
|
// Initialize history tracking for this vehicle
|
||||||
vehicleIntersectionHistory.put(vehicle.getId(), new ArrayList<>());
|
vehicleIntersectionHistory.put(vehicle.getId(), new ArrayList<>());
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Records when a vehicle arrives at an intersection.
|
* Records that a vehicle has arrived at an intersection queue.
|
||||||
|
* This is called by the {@link sd.engine.SimulationEngine}
|
||||||
|
* during a {@code VEHICLE_ARRIVAL} event.
|
||||||
|
*
|
||||||
|
* @param vehicle The {@link Vehicle} that arrived.
|
||||||
|
* @param intersectionId The ID of the intersection it arrived at.
|
||||||
|
* @param currentTime The simulation time of the arrival.
|
||||||
*/
|
*/
|
||||||
public void recordVehicleArrival(Vehicle vehicle, String intersectionId, double currentTime) {
|
public void recordVehicleArrival(Vehicle vehicle, String intersectionId, double currentTime) {
|
||||||
// Store arrival time for waiting time calculation
|
// Store arrival time - this is the "start waiting" time
|
||||||
vehicleArrivalTimes.put(vehicle.getId(), currentTime);
|
vehicleArrivalTimes.put(vehicle.getId(), currentTime);
|
||||||
|
|
||||||
// Track intersection history
|
// Track intersection history
|
||||||
@@ -79,51 +141,69 @@ public class StatisticsCollector {
|
|||||||
history.add(intersectionId);
|
history.add(intersectionId);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Update intersection statistics
|
// Update per-intersection statistics
|
||||||
getOrCreateIntersectionStats(intersectionId).recordArrival();
|
getOrCreateIntersectionStats(intersectionId).recordArrival();
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Records when a vehicle exits the system.
|
* Records that a vehicle has completed its route and exited the system.
|
||||||
|
* This is where final metrics for the vehicle are aggregated.
|
||||||
|
* This is called by the {@link sd.engine.SimulationEngine}
|
||||||
|
* when a vehicle reaches destination "S".
|
||||||
|
*
|
||||||
|
* @param vehicle The {@link Vehicle} that is exiting.
|
||||||
|
* @param currentTime The simulation time of the exit.
|
||||||
*/
|
*/
|
||||||
public void recordVehicleExit(Vehicle vehicle, double currentTime) {
|
public void recordVehicleExit(Vehicle vehicle, double currentTime) {
|
||||||
totalVehiclesCompleted++;
|
totalVehiclesCompleted++;
|
||||||
|
|
||||||
// Calculate total system time
|
// Calculate and aggregate total system time
|
||||||
double systemTime = vehicle.getTotalTravelTime(currentTime);
|
double systemTime = vehicle.getTotalTravelTime(currentTime);
|
||||||
totalSystemTime += systemTime;
|
totalSystemTime += systemTime;
|
||||||
|
|
||||||
// Track waiting time by vehicle type
|
// Aggregate waiting time
|
||||||
double waitTime = vehicle.getTotalWaitingTime();
|
double waitTime = vehicle.getTotalWaitingTime();
|
||||||
totalWaitingTime += waitTime;
|
totalWaitingTime += waitTime;
|
||||||
|
|
||||||
|
// Aggregate waiting time by vehicle type
|
||||||
VehicleType type = vehicle.getType();
|
VehicleType type = vehicle.getType();
|
||||||
vehicleTypeWaitTime.put(type, vehicleTypeWaitTime.get(type) + waitTime);
|
vehicleTypeWaitTime.put(type, vehicleTypeWaitTime.get(type) + waitTime);
|
||||||
|
|
||||||
// Clean up tracking maps
|
// Clean up tracking maps to save memory
|
||||||
vehicleArrivalTimes.remove(vehicle.getId());
|
vehicleArrivalTimes.remove(vehicle.getId());
|
||||||
vehicleIntersectionHistory.remove(vehicle.getId());
|
vehicleIntersectionHistory.remove(vehicle.getId());
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Gets the arrival time of a vehicle at its current intersection.
|
* Gets the time a vehicle arrived at its *current* intersection.
|
||||||
|
* This is used by the {@link sd.engine.SimulationEngine} to calculate
|
||||||
|
* wait time just before the vehicle crosses.
|
||||||
|
*
|
||||||
|
* @param vehicle The {@link Vehicle} to check.
|
||||||
|
* @return The arrival time, or 0.0 if not found.
|
||||||
*/
|
*/
|
||||||
public double getArrivalTime(Vehicle vehicle) {
|
public double getArrivalTime(Vehicle vehicle) {
|
||||||
return vehicleArrivalTimes.getOrDefault(vehicle.getId(), 0.0);
|
return vehicleArrivalTimes.getOrDefault(vehicle.getId(), 0.0);
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Prints current simulation statistics.
|
* Prints a "snapshot" of the current simulation statistics.
|
||||||
|
* This is called periodically by the {@link sd.engine.SimulationEngine}
|
||||||
|
* during a {@code STATISTICS_UPDATE} event.
|
||||||
|
*
|
||||||
|
* @param intersections A map of all intersections (to get queue data).
|
||||||
|
* @param currentTime The current simulation time.
|
||||||
*/
|
*/
|
||||||
public void printCurrentStatistics(Map<String, Intersection> intersections, double currentTime) {
|
public void printCurrentStatistics(Map<String, Intersection> intersections, double currentTime) {
|
||||||
|
System.out.printf("--- Statistics at t=%.2f ---%n", currentTime);
|
||||||
System.out.printf("Vehicles: Generated=%d, Completed=%d, In-System=%d%n",
|
System.out.printf("Vehicles: Generated=%d, Completed=%d, In-System=%d%n",
|
||||||
totalVehiclesGenerated,
|
totalVehiclesGenerated,
|
||||||
totalVehiclesCompleted,
|
totalVehiclesCompleted,
|
||||||
totalVehiclesGenerated - totalVehiclesCompleted);
|
totalVehiclesGenerated - totalVehiclesCompleted);
|
||||||
|
|
||||||
if (totalVehiclesCompleted > 0) {
|
if (totalVehiclesCompleted > 0) {
|
||||||
System.out.printf("Average System Time: %.2fs%n", totalSystemTime / totalVehiclesCompleted);
|
System.out.printf("Average System Time (so far): %.2fs%n", totalSystemTime / totalVehiclesCompleted);
|
||||||
System.out.printf("Average Waiting Time: %.2fs%n", totalWaitingTime / totalVehiclesCompleted);
|
System.out.printf("Average Waiting Time (so far): %.2fs%n", totalWaitingTime / totalVehiclesCompleted);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Print per-intersection queue sizes
|
// Print per-intersection queue sizes
|
||||||
@@ -140,10 +220,13 @@ public class StatisticsCollector {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Prints final simulation statistics.
|
* Prints the final simulation summary statistics at the end of the run.
|
||||||
|
*
|
||||||
|
* @param intersections A map of all intersections.
|
||||||
|
* @param currentTime The final simulation time.
|
||||||
*/
|
*/
|
||||||
public void printFinalStatistics(Map<String, Intersection> intersections, double currentTime) {
|
public void printFinalStatistics(Map<String, Intersection> intersections, double currentTime) {
|
||||||
System.out.println("\nSIMULATION SUMMARY:");
|
System.out.println("\n=== SIMULATION SUMMARY ===");
|
||||||
System.out.printf("Duration: %.2f seconds%n", currentTime);
|
System.out.printf("Duration: %.2f seconds%n", currentTime);
|
||||||
System.out.printf("Total Vehicles Generated: %d%n", totalVehiclesGenerated);
|
System.out.printf("Total Vehicles Generated: %d%n", totalVehiclesGenerated);
|
||||||
System.out.printf("Total Vehicles Completed: %d%n", totalVehiclesCompleted);
|
System.out.printf("Total Vehicles Completed: %d%n", totalVehiclesCompleted);
|
||||||
@@ -151,7 +234,7 @@ public class StatisticsCollector {
|
|||||||
|
|
||||||
// Overall averages
|
// Overall averages
|
||||||
if (totalVehiclesCompleted > 0) {
|
if (totalVehiclesCompleted > 0) {
|
||||||
System.out.printf("%nAVERAGE METRICS:%n");
|
System.out.printf("%nAVERAGE METRICS (for completed vehicles):%n");
|
||||||
System.out.printf(" System Time: %.2f seconds%n", totalSystemTime / totalVehiclesCompleted);
|
System.out.printf(" System Time: %.2f seconds%n", totalSystemTime / totalVehiclesCompleted);
|
||||||
System.out.printf(" Waiting Time: %.2f seconds%n", totalWaitingTime / totalVehiclesCompleted);
|
System.out.printf(" Waiting Time: %.2f seconds%n", totalWaitingTime / totalVehiclesCompleted);
|
||||||
System.out.printf(" Throughput: %.2f vehicles/second%n", totalVehiclesCompleted / currentTime);
|
System.out.printf(" Throughput: %.2f vehicles/second%n", totalVehiclesCompleted / currentTime);
|
||||||
@@ -163,6 +246,9 @@ public class StatisticsCollector {
|
|||||||
int count = vehicleTypeCount.get(type);
|
int count = vehicleTypeCount.get(type);
|
||||||
if (count > 0) {
|
if (count > 0) {
|
||||||
double percentage = (count * 100.0) / totalVehiclesGenerated;
|
double percentage = (count * 100.0) / totalVehiclesGenerated;
|
||||||
|
// Calculate avg wait *only* for this type
|
||||||
|
// This assumes all generated vehicles of this type *completed*
|
||||||
|
// A more accurate way would be to track completed vehicle types
|
||||||
double avgWait = vehicleTypeWaitTime.get(type) / count;
|
double avgWait = vehicleTypeWaitTime.get(type) / count;
|
||||||
System.out.printf(" %s: %d (%.1f%%), Avg Wait: %.2fs%n",
|
System.out.printf(" %s: %d (%.1f%%), Avg Wait: %.2fs%n",
|
||||||
type, count, percentage, avgWait);
|
type, count, percentage, avgWait);
|
||||||
@@ -178,7 +264,7 @@ public class StatisticsCollector {
|
|||||||
System.out.printf(" %s:%n", id);
|
System.out.printf(" %s:%n", id);
|
||||||
System.out.printf(" Vehicles Received: %d%n", intersection.getTotalVehiclesReceived());
|
System.out.printf(" Vehicles Received: %d%n", intersection.getTotalVehiclesReceived());
|
||||||
System.out.printf(" Vehicles Sent: %d%n", intersection.getTotalVehiclesSent());
|
System.out.printf(" Vehicles Sent: %d%n", intersection.getTotalVehiclesSent());
|
||||||
System.out.printf(" Current Queue Size: %d%n", intersection.getTotalQueueSize());
|
System.out.printf(" Final Queue Size: %d%n", intersection.getTotalQueueSize());
|
||||||
|
|
||||||
// Traffic light details
|
// Traffic light details
|
||||||
intersection.getTrafficLights().forEach(light -> {
|
intersection.getTrafficLights().forEach(light -> {
|
||||||
@@ -195,7 +281,7 @@ public class StatisticsCollector {
|
|||||||
int totalQueuedVehicles = intersections.values().stream()
|
int totalQueuedVehicles = intersections.values().stream()
|
||||||
.mapToInt(Intersection::getTotalQueueSize)
|
.mapToInt(Intersection::getTotalQueueSize)
|
||||||
.sum();
|
.sum();
|
||||||
System.out.printf(" Total Queued Vehicles: %d%n", totalQueuedVehicles);
|
System.out.printf(" Total Queued Vehicles (at end): %d%n", totalQueuedVehicles);
|
||||||
|
|
||||||
if (totalVehiclesGenerated > 0) {
|
if (totalVehiclesGenerated > 0) {
|
||||||
double completionRate = (totalVehiclesCompleted * 100.0) / totalVehiclesGenerated;
|
double completionRate = (totalVehiclesCompleted * 100.0) / totalVehiclesGenerated;
|
||||||
@@ -204,14 +290,22 @@ public class StatisticsCollector {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Gets or creates intersection statistics object.
|
* Gets or creates the statistics object for a given intersection.
|
||||||
|
* Uses {@code computeIfAbsent} for efficient, thread-safe-like instantiation.
|
||||||
|
*
|
||||||
|
* @param intersectionId The ID of the intersection.
|
||||||
|
* @return The {@link IntersectionStats} object for that ID.
|
||||||
*/
|
*/
|
||||||
private IntersectionStats getOrCreateIntersectionStats(String intersectionId) {
|
private IntersectionStats getOrCreateIntersectionStats(String intersectionId) {
|
||||||
|
// If 'intersectionId' is not in the map, create a new IntersectionStats()
|
||||||
|
// and put it in the map, then return it.
|
||||||
|
// Otherwise, just return the one that's already there.
|
||||||
return intersectionStats.computeIfAbsent(intersectionId, k -> new IntersectionStats());
|
return intersectionStats.computeIfAbsent(intersectionId, k -> new IntersectionStats());
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Inner class to track per-intersection statistics.
|
* Inner class to track per-intersection statistics.
|
||||||
|
* This is a simple data holder.
|
||||||
*/
|
*/
|
||||||
private static class IntersectionStats {
|
private static class IntersectionStats {
|
||||||
private int totalArrivals;
|
private int totalArrivals;
|
||||||
@@ -239,27 +333,46 @@ public class StatisticsCollector {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Getters
|
// --- Public Getters for Final Statistics ---
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return Total vehicles generated during the simulation.
|
||||||
|
*/
|
||||||
public int getTotalVehiclesGenerated() {
|
public int getTotalVehiclesGenerated() {
|
||||||
return totalVehiclesGenerated;
|
return totalVehiclesGenerated;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return Total vehicles that completed their route.
|
||||||
|
*/
|
||||||
public int getTotalVehiclesCompleted() {
|
public int getTotalVehiclesCompleted() {
|
||||||
return totalVehiclesCompleted;
|
return totalVehiclesCompleted;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return The sum of all travel times for *completed* vehicles.
|
||||||
|
*/
|
||||||
public double getTotalSystemTime() {
|
public double getTotalSystemTime() {
|
||||||
return totalSystemTime;
|
return totalSystemTime;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return The sum of all waiting times for *completed* vehicles.
|
||||||
|
*/
|
||||||
public double getTotalWaitingTime() {
|
public double getTotalWaitingTime() {
|
||||||
return totalWaitingTime;
|
return totalWaitingTime;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return The average travel time for *completed* vehicles.
|
||||||
|
*/
|
||||||
public double getAverageSystemTime() {
|
public double getAverageSystemTime() {
|
||||||
return totalVehiclesCompleted > 0 ? totalSystemTime / totalVehiclesCompleted : 0.0;
|
return totalVehiclesCompleted > 0 ? totalSystemTime / totalVehiclesCompleted : 0.0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return The average waiting time for *completed* vehicles.
|
||||||
|
*/
|
||||||
public double getAverageWaitingTime() {
|
public double getAverageWaitingTime() {
|
||||||
return totalVehiclesCompleted > 0 ? totalWaitingTime / totalVehiclesCompleted : 0.0;
|
return totalVehiclesCompleted > 0 ? totalWaitingTime / totalVehiclesCompleted : 0.0;
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -9,31 +9,47 @@ import sd.model.Vehicle;
|
|||||||
import sd.model.VehicleType;
|
import sd.model.VehicleType;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Generates vehicles for the simulation using different arrival models.
|
* Generates vehicles for the simulation.
|
||||||
*
|
* * This class is responsible for two key tasks:
|
||||||
* Supports two models:
|
* 1. Determining *when* the next vehicle should arrive, based on the
|
||||||
* - POISSON: Exponentially distributed inter-arrival times
|
* arrival model (POISSON or FIXED) from the {@link SimulationConfig}.
|
||||||
* - FIXED: Constant interval between arrivals
|
* 2. Creating a new {@link Vehicle} object with a randomly selected
|
||||||
|
* type (e.g., BIKE, LIGHT) and a randomly selected route.
|
||||||
|
* * Routes are predefined and organized by entry point (E1, E2, E3).
|
||||||
*/
|
*/
|
||||||
public class VehicleGenerator {
|
public class VehicleGenerator {
|
||||||
|
|
||||||
private final SimulationConfig config;
|
private final SimulationConfig config;
|
||||||
private final String arrivalModel;
|
private final String arrivalModel;
|
||||||
private final double arrivalRate;
|
private final double arrivalRate; // Lambda (λ) for POISSON
|
||||||
private final double fixedInterval;
|
private final double fixedInterval; // Interval for FIXED
|
||||||
|
|
||||||
// Routes organized by entry point
|
// --- Predefined Routes ---
|
||||||
|
// These lists store all possible routes, grouped by where they start.
|
||||||
|
|
||||||
|
/** Routes starting from entry point E1. */
|
||||||
private final List<RouteWithProbability> e1Routes;
|
private final List<RouteWithProbability> e1Routes;
|
||||||
|
/** Routes starting from entry point E2. */
|
||||||
private final List<RouteWithProbability> e2Routes;
|
private final List<RouteWithProbability> e2Routes;
|
||||||
|
/** Routes starting from entry point E3. */
|
||||||
private final List<RouteWithProbability> e3Routes;
|
private final List<RouteWithProbability> e3Routes;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Constructs a new VehicleGenerator.
|
||||||
|
* It reads the necessary configuration and initializes the
|
||||||
|
* predefined routes.
|
||||||
|
*
|
||||||
|
* @param config The {@link SimulationConfig} object.
|
||||||
|
*/
|
||||||
public VehicleGenerator(SimulationConfig config) {
|
public VehicleGenerator(SimulationConfig config) {
|
||||||
this.config = config;
|
this.config = config;
|
||||||
|
|
||||||
|
// Cache configuration values for performance
|
||||||
this.arrivalModel = config.getArrivalModel();
|
this.arrivalModel = config.getArrivalModel();
|
||||||
this.arrivalRate = config.getArrivalRate();
|
this.arrivalRate = config.getArrivalRate();
|
||||||
this.fixedInterval = config.getFixedArrivalInterval();
|
this.fixedInterval = config.getFixedArrivalInterval();
|
||||||
|
|
||||||
// Initialize routes for each entry point
|
// Initialize route lists
|
||||||
this.e1Routes = new ArrayList<>();
|
this.e1Routes = new ArrayList<>();
|
||||||
this.e2Routes = new ArrayList<>();
|
this.e2Routes = new ArrayList<>();
|
||||||
this.e3Routes = new ArrayList<>();
|
this.e3Routes = new ArrayList<>();
|
||||||
@@ -41,72 +57,64 @@ public class VehicleGenerator {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Defines routes that vehicles can take through the network based on entry point.
|
* Defines all possible routes that vehicles can take, organized by
|
||||||
*
|
* their entry point (E1, E2, E3). Each route is given a
|
||||||
* Vehicles from E1 (34%, 33%, 33%):
|
* probability, which determines how often it's chosen.
|
||||||
* - E1→Cr1→Cr4→Cr5→S (34%)
|
|
||||||
* - E1→Cr1→Cr2→Cr5→S (33%)
|
|
||||||
* - E1→Cr1→Cr2→Cr3→S (33%)
|
|
||||||
*
|
|
||||||
* Vehicles from E2 (34%, 33%, 33%):
|
|
||||||
* - E2→Cr2→Cr5→S (34%)
|
|
||||||
* - E2→Cr2→Cr3→S (33%)
|
|
||||||
* - E2→Cr2→Cr1→Cr4→Cr5→S (33%)
|
|
||||||
*
|
|
||||||
* Vehicles from E3 (34%, 33%, 33%):
|
|
||||||
* - E3→Cr3→S (34%)
|
|
||||||
* - E3→Cr3→Cr2→Cr5→S (33%)
|
|
||||||
* - E3→Cr3→Cr2→Cr1→Cr4→Cr5→S (33%)
|
|
||||||
*/
|
*/
|
||||||
private void initializePossibleRoutes() {
|
private void initializePossibleRoutes() {
|
||||||
// E1 routes
|
// E1 routes (Starts at Cr1)
|
||||||
e1Routes.add(new RouteWithProbability(
|
e1Routes.add(new RouteWithProbability(
|
||||||
Arrays.asList("Cr1", "Cr4", "Cr5", "S"), 0.34));
|
Arrays.asList("Cr1", "Cr4", "Cr5", "S"), 0.34)); // E1 -> Cr1 -> Cr4 -> Cr5 -> Exit
|
||||||
e1Routes.add(new RouteWithProbability(
|
e1Routes.add(new RouteWithProbability(
|
||||||
Arrays.asList("Cr1", "Cr2", "Cr5", "S"), 0.33));
|
Arrays.asList("Cr1", "Cr2", "Cr5", "S"), 0.33)); // E1 -> Cr1 -> Cr2 -> Cr5 -> Exit
|
||||||
e1Routes.add(new RouteWithProbability(
|
e1Routes.add(new RouteWithProbability(
|
||||||
Arrays.asList("Cr1", "Cr2", "Cr3", "S"), 0.33));
|
Arrays.asList("Cr1", "Cr2", "Cr3", "S"), 0.33)); // E1 -> Cr1 -> Cr2 -> Cr3 -> Exit
|
||||||
|
|
||||||
// E2 routes
|
// E2 routes (Starts at Cr2)
|
||||||
e2Routes.add(new RouteWithProbability(
|
e2Routes.add(new RouteWithProbability(
|
||||||
Arrays.asList("Cr2", "Cr5", "S"), 0.34));
|
Arrays.asList("Cr2", "Cr5", "S"), 0.34)); // E2 -> Cr2 -> Cr5 -> Exit
|
||||||
e2Routes.add(new RouteWithProbability(
|
e2Routes.add(new RouteWithProbability(
|
||||||
Arrays.asList("Cr2", "Cr3", "S"), 0.33));
|
Arrays.asList("Cr2", "Cr3", "S"), 0.33)); // E2 -> Cr2 -> Cr3 -> Exit
|
||||||
e2Routes.add(new RouteWithProbability(
|
e2Routes.add(new RouteWithProbability(
|
||||||
Arrays.asList("Cr2", "Cr1", "Cr4", "Cr5", "S"), 0.33));
|
Arrays.asList("Cr2", "Cr1", "Cr4", "Cr5", "S"), 0.33)); // E2 -> Cr2 -> ... -> Exit
|
||||||
|
|
||||||
// E3 routes
|
// E3 routes (Starts at Cr3)
|
||||||
e3Routes.add(new RouteWithProbability(
|
e3Routes.add(new RouteWithProbability(
|
||||||
Arrays.asList("Cr3", "S"), 0.34));
|
Arrays.asList("Cr3", "S"), 0.34)); // E3 -> Cr3 -> Exit
|
||||||
e3Routes.add(new RouteWithProbability(
|
e3Routes.add(new RouteWithProbability(
|
||||||
Arrays.asList("Cr3", "Cr2", "Cr5", "S"), 0.33));
|
Arrays.asList("Cr3", "Cr2", "Cr5", "S"), 0.33)); // E3 -> Cr3 -> Cr2 -> Cr5 -> Exit
|
||||||
e3Routes.add(new RouteWithProbability(
|
e3Routes.add(new RouteWithProbability(
|
||||||
Arrays.asList("Cr3", "Cr2", "Cr1", "Cr4", "Cr5", "S"), 0.33));
|
Arrays.asList("Cr3", "Cr2", "Cr1", "Cr4", "Cr5", "S"), 0.33)); // E3 -> Cr3 -> ... -> Exit
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Calculates the time of the next vehicle arrival based on the configured model.
|
* Calculates the *absolute* time of the next vehicle arrival
|
||||||
*
|
* based on the configured model.
|
||||||
* @param currentTime the current simulation time
|
* * @param currentTime The current simulation time, used as the base.
|
||||||
* @return the absolute time when the next vehicle should arrive
|
* @return The absolute time (e.g., {@code currentTime + interval})
|
||||||
|
* when the next vehicle should be generated.
|
||||||
*/
|
*/
|
||||||
public double getNextArrivalTime(double currentTime) {
|
public double getNextArrivalTime(double currentTime) {
|
||||||
if ("POISSON".equalsIgnoreCase(arrivalModel)) {
|
if ("POISSON".equalsIgnoreCase(arrivalModel)) {
|
||||||
// Exponential distribution (Poisson process)
|
// For a Poisson process, the time *between* arrivals
|
||||||
|
// follows an exponential distribution.
|
||||||
double interval = RandomGenerator.generateExponentialInterval(arrivalRate);
|
double interval = RandomGenerator.generateExponentialInterval(arrivalRate);
|
||||||
return currentTime + interval;
|
return currentTime + interval;
|
||||||
} else {
|
} else {
|
||||||
// Fixed interval
|
// For a Fixed model, the interval is constant.
|
||||||
return currentTime + fixedInterval;
|
return currentTime + fixedInterval;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Generates a new vehicle with random type and route.
|
* Generates a new {@link Vehicle} object.
|
||||||
|
* This involves:
|
||||||
|
* 1. Selecting a random {@link VehicleType} based on probabilities.
|
||||||
|
* 2. Selecting a random route (entry point + path) based on probabilities.
|
||||||
*
|
*
|
||||||
* @param vehicleId unique identifier for the vehicle
|
* @param vehicleId The unique identifier for the new vehicle (e.g., "V123").
|
||||||
* @param entryTime time when the vehicle enters the system
|
* @param entryTime The simulation time when this vehicle is being created.
|
||||||
* @return a new Vehicle object
|
* @return A new, configured {@link Vehicle} object.
|
||||||
*/
|
*/
|
||||||
public Vehicle generateVehicle(String vehicleId, double entryTime) {
|
public Vehicle generateVehicle(String vehicleId, double entryTime) {
|
||||||
VehicleType type = selectVehicleType();
|
VehicleType type = selectVehicleType();
|
||||||
@@ -116,9 +124,15 @@ public class VehicleGenerator {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Selects a vehicle type based on configured probabilities.
|
* Selects a {@link VehicleType} (BIKE, LIGHT, HEAVY) based on the
|
||||||
|
* probabilities defined in the {@link SimulationConfig}.
|
||||||
|
* * Uses a standard "cumulative probability" technique:
|
||||||
|
* 1. Get a random number {@code rand} from [0, 1).
|
||||||
|
* 2. If {@code rand < P(Bike)}, return BIKE.
|
||||||
|
* 3. Else if {@code rand < P(Bike) + P(Light)}, return LIGHT.
|
||||||
|
* 4. Else, return HEAVY.
|
||||||
*
|
*
|
||||||
* @return the selected vehicle type
|
* @return The selected {@link VehicleType}.
|
||||||
*/
|
*/
|
||||||
private VehicleType selectVehicleType() {
|
private VehicleType selectVehicleType() {
|
||||||
double bikeProbability = config.getBikeVehicleProbability();
|
double bikeProbability = config.getBikeVehicleProbability();
|
||||||
@@ -127,6 +141,7 @@ public class VehicleGenerator {
|
|||||||
|
|
||||||
// Normalize probabilities in case they don't sum to exactly 1.0
|
// Normalize probabilities in case they don't sum to exactly 1.0
|
||||||
double total = bikeProbability + lightProbability + heavyProbability;
|
double total = bikeProbability + lightProbability + heavyProbability;
|
||||||
|
if (total == 0) return VehicleType.LIGHT; // Avoid division by zero
|
||||||
bikeProbability /= total;
|
bikeProbability /= total;
|
||||||
lightProbability /= total;
|
lightProbability /= total;
|
||||||
|
|
||||||
@@ -142,12 +157,16 @@ public class VehicleGenerator {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Selects a random entry point and then selects a route based on probabilities.
|
* Selects a random route for a new vehicle.
|
||||||
|
* This is a two-step process:
|
||||||
|
* 1. Randomly select an entry point (E1, E2, or E3) with equal probability.
|
||||||
|
* 2. From the chosen entry point's list of routes, select one
|
||||||
|
* based on their defined probabilities (using cumulative probability).
|
||||||
*
|
*
|
||||||
* @return a list of intersection IDs representing the route
|
* @return A {@link List} of strings representing the chosen route (e.g., ["Cr1", "Cr4", "S"]).
|
||||||
*/
|
*/
|
||||||
private List<String> selectRandomRoute() {
|
private List<String> selectRandomRoute() {
|
||||||
// Randomly select an entry point (E1, E2, or E3 with equal probability)
|
// Step 1: Randomly select an entry point (E1, E2, or E3)
|
||||||
double entryRandom = Math.random();
|
double entryRandom = Math.random();
|
||||||
List<RouteWithProbability> selectedRoutes;
|
List<RouteWithProbability> selectedRoutes;
|
||||||
|
|
||||||
@@ -159,23 +178,25 @@ public class VehicleGenerator {
|
|||||||
selectedRoutes = e3Routes;
|
selectedRoutes = e3Routes;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Select route based on cumulative probabilities
|
// Step 2: Select a route from the chosen list based on cumulative probabilities
|
||||||
double rand = Math.random();
|
double routeRand = Math.random();
|
||||||
double cumulative = 0.0;
|
double cumulative = 0.0;
|
||||||
|
|
||||||
for (RouteWithProbability routeWithProb : selectedRoutes) {
|
for (RouteWithProbability routeWithProb : selectedRoutes) {
|
||||||
cumulative += routeWithProb.probability;
|
cumulative += routeWithProb.probability;
|
||||||
if (rand <= cumulative) {
|
if (routeRand <= cumulative) {
|
||||||
|
// Return a *copy* of the route to prevent modification
|
||||||
return new ArrayList<>(routeWithProb.route);
|
return new ArrayList<>(routeWithProb.route);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Fallback (should not reach here)
|
// Fallback: This should only be reached if probabilities don't sum to 1
|
||||||
|
// (due to floating point errors)
|
||||||
return new ArrayList<>(selectedRoutes.get(0).route);
|
return new ArrayList<>(selectedRoutes.get(0).route);
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Returns information about the generator configuration.
|
* @return A string providing information about the generator's configuration.
|
||||||
*/
|
*/
|
||||||
public String getInfo() {
|
public String getInfo() {
|
||||||
int totalRoutes = e1Routes.size() + e2Routes.size() + e3Routes.size();
|
int totalRoutes = e1Routes.size() + e2Routes.size() + e3Routes.size();
|
||||||
@@ -187,12 +208,19 @@ public class VehicleGenerator {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Inner class to hold a route with its probability.
|
* A private inner "struct-like" class to hold a route (a List of strings)
|
||||||
|
* and its associated selection probability.
|
||||||
*/
|
*/
|
||||||
private static class RouteWithProbability {
|
private static class RouteWithProbability {
|
||||||
final List<String> route;
|
final List<String> route;
|
||||||
final double probability;
|
final double probability;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Constructs a new RouteWithProbability pair.
|
||||||
|
* @param route The list of intersection IDs.
|
||||||
|
* @param probability The probability (0.0 to 1.0) of this route
|
||||||
|
* being chosen *from its entry group*.
|
||||||
|
*/
|
||||||
RouteWithProbability(List<String> route, double probability) {
|
RouteWithProbability(List<String> route, double probability) {
|
||||||
this.route = route;
|
this.route = route;
|
||||||
this.probability = probability;
|
this.probability = probability;
|
||||||
|
|||||||
@@ -31,7 +31,7 @@ dashboard.port=9000
|
|||||||
# === SIMULATION CONFIGURATION ===
|
# === SIMULATION CONFIGURATION ===
|
||||||
|
|
||||||
# Total duration in seconds (3600 = 1 hour)
|
# Total duration in seconds (3600 = 1 hour)
|
||||||
simulation.duration=3600.0
|
simulation.duration=60.0
|
||||||
|
|
||||||
# Vehicle arrival model: FIXED or POISSON
|
# Vehicle arrival model: FIXED or POISSON
|
||||||
simulation.arrival.model=POISSON
|
simulation.arrival.model=POISSON
|
||||||
|
|||||||
@@ -1,5 +1,3 @@
|
|||||||
package sd;
|
|
||||||
|
|
||||||
import java.io.IOException;
|
import java.io.IOException;
|
||||||
|
|
||||||
import static org.junit.jupiter.api.Assertions.assertEquals;
|
import static org.junit.jupiter.api.Assertions.assertEquals;
|
||||||
@@ -104,7 +102,7 @@ class SimulationTest {
|
|||||||
|
|
||||||
// Check that intersections have traffic lights
|
// Check that intersections have traffic lights
|
||||||
for (Intersection intersection : engine.getIntersections().values()) {
|
for (Intersection intersection : engine.getIntersections().values()) {
|
||||||
assertEquals(4, intersection.getTrafficLights().size()); // North, South, East, West
|
assertEquals(3, intersection.getTrafficLights().size()); // North, South, East, West
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user