added intersect, vehicle and light logic + random poisson dist

This commit is contained in:
Leandro Afonso
2025-10-21 11:11:56 +01:00
parent 08b254b8de
commit ce226f261a
7 changed files with 577 additions and 20 deletions

50
.gitignore vendored Normal file
View File

@@ -0,0 +1,50 @@
# Compiled class files
*.class
# Log files
*.log
# BlueJ files
*.ctxt
# Mobile Tools for Java (J2ME)
.mtj.tmp/
# Package Files #
*.jar
*.war
*.ear
# VS Code settings
.vscode/
# Eclipse files
*.pydevproject
.project
.classpath
.cproject
.settings/
bin/
tmp/
# IntelliJ IDEA files
*.iml
.idea/
out/
# Mac system files
.DS_Store
# Windows system files
Thumbs.db
# Maven
target/
# Gradle
.gradle/
build/
# Other
*.swp
*.pdf

View File

@@ -0,0 +1,132 @@
package sd.model;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
/**
* Represents an intersection in the traffic simulation.
*
* Each intersection coordinates multiple traffic lights - one for each direction -
* and handles routing vehicles based on their next destination.
*/
public class Intersection {
// Identity and configuration
private final String id; // ex. "Cr1", "Cr2"
private final Map<String, TrafficLight> trafficLights; // direction -> light
private final Map<String, String> routing; // destination -> direction
// Stats
private int totalVehiclesReceived;
private int totalVehiclesSent;
private double averageWaitingTime;
public Intersection(String id) {
this.id = id;
this.trafficLights = new HashMap<>();
this.routing = new HashMap<>();
this.totalVehiclesReceived = 0;
this.totalVehiclesSent = 0;
this.averageWaitingTime = 0.0;
}
/**
* Registers a traffic light under this intersection.
* The light is identified by its direction (ex., "North", "East").
*/
public void addTrafficLight(TrafficLight trafficLight) {
trafficLights.put(trafficLight.getDirection(), trafficLight);
}
/**
* Defines how vehicles should be routed through this intersection.
*
* @param nextDestination The next intersection or exit on the vehicle's route
* @param direction The direction (traffic light) vehicles should take
*/
public void configureRoute(String nextDestination, String direction) {
routing.put(nextDestination, direction);
}
/**
* Accepts an incoming vehicle and places it in the correct queue.
* If the route or traffic light can't be found, logs an error.
*/
public void receiveVehicle(Vehicle vehicle) {
totalVehiclesReceived++;
String nextDestination = vehicle.getCurrentDestination();
String direction = routing.get(nextDestination);
if (direction != null && trafficLights.containsKey(direction)) {
trafficLights.get(direction).addVehicle(vehicle);
} else {
System.err.printf(
"Routing error: could not place vehicle %s (destination: %s)%n",
vehicle.getId(), nextDestination
);
}
}
/** Returns the traffic light controlling the given direction, if any. */
public TrafficLight getTrafficLight(String direction) {
return trafficLights.get(direction);
}
/** Returns all traffic lights belonging to this intersection. */
public List<TrafficLight> getTrafficLights() {
return new ArrayList<>(trafficLights.values());
}
/** Returns the total number of vehicles currently queued across all directions. */
public int getTotalQueueSize() {
return trafficLights.values().stream()
.mapToInt(TrafficLight::getQueueSize)
.sum();
}
// --- Stats and getters ---
public String getId() {
return id;
}
public int getTotalVehiclesReceived() {
return totalVehiclesReceived;
}
public int getTotalVehiclesSent() {
return totalVehiclesSent;
}
public void incrementVehiclesSent() {
totalVehiclesSent++;
}
public double getAverageWaitingTime() {
return averageWaitingTime;
}
/**
* Updates the running average waiting time with a new sample.
*/
public void updateAverageWaitingTime(double newTime) {
// Weighted incremental average (avoids recalculating from scratch)
averageWaitingTime = (averageWaitingTime * (totalVehiclesSent - 1) + newTime)
/ totalVehiclesSent;
}
@Override
public String toString() {
return String.format(
"Intersection{id='%s', lights=%d, queues=%d, received=%d, sent=%d}",
id,
trafficLights.size(),
getTotalQueueSize(),
totalVehiclesReceived,
totalVehiclesSent
);
}
}

View File

@@ -0,0 +1,180 @@
package sd.model;
import java.util.LinkedList;
import java.util.Queue;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
/**
* Represents a single traffic light controlling one direction at an intersection.
*
* Each light maintains its own queue of vehicles and alternates between
* green and red states. It's designed to be thread-safe (maybe...), so multiple
* threads (like vehicles or controllers) can safely interact with it.
*/
public class TrafficLight {
// Identity and configuration
private final String id; // ex. "Cr1-N"
private final String direction; // ex. "North", "South", etc.
private TrafficLightState state;
// Vehicle management
private final Queue<Vehicle> queue;
// Synchronization primitives
private final Lock lock;
private final Condition vehicleAdded;
private final Condition lightGreen;
// Timing configuration (seconds)
private double greenTime;
private double redTime;
// Basic stats
private int totalVehiclesProcessed;
public TrafficLight(String id, String direction, double greenTime, double redTime) {
this.id = id;
this.direction = direction;
this.state = TrafficLightState.RED;
this.queue = new LinkedList<>();
this.lock = new ReentrantLock();
this.vehicleAdded = lock.newCondition();
this.lightGreen = lock.newCondition();
this.greenTime = greenTime;
this.redTime = redTime;
this.totalVehiclesProcessed = 0;
}
/**
* Adds a vehicle to the waiting queue.
* Signals any waiting threads that a new vehicle has arrived.
*/
public void addVehicle(Vehicle vehicle) {
lock.lock();
try {
queue.offer(vehicle);
vehicleAdded.signalAll();
} finally {
lock.unlock();
}
}
/**
* Attempts to let one vehicle pass through.
* Only works if the light is green; otherwise returns null.
*/
public Vehicle removeVehicle() {
lock.lock();
try {
if (state == TrafficLightState.GREEN && !queue.isEmpty()) {
Vehicle vehicle = queue.poll();
totalVehiclesProcessed++;
return vehicle;
}
return null;
} finally {
lock.unlock();
}
}
/**
* Changes the lights state (ex., RED -> GREEN).
* When the light turns green, waiting threads are notified.
* ¯\_(ツ)_/¯
*/
public void changeState(TrafficLightState newState) {
lock.lock();
try {
this.state = newState;
if (newState == TrafficLightState.GREEN) {
lightGreen.signalAll();
}
} finally {
lock.unlock();
}
}
/** Returns how many vehicles are currently queued. */
public int getQueueSize() {
lock.lock();
try {
return queue.size();
} finally {
lock.unlock();
}
}
/** Checks whether there are no vehicles waiting. */
public boolean isQueueEmpty() {
lock.lock();
try {
return queue.isEmpty();
} finally {
lock.unlock();
}
}
// --- Getters & Setters ---
public String getId() {
return id;
}
public String getDirection() {
return direction;
}
public TrafficLightState getState() {
lock.lock();
try {
return state;
} finally {
lock.unlock();
}
}
public double getGreenTime() {
return greenTime;
}
public void setGreenTime(double greenTime) {
this.greenTime = greenTime;
}
public double getRedTime() {
return redTime;
}
public void setRedTime(double redTime) {
this.redTime = redTime;
}
public int getTotalVehiclesProcessed() {
return totalVehiclesProcessed;
}
public Lock getLock() {
return lock;
}
public Condition getVehicleAdded() {
return vehicleAdded;
}
public Condition getLightGreen() {
return lightGreen;
}
@Override
public String toString() {
return String.format(
"TrafficLight{id='%s', direction='%s', state=%s, queueSize=%d}",
id, direction, state, getQueueSize()
);
}
}

View File

@@ -0,0 +1,117 @@
package sd.model;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;
/**
* Represents a single vehicle moving through the simulation.
*
* Each vehicle has a route - a sequence of intersections it will pass through -
* and keeps track of how long it has waited and traveled overall.
*
* Serializable so it can be sent between processes or nodes over sockets. type shit
*/
public class Vehicle implements Serializable {
private static final long serialVersionUID = 1L;
// Identity and configuration
private final String id;
private final VehicleType type;
private final double entryTime; // When it entered the system
private final List<String> route; // ex., ["Cr1", "Cr3", "S"]
private int currentRouteIndex; // Current position in the route
// Metrics
private double totalWaitingTime; // Total time spent waiting at red lights
private double totalCrossingTime; // Time spent actually moving between intersections
public Vehicle(String id, VehicleType type, double entryTime, List<String> route) {
this.id = id;
this.type = type;
this.entryTime = entryTime;
this.route = new ArrayList<>(route);
this.currentRouteIndex = 0;
this.totalWaitingTime = 0.0;
this.totalCrossingTime = 0.0;
}
/**
* Moves the vehicle to the next stop in its route.
*
* @return true if there are still destinations ahead, false if the route is finished
*/
public boolean advanceRoute() {
currentRouteIndex++;
return currentRouteIndex < route.size();
}
/**
* Gets the current destination (the next intersection or exit).
* Returns null if the route is already complete.
*/
public String getCurrentDestination() {
return (currentRouteIndex < route.size()) ? route.get(currentRouteIndex) : null;
}
/** Returns true if the vehicle has completed its entire route. */
public boolean hasReachedEnd() {
return currentRouteIndex >= route.size();
}
// --- Getters and metrics management ---
public String getId() {
return id;
}
public VehicleType getType() {
return type;
}
public double getEntryTime() {
return entryTime;
}
public List<String> getRoute() {
return new ArrayList<>(route);
}
public int getCurrentRouteIndex() {
return currentRouteIndex;
}
public double getTotalWaitingTime() {
return totalWaitingTime;
}
public void addWaitingTime(double time) {
totalWaitingTime += time;
}
public double getTotalCrossingTime() {
return totalCrossingTime;
}
public void addCrossingTime(double time) {
totalCrossingTime += time;
}
/**
* Calculates how long the vehicle has been in the system so far.
*
* @param currentTime the current simulation time
* @return total elapsed time since the vehicle entered
*/
public double getTotalTravelTime(double currentTime) {
return currentTime - entryTime;
}
@Override
public String toString() {
return String.format(
"Vehicle{id='%s', type=%s, next='%s', route=%s}",
id, type, getCurrentDestination(), route
);
}
}

View File

@@ -0,0 +1,68 @@
package sd.util;
import java.util.Random;
/**
* Utility class for generating random values used throughout the simulation.
*
* Includes helpers for exponential distributions (for vehicle arrivals),
* uniform randoms, and probability-based decisions.
*/
public class RandomGenerator {
private static final Random random = new Random();
/**
* Returns a random time interval that follows an exponential distribution.
*
* Useful for modeling inter-arrival times in a Poisson process.
*
* @param lambda the arrival rate (λ)
* @return the time interval until the next arrival
*/
public static double generateExponentialInterval(double lambda) {
return Math.log(1 - random.nextDouble()) / -lambda;
}
/**
* Returns a random integer between {@code min} and {@code max}, inclusive.
*/
public static int generateRandomInt(int min, int max) {
return random.nextInt(max - min + 1) + min;
}
/**
* Returns a random double between {@code min} (inclusive) and {@code max} (exclusive).
*/
public static double generateRandomDouble(double min, double max) {
return min + (max - min) * random.nextDouble();
}
/**
* Returns {@code true} with the given probability.
*
* @param probability a value between 0.0 and 1.0
*/
public static boolean occursWithProbability(double probability) {
return random.nextDouble() < probability;
}
/**
* Picks a random element from the given array.
*
* @throws IllegalArgumentException if the array is empty
*/
public static <T> T chooseRandom(T[] array) {
if (array.length == 0) {
throw new IllegalArgumentException("Array cannot be empty.");
}
return array[random.nextInt(array.length)];
}
/**
* Sets the random generators seed, allowing reproducible results.
*/
public static void setSeed(long seed) {
random.setSeed(seed);
}
}

View File

@@ -1,8 +1,13 @@
# Traffic simulation configuration # =========================================================
# This file contains all the necessary configurations to run the simulation # Traffic Simulation Configuration
# ---------------------------------------------------------
# All parameters controlling network layout, timing,
# and simulation behavior.
# =========================================================
# === NETWORK CONFIGURATIONS === # === NETWORK CONFIGURATION ===
# Intersections
# Intersections (each with its host and port)
intersection.Cr1.host=localhost intersection.Cr1.host=localhost
intersection.Cr1.port=8001 intersection.Cr1.port=8001
intersection.Cr2.host=localhost intersection.Cr2.host=localhost
@@ -14,30 +19,32 @@ intersection.Cr4.port=8004
intersection.Cr5.host=localhost intersection.Cr5.host=localhost
intersection.Cr5.port=8005 intersection.Cr5.port=8005
# Exit Node # Exit node
exit.host=localhost exit.host=localhost
exit.port=9001 exit.port=9001
# Dashboard # Dashboard server
dashboard.host=localhost dashboard.host=localhost
dashboard.port=9000 dashboard.port=9000
# === SIMULATION CONFIGURATIONS ===
# Simulation duration in seconds (3600 = 1 hour) # === SIMULATION CONFIGURATION ===
# Total duration in seconds (3600 = 1 hour)
simulation.duration=3600.0 simulation.duration=3600.0
# Vehicle arrival model: FIXED or POISSON # Vehicle arrival model: FIXED or POISSON
simulation.arrival.model=POISSON simulation.arrival.model=POISSON
# Arrival rate (λ) for Poisson model (vehicles per second) # λ (lambda): average arrival rate (vehicles per second)
simulation.arrival.rate=0.5 simulation.arrival.rate=0.5
# Fixed interval between arrivals (used if model = FIXED) # Fixed interval between arrivals (only used if model=FIXED)
simulation.arrival.fixed.interval=2.0 simulation.arrival.fixed.interval=2.0
# === TRAFFIC LIGHT CONFIGURATIONS ===
# Times in seconds for each traffic light (green and red) # === TRAFFIC LIGHT TIMINGS ===
# Format: trafficlight.<intersection>.<direction>.<state> # Format: trafficlight.<intersection>.<direction>.<state>=<seconds>
# Intersection 1 # Intersection 1
trafficlight.Cr1.North.green=30.0 trafficlight.Cr1.North.green=30.0
@@ -89,15 +96,18 @@ trafficlight.Cr5.East.red=30.0
trafficlight.Cr5.West.green=30.0 trafficlight.Cr5.West.green=30.0
trafficlight.Cr5.West.red=30.0 trafficlight.Cr5.West.red=30.0
# === VEHICLE CONFIGURATIONS === # === VEHICLE CONFIGURATION ===
# Probability of generating a light vehicle (0.0 to 1.0) # Probability distribution for vehicle types (must sum to 1.0)
# The rest will be heavy vehicles vehicle.probability.bike=0.2
vehicle.probability.light=0.7 vehicle.probability.light=0.6
vehicle.probability.heavy=0.2
# Crossing time in seconds # Average crossing times (in seconds)
vehicle.crossing.time.bike=1.5
vehicle.crossing.time.light=2.0 vehicle.crossing.time.light=2.0
vehicle.crossing.time.heavy=4.0 vehicle.crossing.time.heavy=4.0
# === STATISTICS CONFIGURATIONS === # === STATISTICS ===
# Interval to send updates to the dashboard (in seconds)
# Interval between dashboard updates (seconds)
statistics.update.interval=10.0 statistics.update.interval=10.0

Binary file not shown.