mirror of
https://github.com/davidalves04/Trabalho-Pratico-SD.git
synced 2025-12-08 12:33:31 +00:00
starting the codebase cleanup for final delivery- single process prototype removal
This commit is contained in:
@@ -1,94 +0,0 @@
|
||||
package sd;
|
||||
|
||||
import java.io.IOException;
|
||||
|
||||
import sd.config.SimulationConfig;
|
||||
import sd.engine.SimulationEngine;
|
||||
|
||||
/**
|
||||
* Main entry point for the traffic simulation.
|
||||
* * This class is responsible for loading the simulation configuration,
|
||||
* initializing the {@link SimulationEngine}, and starting the simulation run.
|
||||
* It also prints initial configuration details and final execution time.
|
||||
*/
|
||||
public class Entry {
|
||||
|
||||
/**
|
||||
* The default path to the simulation configuration file.
|
||||
* This is used if no command-line arguments are provided.
|
||||
*/
|
||||
private static final String DEFAULT_CONFIG_FILE = "src/main/resources/simulation.properties";
|
||||
|
||||
/**
|
||||
* The main method to start the simulation.
|
||||
* * @param args Command-line arguments. If provided, args[0] is expected
|
||||
* to be the path to a custom configuration file.
|
||||
*/
|
||||
public static void main(String[] args) {
|
||||
System.out.println("=".repeat(60));
|
||||
System.out.println("TRAFFIC SIMULATION - DISCRETE EVENT SIMULATOR");
|
||||
System.out.println("=".repeat(60));
|
||||
|
||||
try {
|
||||
// 1. Load configuration
|
||||
String configFile = args.length > 0 ? args[0] : DEFAULT_CONFIG_FILE;
|
||||
System.out.println("Loading configuration from: " + configFile);
|
||||
|
||||
SimulationConfig config = new SimulationConfig(configFile);
|
||||
|
||||
// 2. Display configuration
|
||||
displayConfiguration(config);
|
||||
|
||||
// 3. Create and initialize simulation engine
|
||||
SimulationEngine engine = new SimulationEngine(config);
|
||||
engine.initialize();
|
||||
|
||||
System.out.println("\n" + "=".repeat(60));
|
||||
|
||||
// 4. Run simulation
|
||||
long startTime = System.currentTimeMillis();
|
||||
engine.run();
|
||||
long endTime = System.currentTimeMillis();
|
||||
|
||||
// 5. Display execution time
|
||||
double executionTime = (endTime - startTime) / 1000.0;
|
||||
System.out.println("\nExecution time: " + String.format("%.2f", executionTime) + " seconds");
|
||||
System.out.println("=".repeat(60));
|
||||
|
||||
} catch (IOException e) {
|
||||
System.err.println("Error loading configuration: " + e.getMessage());
|
||||
e.printStackTrace();
|
||||
} catch (Exception e) {
|
||||
System.err.println("Error during simulation: " + e.getMessage());
|
||||
e.printStackTrace();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Displays the main configuration parameters to the console.
|
||||
* This provides a summary of the simulation settings before it starts.
|
||||
*
|
||||
* @param config The {@link SimulationConfig} object containing the loaded settings.
|
||||
*/
|
||||
private static void displayConfiguration(SimulationConfig config) {
|
||||
System.out.println("\nSIMULATION CONFIGURATION:");
|
||||
System.out.println(" Duration: " + config.getSimulationDuration() + " seconds");
|
||||
System.out.println(" Arrival Model: " + config.getArrivalModel());
|
||||
|
||||
if ("POISSON".equalsIgnoreCase(config.getArrivalModel())) {
|
||||
System.out.println(" Arrival Rate (λ): " + config.getArrivalRate() + " vehicles/second");
|
||||
} else {
|
||||
System.out.println(" Fixed Interval: " + config.getFixedArrivalInterval() + " seconds");
|
||||
}
|
||||
|
||||
System.out.println(" Statistics Update Interval: " + config.getStatisticsUpdateInterval() + " seconds");
|
||||
|
||||
System.out.println("\nVEHICLE TYPES:");
|
||||
System.out.println(" Bike: " + (config.getBikeVehicleProbability() * 100) + "% " +
|
||||
"(crossing time: " + config.getBikeVehicleCrossingTime() + "s)");
|
||||
System.out.println(" Light: " + (config.getLightVehicleProbability() * 100) + "% " +
|
||||
"(crossing time: " + config.getLightVehicleCrossingTime() + "s)");
|
||||
System.out.println(" Heavy: " + (config.getHeavyVehicleProbability() * 100) + "% " +
|
||||
"(crossing time: " + config.getHeavyVehicleCrossingTime() + "s)");
|
||||
}
|
||||
}
|
||||
@@ -18,12 +18,13 @@ import sd.model.Vehicle;
|
||||
import sd.model.VehicleType;
|
||||
import sd.protocol.MessageProtocol;
|
||||
import sd.protocol.SocketConnection;
|
||||
import sd.serialization.SerializationException;
|
||||
|
||||
/**
|
||||
* Processo responsável pelo nó de saída do sistema de simulação de tráfego distribuído.
|
||||
* Processo responsável pelo nó de saída do sistema de simulação de tráfego
|
||||
* distribuído.
|
||||
*
|
||||
* Este processo representa o ponto final ("S") onde os veículos completam as suas rotas.
|
||||
* Este processo representa o ponto final ("S") onde os veículos completam as
|
||||
* suas rotas.
|
||||
* As suas principais responsabilidades são:
|
||||
* - Receber veículos que terminam a sua rota vindos das interseções
|
||||
* - Calcular e agregar estatísticas finais dos veículos
|
||||
@@ -36,7 +37,10 @@ public class ExitNodeProcess {
|
||||
private ServerSocket serverSocket;
|
||||
private final ExecutorService connectionHandlerPool;
|
||||
|
||||
/** Flag para controlar a execução do processo (volatile para visibilidade entre threads) */
|
||||
/**
|
||||
* Flag para controlar a execução do processo (volatile para visibilidade entre
|
||||
* threads)
|
||||
*/
|
||||
private volatile boolean running;
|
||||
|
||||
/** Simulation start time (milliseconds) to calculate relative times */
|
||||
@@ -99,10 +103,12 @@ public class ExitNodeProcess {
|
||||
/**
|
||||
* Constrói um novo processo de nó de saída.
|
||||
*
|
||||
* Inicializa todas as estruturas de dados necessárias para recolher estatísticas
|
||||
* Inicializa todas as estruturas de dados necessárias para recolher
|
||||
* estatísticas
|
||||
* e configura o pool de threads para processar as ligações concorrentes.
|
||||
*
|
||||
* @param config Configuração da simulação contendo portas e endereços dos serviços
|
||||
* @param config Configuração da simulação contendo portas e endereços dos
|
||||
* serviços
|
||||
*/
|
||||
public ExitNodeProcess(SimulationConfig config) {
|
||||
this.config = config;
|
||||
@@ -159,7 +165,8 @@ public class ExitNodeProcess {
|
||||
* 2. Aguarda pelas ligações das interseções
|
||||
* 3. Delega cada ligação a uma thread da pool para processamento assíncrono
|
||||
*
|
||||
* @throws IOException Se o socket não puder ser criado ou houver erro na aceitação
|
||||
* @throws IOException Se o socket não puder ser criado ou houver erro na
|
||||
* aceitação
|
||||
*/
|
||||
public void start() throws IOException {
|
||||
int port = config.getExitPort();
|
||||
@@ -186,7 +193,8 @@ public class ExitNodeProcess {
|
||||
* Processa uma ligação recebida de uma interseção.
|
||||
*
|
||||
* Mantém a ligação aberta e processa continuamente mensagens do tipo
|
||||
* VEHICLE_TRANSFER. Cada mensagem representa um veículo que chegou ao nó de saída.
|
||||
* VEHICLE_TRANSFER. Cada mensagem representa um veículo que chegou ao nó de
|
||||
* saída.
|
||||
*
|
||||
* @param clientSocket Socket da ligação estabelecida com a interseção
|
||||
*/
|
||||
@@ -201,7 +209,7 @@ public class ExitNodeProcess {
|
||||
System.out.println("[Exit] Waiting for message from " + clientAddress);
|
||||
MessageProtocol message = connection.receiveMessage();
|
||||
System.out.println("[Exit] Received message type: " + message.getType() +
|
||||
" from " + message.getSourceNode());
|
||||
" from " + message.getSourceNode());
|
||||
|
||||
if (message.getType() == MessageType.SIMULATION_START) {
|
||||
// Coordinator sends start time - use it instead of our local start
|
||||
@@ -214,7 +222,7 @@ public class ExitNodeProcess {
|
||||
// Handle Gson LinkedHashMap
|
||||
Vehicle vehicle;
|
||||
if (payload instanceof com.google.gson.internal.LinkedTreeMap ||
|
||||
payload instanceof java.util.LinkedHashMap) {
|
||||
payload instanceof java.util.LinkedHashMap) {
|
||||
String json = new com.google.gson.Gson().toJson(payload);
|
||||
vehicle = new com.google.gson.Gson().fromJson(json, Vehicle.class);
|
||||
} else {
|
||||
@@ -274,24 +282,12 @@ public class ExitNodeProcess {
|
||||
vehicleTypeWaitTime.put(type, vehicleTypeWaitTime.get(type) + waitTime);
|
||||
|
||||
System.out.printf("[Exit] Vehicle %s completed (type=%s, system_time=%.2fs, wait=%.2fs, crossing=%.2fs)%n",
|
||||
vehicle.getId(), vehicle.getType(), systemTime, waitTime, crossingTime);
|
||||
vehicle.getId(), vehicle.getType(), systemTime, waitTime, crossingTime);
|
||||
|
||||
// Send stats after every vehicle to ensure dashboard updates quickly
|
||||
sendStatsToDashboard();
|
||||
}
|
||||
|
||||
/**
|
||||
* Obtém o tempo atual da simulação em segundos.
|
||||
*
|
||||
* @return Tempo atual em segundos desde "epoch"
|
||||
*
|
||||
* "Epoch" é um ponto de referência temporal Unix (1 de janeiro de 1970).
|
||||
* Este método retorna os segundos decorridos desde esse momento.
|
||||
*/
|
||||
private double getCurrentTime() {
|
||||
return System.currentTimeMillis() / 1000.0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Envia as estatísticas para o dashboard.
|
||||
*
|
||||
@@ -312,8 +308,13 @@ public class ExitNodeProcess {
|
||||
|
||||
// Set global stats - convert seconds to milliseconds
|
||||
payload.setTotalVehiclesCompleted(totalVehiclesReceived);
|
||||
payload.setTotalSystemTime((long)(totalSystemTime * 1000.0)); // s -> ms
|
||||
payload.setTotalWaitingTime((long)(totalWaitingTime * 1000.0)); // s -> ms
|
||||
payload.setTotalSystemTime((long) (totalSystemTime * 1000.0)); // s -> ms
|
||||
payload.setTotalWaitingTime((long) (totalWaitingTime * 1000.0)); // s -> ms
|
||||
|
||||
// Set intersection-like stats so it shows up correctly in the dashboard table
|
||||
payload.setIntersectionArrivals(totalVehiclesReceived);
|
||||
payload.setIntersectionDepartures(totalVehiclesReceived);
|
||||
payload.setIntersectionQueueSize(0);
|
||||
|
||||
// Set vehicle type stats
|
||||
Map<VehicleType, Integer> typeCounts = new HashMap<>();
|
||||
@@ -321,7 +322,7 @@ public class ExitNodeProcess {
|
||||
|
||||
for (VehicleType type : VehicleType.values()) {
|
||||
typeCounts.put(type, vehicleTypeCount.get(type));
|
||||
typeWaitTimes.put(type, (long)(vehicleTypeWaitTime.get(type) * 1000.0)); // s -> ms
|
||||
typeWaitTimes.put(type, (long) (vehicleTypeWaitTime.get(type) * 1000.0)); // s -> ms
|
||||
}
|
||||
|
||||
payload.setVehicleTypeCounts(typeCounts);
|
||||
@@ -329,17 +330,16 @@ public class ExitNodeProcess {
|
||||
|
||||
// Send message
|
||||
Message message = new Message(
|
||||
MessageType.STATS_UPDATE,
|
||||
"ExitNode",
|
||||
"Dashboard",
|
||||
payload
|
||||
);
|
||||
MessageType.STATS_UPDATE,
|
||||
"ExitNode",
|
||||
"Dashboard",
|
||||
payload);
|
||||
|
||||
dashboardClient.send(message);
|
||||
|
||||
double avgWait = totalVehiclesReceived > 0 ? totalWaitingTime / totalVehiclesReceived : 0.0;
|
||||
System.out.printf("[Exit] Sent stats to dashboard (total=%d, avg_wait=%.2fs)%n",
|
||||
totalVehiclesReceived, avgWait);
|
||||
totalVehiclesReceived, avgWait);
|
||||
|
||||
} catch (Exception e) {
|
||||
System.err.println("[Exit] Failed to send stats to dashboard: " + e.getMessage());
|
||||
@@ -350,11 +350,11 @@ public class ExitNodeProcess {
|
||||
* Termina o processo
|
||||
*
|
||||
* Executa a seguinte sequência:
|
||||
* Imprime as estatísticas finais no terminal;
|
||||
* Envia a última atualização de estatísticas ao dashboard;
|
||||
* Fecha o socket;
|
||||
* Aguarda pela finalização das threads;
|
||||
* Fecha a ligação com o dashboard;
|
||||
* Imprime as estatísticas finais no terminal;
|
||||
* Envia a última atualização de estatísticas ao dashboard;
|
||||
* Fecha o socket;
|
||||
* Aguarda pela finalização das threads;
|
||||
* Fecha a ligação com o dashboard;
|
||||
*/
|
||||
public void shutdown() {
|
||||
System.out.println("\n[Exit] Shutting down...");
|
||||
@@ -418,7 +418,7 @@ public class ExitNodeProcess {
|
||||
double percentage = (count * 100.0) / totalVehiclesReceived;
|
||||
double avgWait = vehicleTypeWaitTime.get(type) / count;
|
||||
System.out.printf(" %s: %d (%.1f%%), Avg Wait: %.2fs%n",
|
||||
type, count, percentage, avgWait);
|
||||
type, count, percentage, avgWait);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -4,6 +4,7 @@ import java.io.IOException;
|
||||
import java.net.ServerSocket;
|
||||
import java.net.Socket;
|
||||
import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.concurrent.ExecutorService;
|
||||
import java.util.concurrent.Executors;
|
||||
@@ -64,7 +65,6 @@ public class IntersectionProcess {
|
||||
private volatile String currentGreenDirection;
|
||||
|
||||
private SocketClient dashboardClient;
|
||||
private long simulationStartMillis;
|
||||
private volatile int totalArrivals = 0;
|
||||
private volatile int totalDepartures = 0;
|
||||
private long lastStatsUpdateTime;
|
||||
@@ -142,7 +142,7 @@ public class IntersectionProcess {
|
||||
int dashboardPort = config.getDashboardPort();
|
||||
|
||||
System.out.println("[" + intersectionId + "] Connecting to dashboard at " +
|
||||
dashboardHost + ":" + dashboardPort + "...");
|
||||
dashboardHost + ":" + dashboardPort + "...");
|
||||
|
||||
dashboardClient = new SocketClient(intersectionId, dashboardHost, dashboardPort);
|
||||
dashboardClient.connect();
|
||||
@@ -152,7 +152,7 @@ public class IntersectionProcess {
|
||||
|
||||
} catch (IOException e) {
|
||||
System.err.println("[" + intersectionId + "] Failed to connect to dashboard: " +
|
||||
e.getMessage());
|
||||
e.getMessage());
|
||||
System.err.println("[" + intersectionId + "] Will continue without dashboard reporting.");
|
||||
dashboardClient = null;
|
||||
}
|
||||
@@ -167,23 +167,12 @@ public class IntersectionProcess {
|
||||
private void createTrafficLights() {
|
||||
System.out.println("\n[" + intersectionId + "] Creating traffic lights...");
|
||||
|
||||
String[] directions = new String[0];
|
||||
switch (intersectionId) {
|
||||
case "Cr1":
|
||||
directions = new String[] { "East", "South" };
|
||||
break;
|
||||
case "Cr2":
|
||||
directions = new String[] { "West", "East", "South" };
|
||||
break;
|
||||
case "Cr3":
|
||||
directions = new String[] { "West", "South" };
|
||||
break;
|
||||
case "Cr4":
|
||||
directions = new String[] { "East" };
|
||||
break;
|
||||
case "Cr5":
|
||||
directions = new String[] { "East" };
|
||||
break;
|
||||
SimulationConfig.IntersectionConfig intersectionConfig = getIntersectionConfig();
|
||||
List<String> directions = intersectionConfig.getLights();
|
||||
|
||||
if (directions == null || directions.isEmpty()) {
|
||||
System.err.println(" Warning: No traffic lights configured for " + intersectionId);
|
||||
return;
|
||||
}
|
||||
|
||||
for (String direction : directions) {
|
||||
@@ -202,36 +191,31 @@ public class IntersectionProcess {
|
||||
}
|
||||
}
|
||||
|
||||
private SimulationConfig.IntersectionConfig getIntersectionConfig() {
|
||||
if (config.getNetworkConfig() == null || config.getNetworkConfig().getIntersections() == null) {
|
||||
throw new RuntimeException("Network configuration not loaded or empty.");
|
||||
}
|
||||
return config.getNetworkConfig().getIntersections().stream()
|
||||
.filter(i -> i.getId().equals(intersectionId))
|
||||
.findFirst()
|
||||
.orElseThrow(() -> new RuntimeException("Intersection config not found for " + intersectionId));
|
||||
}
|
||||
|
||||
private void configureRouting() {
|
||||
System.out.println("\n[" + intersectionId + "] Configuring routing...");
|
||||
|
||||
switch (intersectionId) {
|
||||
case "Cr1":
|
||||
intersection.configureRoute("Cr2", "East");
|
||||
intersection.configureRoute("Cr4", "South");
|
||||
break;
|
||||
SimulationConfig.IntersectionConfig intersectionConfig = getIntersectionConfig();
|
||||
Map<String, String> routes = intersectionConfig.getRoutes();
|
||||
|
||||
case "Cr2":
|
||||
intersection.configureRoute("Cr1", "West");
|
||||
intersection.configureRoute("Cr3", "East");
|
||||
intersection.configureRoute("Cr5", "South");
|
||||
break;
|
||||
|
||||
case "Cr3":
|
||||
intersection.configureRoute("Cr2", "West");
|
||||
intersection.configureRoute("S", "South");
|
||||
break;
|
||||
|
||||
case "Cr4":
|
||||
intersection.configureRoute("Cr5", "East");
|
||||
break;
|
||||
|
||||
case "Cr5":
|
||||
intersection.configureRoute("S", "East");
|
||||
break;
|
||||
|
||||
default:
|
||||
System.err.println(" Error: unknown intersection ID: " + intersectionId);
|
||||
if (routes != null) {
|
||||
for (Map.Entry<String, String> entry : routes.entrySet()) {
|
||||
String destination = entry.getKey();
|
||||
String direction = entry.getValue();
|
||||
intersection.configureRoute(destination, direction);
|
||||
System.out.println(" Route configured: To " + destination + " -> Use " + direction);
|
||||
}
|
||||
} else {
|
||||
System.out.println(" No routes configured.");
|
||||
}
|
||||
|
||||
System.out.println(" Routing configured.");
|
||||
@@ -447,14 +431,13 @@ public class IntersectionProcess {
|
||||
|
||||
// Handle simulation start time synchronization
|
||||
if (message.getType() == MessageType.SIMULATION_START) {
|
||||
simulationStartMillis = ((Number) message.getPayload()).longValue();
|
||||
System.out.println("[" + intersectionId + "] Simulation start time synchronized");
|
||||
continue;
|
||||
}
|
||||
|
||||
// Accept both VEHICLE_TRANSFER and VEHICLE_SPAWN (from coordinator)
|
||||
if (message.getType() == MessageType.VEHICLE_TRANSFER ||
|
||||
message.getType() == MessageType.VEHICLE_SPAWN) {
|
||||
message.getType() == MessageType.VEHICLE_SPAWN) {
|
||||
// Cast payload to Vehicle - handle Gson deserialization
|
||||
Vehicle vehicle;
|
||||
Object payload = message.getPayload();
|
||||
@@ -601,7 +584,8 @@ public class IntersectionProcess {
|
||||
}
|
||||
|
||||
/**
|
||||
* Checks if it's time to send statistics to the dashboard and sends them if needed.
|
||||
* Checks if it's time to send statistics to the dashboard and sends them if
|
||||
* needed.
|
||||
*/
|
||||
private void checkAndSendStats() {
|
||||
long now = System.currentTimeMillis();
|
||||
@@ -625,68 +609,28 @@ public class IntersectionProcess {
|
||||
try {
|
||||
// Calculate current queue size
|
||||
int currentQueueSize = intersection.getTrafficLights().stream()
|
||||
.mapToInt(TrafficLight::getQueueSize)
|
||||
.sum();
|
||||
.mapToInt(TrafficLight::getQueueSize)
|
||||
.sum();
|
||||
|
||||
StatsUpdatePayload payload = new StatsUpdatePayload()
|
||||
.setIntersectionArrivals(totalArrivals)
|
||||
.setIntersectionDepartures(totalDepartures)
|
||||
.setIntersectionQueueSize(currentQueueSize);
|
||||
.setIntersectionArrivals(totalArrivals)
|
||||
.setIntersectionDepartures(totalDepartures)
|
||||
.setIntersectionQueueSize(currentQueueSize);
|
||||
|
||||
// Send StatsUpdatePayload directly as the message payload
|
||||
sd.model.Message message = new sd.model.Message(
|
||||
MessageType.STATS_UPDATE,
|
||||
intersectionId,
|
||||
"Dashboard",
|
||||
payload
|
||||
);
|
||||
MessageType.STATS_UPDATE,
|
||||
intersectionId,
|
||||
"Dashboard",
|
||||
payload);
|
||||
|
||||
dashboardClient.send(message);
|
||||
|
||||
System.out.printf("[%s] Sent stats to dashboard (arrivals=%d, departures=%d, queue=%d)%n",
|
||||
intersectionId, totalArrivals, totalDepartures, currentQueueSize);
|
||||
intersectionId, totalArrivals, totalDepartures, currentQueueSize);
|
||||
|
||||
} catch (SerializationException | IOException e) {
|
||||
System.err.println("[" + intersectionId + "] Failed to send stats to dashboard: " + e.getMessage());
|
||||
}
|
||||
}
|
||||
|
||||
// --- Inner class for Vehicle Transfer Messages ---
|
||||
|
||||
/**
|
||||
* Implementation of MessageProtocol for vehicle transfers between processes.
|
||||
*/
|
||||
private static class VehicleTransferMessage implements MessageProtocol {
|
||||
private static final long serialVersionUID = 1L;
|
||||
|
||||
private final String sourceNode;
|
||||
private final String destinationNode;
|
||||
private final Vehicle payload;
|
||||
|
||||
public VehicleTransferMessage(String sourceNode, String destinationNode, Vehicle vehicle) {
|
||||
this.sourceNode = sourceNode;
|
||||
this.destinationNode = destinationNode;
|
||||
this.payload = vehicle;
|
||||
}
|
||||
|
||||
@Override
|
||||
public MessageType getType() {
|
||||
return MessageType.VEHICLE_TRANSFER;
|
||||
}
|
||||
|
||||
@Override
|
||||
public Object getPayload() {
|
||||
return payload;
|
||||
}
|
||||
|
||||
@Override
|
||||
public String getSourceNode() {
|
||||
return sourceNode;
|
||||
}
|
||||
|
||||
@Override
|
||||
public String getDestinationNode() {
|
||||
return destinationNode;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -3,8 +3,16 @@ package sd.config;
|
||||
import java.io.FileInputStream;
|
||||
import java.io.IOException;
|
||||
import java.io.InputStream;
|
||||
import java.io.InputStreamReader;
|
||||
import java.io.Reader;
|
||||
import java.nio.charset.StandardCharsets;
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.Properties;
|
||||
|
||||
import com.google.gson.Gson;
|
||||
|
||||
/**
|
||||
* Class to load and manage simulation configurations.
|
||||
* Configurations are read from a .properties file. This class provides
|
||||
@@ -17,59 +25,144 @@ public class SimulationConfig {
|
||||
* Holds all properties loaded from the file.
|
||||
*/
|
||||
private final Properties properties;
|
||||
private NetworkConfig networkConfig;
|
||||
|
||||
public static class NetworkConfig {
|
||||
private List<IntersectionConfig> intersections;
|
||||
|
||||
public List<IntersectionConfig> getIntersections() {
|
||||
return intersections;
|
||||
}
|
||||
}
|
||||
|
||||
public static class IntersectionConfig {
|
||||
private String id;
|
||||
private List<String> lights;
|
||||
private Map<String, String> routes;
|
||||
|
||||
public String getId() {
|
||||
return id;
|
||||
}
|
||||
|
||||
public List<String> getLights() {
|
||||
return lights;
|
||||
}
|
||||
|
||||
public Map<String, String> getRoutes() {
|
||||
return routes;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a new SimulationConfig object by loading properties
|
||||
* from the specified file path.
|
||||
*
|
||||
* @param filePath The path to the .properties file (e.g., "src/main/resources/simulation.properties").
|
||||
* @throws IOException If the file cannot be found or read.
|
||||
* This constructor attempts to load the configuration file using multiple
|
||||
* strategies:
|
||||
* 1. Direct file system path
|
||||
* 2. Classpath resource (with automatic path normalization)
|
||||
* 3. Classpath resource with leading slash
|
||||
*
|
||||
* @param filePath The path to the .properties file (e.g.,
|
||||
* "src/main/resources/simulation.properties").
|
||||
* @throws IOException If the file cannot be found or read from any location.
|
||||
*/
|
||||
public SimulationConfig(String filePath) throws IOException {
|
||||
properties = new Properties();
|
||||
/**Tenta carregar diretamente a partir do sistema de ficheiros, se o ficheiro não existir
|
||||
* (por exemplo quando executado a partir do classpath/jar),
|
||||
* faz fallback para carregar a partir do classpath usando o ClassLoader.
|
||||
*/
|
||||
IOException lastException = null; //FIXME: melhorar esta parte para reportar erros de forma mais clara
|
||||
|
||||
try {
|
||||
try (InputStream input = new FileInputStream(filePath)) {
|
||||
properties.load(input);
|
||||
return; // carregado com sucesso a partir do caminho fornecido
|
||||
}
|
||||
// List to track all attempted paths for better error reporting
|
||||
List<String> attemptedPaths = new ArrayList<>();
|
||||
IOException fileSystemException = null;
|
||||
|
||||
// Strategy 1: Try to load directly from file system
|
||||
try (InputStream input = new FileInputStream(filePath)) {
|
||||
properties.load(input);
|
||||
loadNetworkConfig();
|
||||
return; // Successfully loaded from file system
|
||||
} catch (IOException e) {
|
||||
lastException = e;
|
||||
//tenta carregar a partir do classpath sem prefixos comuns
|
||||
String resourcePath = filePath;
|
||||
//Remove prefixos que apontam para src/main/resources quando presentes
|
||||
resourcePath = resourcePath.replace("src/main/resources/", "").replace("src\\main\\resources\\", "");
|
||||
//Remove prefixo classpath: se fornecido
|
||||
if (resourcePath.startsWith("classpath:")) {
|
||||
resourcePath = resourcePath.substring("classpath:".length());
|
||||
if (resourcePath.startsWith("/")) resourcePath = resourcePath.substring(1);
|
||||
}
|
||||
fileSystemException = e;
|
||||
attemptedPaths.add("File system: " + filePath);
|
||||
}
|
||||
|
||||
InputStream resourceStream = Thread.currentThread().getContextClassLoader().getResourceAsStream(resourcePath);
|
||||
if (resourceStream == null) {
|
||||
//como último recurso, tentar com um leading slash
|
||||
resourceStream = SimulationConfig.class.getResourceAsStream('/' + resourcePath);
|
||||
}
|
||||
// Strategy 2: Try to load from classpath with path normalization
|
||||
String resourcePath = filePath;
|
||||
|
||||
if (resourceStream != null) {
|
||||
try (InputStream input = resourceStream) {
|
||||
properties.load(input);
|
||||
return;
|
||||
}
|
||||
// Remove common src/main/resources prefixes
|
||||
resourcePath = resourcePath.replace("src/main/resources/", "").replace("src\\main\\resources\\", "");
|
||||
|
||||
// Remove classpath: prefix if provided
|
||||
if (resourcePath.startsWith("classpath:")) {
|
||||
resourcePath = resourcePath.substring("classpath:".length());
|
||||
if (resourcePath.startsWith("/")) {
|
||||
resourcePath = resourcePath.substring(1);
|
||||
}
|
||||
}
|
||||
if (lastException != null) throw lastException;
|
||||
|
||||
// Try loading from classpath using thread context class loader
|
||||
InputStream resourceStream = Thread.currentThread().getContextClassLoader().getResourceAsStream(resourcePath);
|
||||
attemptedPaths.add("Classpath (context): " + resourcePath);
|
||||
|
||||
if (resourceStream == null) {
|
||||
// Strategy 3: Try with leading slash
|
||||
String slashPath = "/" + resourcePath;
|
||||
resourceStream = SimulationConfig.class.getResourceAsStream(slashPath);
|
||||
attemptedPaths.add("Classpath (class): " + slashPath);
|
||||
}
|
||||
|
||||
if (resourceStream != null) {
|
||||
try (InputStream input = resourceStream) {
|
||||
properties.load(input);
|
||||
loadNetworkConfig();
|
||||
return; // Successfully loaded from classpath
|
||||
} catch (IOException e) {
|
||||
// Failed to read from classpath resource
|
||||
throw new IOException(
|
||||
String.format("Failed to read properties from classpath resource '%s': %s",
|
||||
resourcePath, e.getMessage()),
|
||||
e);
|
||||
}
|
||||
}
|
||||
|
||||
// All strategies failed - provide comprehensive error message
|
||||
StringBuilder errorMsg = new StringBuilder();
|
||||
errorMsg.append("Configuration file '").append(filePath).append("' could not be found.\n");
|
||||
errorMsg.append("Attempted locations:\n");
|
||||
for (String path : attemptedPaths) {
|
||||
errorMsg.append(" - ").append(path).append("\n");
|
||||
}
|
||||
|
||||
if (fileSystemException != null) {
|
||||
errorMsg.append("\nOriginal error: ").append(fileSystemException.getMessage());
|
||||
}
|
||||
|
||||
throw new IOException(errorMsg.toString(), fileSystemException);
|
||||
}
|
||||
|
||||
private void loadNetworkConfig() {
|
||||
try (InputStream is = getClass().getClassLoader().getResourceAsStream("network_config.json")) {
|
||||
if (is == null) {
|
||||
System.err.println("Warning: network_config.json not found in classpath. Using defaults/empty.");
|
||||
return;
|
||||
}
|
||||
try (Reader reader = new InputStreamReader(is, StandardCharsets.UTF_8)) {
|
||||
Gson gson = new Gson();
|
||||
this.networkConfig = gson.fromJson(reader, NetworkConfig.class);
|
||||
}
|
||||
} catch (IOException e) {
|
||||
System.err.println("Failed to load network_config.json: " + e.getMessage());
|
||||
e.printStackTrace();
|
||||
}
|
||||
}
|
||||
|
||||
public NetworkConfig getNetworkConfig() {
|
||||
return networkConfig;
|
||||
}
|
||||
|
||||
// --- Network configurations ---
|
||||
|
||||
/**
|
||||
* Gets the host address for a specific intersection.
|
||||
*
|
||||
* @param intersectionId The ID of the intersection (e.g., "Cr1").
|
||||
* @return The host (e.g., "localhost").
|
||||
*/
|
||||
@@ -79,6 +172,7 @@ public class SimulationConfig {
|
||||
|
||||
/**
|
||||
* Gets the port number for a specific intersection.
|
||||
*
|
||||
* @param intersectionId The ID of the intersection (e.g., "Cr1").
|
||||
* @return The port number.
|
||||
*/
|
||||
@@ -88,6 +182,7 @@ public class SimulationConfig {
|
||||
|
||||
/**
|
||||
* Gets the host address for the dashboard server.
|
||||
*
|
||||
* @return The dashboard host.
|
||||
*/
|
||||
public String getDashboardHost() {
|
||||
@@ -96,6 +191,7 @@ public class SimulationConfig {
|
||||
|
||||
/**
|
||||
* Gets the port number for the dashboard server.
|
||||
*
|
||||
* @return The dashboard port.
|
||||
*/
|
||||
public int getDashboardPort() {
|
||||
@@ -104,6 +200,7 @@ public class SimulationConfig {
|
||||
|
||||
/**
|
||||
* Gets the host address for the exit node.
|
||||
*
|
||||
* @return The exit node host.
|
||||
*/
|
||||
public String getExitHost() {
|
||||
@@ -112,6 +209,7 @@ public class SimulationConfig {
|
||||
|
||||
/**
|
||||
* Gets the port number for the exit node.
|
||||
*
|
||||
* @return The exit node port.
|
||||
*/
|
||||
public int getExitPort() {
|
||||
@@ -122,6 +220,7 @@ public class SimulationConfig {
|
||||
|
||||
/**
|
||||
* Gets the total duration of the simulation in virtual seconds.
|
||||
*
|
||||
* @return The simulation duration.
|
||||
*/
|
||||
public double getSimulationDuration() {
|
||||
@@ -130,6 +229,7 @@ public class SimulationConfig {
|
||||
|
||||
/**
|
||||
* Gets the vehicle arrival model ("POISSON" or "FIXED").
|
||||
*
|
||||
* @return The arrival model as a string.
|
||||
*/
|
||||
public String getArrivalModel() {
|
||||
@@ -139,6 +239,7 @@ public class SimulationConfig {
|
||||
/**
|
||||
* Gets the average arrival rate (lambda) for the POISSON model.
|
||||
* This represents the average number of vehicles arriving per second.
|
||||
*
|
||||
* @return The arrival rate.
|
||||
*/
|
||||
public double getArrivalRate() {
|
||||
@@ -147,6 +248,7 @@ public class SimulationConfig {
|
||||
|
||||
/**
|
||||
* Gets the fixed time interval between vehicle arrivals for the FIXED model.
|
||||
*
|
||||
* @return The fixed interval in seconds.
|
||||
*/
|
||||
public double getFixedArrivalInterval() {
|
||||
@@ -157,8 +259,9 @@ public class SimulationConfig {
|
||||
|
||||
/**
|
||||
* Gets the duration of the GREEN light state for a specific traffic light.
|
||||
*
|
||||
* @param intersectionId The ID of the intersection (e.g., "Cr1").
|
||||
* @param direction The direction of the light (e.g., "North").
|
||||
* @param direction The direction of the light (e.g., "North").
|
||||
* @return The green light time in seconds.
|
||||
*/
|
||||
public double getTrafficLightGreenTime(String intersectionId, String direction) {
|
||||
@@ -168,8 +271,9 @@ public class SimulationConfig {
|
||||
|
||||
/**
|
||||
* Gets the duration of the RED light state for a specific traffic light.
|
||||
*
|
||||
* @param intersectionId The ID of the intersection (e.g., "Cr1").
|
||||
* @param direction The direction of the light (e.g., "North").
|
||||
* @param direction The direction of the light (e.g., "North").
|
||||
* @return The red light time in seconds.
|
||||
*/
|
||||
public double getTrafficLightRedTime(String intersectionId, String direction) {
|
||||
@@ -181,6 +285,7 @@ public class SimulationConfig {
|
||||
|
||||
/**
|
||||
* Gets the probability (0.0 to 1.0) that a generated vehicle is of type LIGHT.
|
||||
*
|
||||
* @return The probability for LIGHT vehicles.
|
||||
*/
|
||||
public double getLightVehicleProbability() {
|
||||
@@ -189,6 +294,7 @@ public class SimulationConfig {
|
||||
|
||||
/**
|
||||
* Gets the average time it takes a LIGHT vehicle to cross an intersection.
|
||||
*
|
||||
* @return The crossing time in seconds.
|
||||
*/
|
||||
public double getLightVehicleCrossingTime() {
|
||||
@@ -197,6 +303,7 @@ public class SimulationConfig {
|
||||
|
||||
/**
|
||||
* Gets the probability (0.0 to 1.0) that a generated vehicle is of type BIKE.
|
||||
*
|
||||
* @return The probability for BIKE vehicles.
|
||||
*/
|
||||
public double getBikeVehicleProbability() {
|
||||
@@ -205,6 +312,7 @@ public class SimulationConfig {
|
||||
|
||||
/**
|
||||
* Gets the average time it takes a BIKE vehicle to cross an intersection.
|
||||
*
|
||||
* @return The crossing time in seconds.
|
||||
*/
|
||||
public double getBikeVehicleCrossingTime() {
|
||||
@@ -213,6 +321,7 @@ public class SimulationConfig {
|
||||
|
||||
/**
|
||||
* Gets the probability (0.0 to 1.0) that a generated vehicle is of type HEAVY.
|
||||
*
|
||||
* @return The probability for HEAVY vehicles.
|
||||
*/
|
||||
public double getHeavyVehicleProbability() {
|
||||
@@ -221,6 +330,7 @@ public class SimulationConfig {
|
||||
|
||||
/**
|
||||
* Gets the average time it takes a HEAVY vehicle to cross an intersection.
|
||||
*
|
||||
* @return The crossing time in seconds.
|
||||
*/
|
||||
public double getHeavyVehicleCrossingTime() {
|
||||
@@ -229,6 +339,7 @@ public class SimulationConfig {
|
||||
|
||||
/**
|
||||
* Gets the base travel time between intersections for light vehicles.
|
||||
*
|
||||
* @return The base travel time in seconds.
|
||||
*/
|
||||
public double getBaseTravelTime() {
|
||||
@@ -238,6 +349,7 @@ public class SimulationConfig {
|
||||
/**
|
||||
* Gets the travel time multiplier for bike vehicles.
|
||||
* Bike travel time = base time × this multiplier.
|
||||
*
|
||||
* @return The multiplier for bike travel time.
|
||||
*/
|
||||
public double getBikeTravelTimeMultiplier() {
|
||||
@@ -247,6 +359,7 @@ public class SimulationConfig {
|
||||
/**
|
||||
* Gets the travel time multiplier for heavy vehicles.
|
||||
* Heavy vehicle travel time = base time × this multiplier.
|
||||
*
|
||||
* @return The multiplier for heavy vehicle travel time.
|
||||
*/
|
||||
public double getHeavyTravelTimeMultiplier() {
|
||||
@@ -257,17 +370,19 @@ public class SimulationConfig {
|
||||
|
||||
/**
|
||||
* Gets the interval (in virtual seconds) between periodic statistics updates.
|
||||
*
|
||||
* @return The statistics update interval.
|
||||
*/
|
||||
public double getStatisticsUpdateInterval() {
|
||||
return Double.parseDouble(properties.getProperty("statistics.update.interval", "10.0"));
|
||||
return Double.parseDouble(properties.getProperty("statistics.update.interval", "1.0"));
|
||||
}
|
||||
|
||||
// --- Generic getters ---
|
||||
|
||||
/**
|
||||
* Generic method to get any property as a string, with a default value.
|
||||
* @param key The property key.
|
||||
*
|
||||
* @param key The property key.
|
||||
* @param defaultValue The value to return if the key is not found.
|
||||
* @return The property value or the default.
|
||||
*/
|
||||
@@ -277,6 +392,7 @@ public class SimulationConfig {
|
||||
|
||||
/**
|
||||
* Generic method to get any property as a string.
|
||||
*
|
||||
* @param key The property key.
|
||||
* @return The property value, or null if not found.
|
||||
*/
|
||||
|
||||
@@ -1,663 +0,0 @@
|
||||
package sd.engine;
|
||||
|
||||
import java.util.HashMap;
|
||||
import java.util.Map;
|
||||
import java.util.PriorityQueue;
|
||||
|
||||
import sd.config.SimulationConfig;
|
||||
import sd.model.Event;
|
||||
import sd.model.EventType;
|
||||
import sd.model.Intersection;
|
||||
import sd.model.TrafficLight;
|
||||
import sd.model.TrafficLightState;
|
||||
import sd.model.Vehicle;
|
||||
import sd.model.VehicleType;
|
||||
import sd.util.StatisticsCollector;
|
||||
import sd.util.VehicleGenerator;
|
||||
|
||||
/**
|
||||
* Core simulation engine using discrete event simulation (DES).
|
||||
* * This class orchestrates the entire simulation. It maintains a
|
||||
* {@link PriorityQueue} of {@link Event} objects, representing all
|
||||
* scheduled future actions. The engine processes events in strict
|
||||
* chronological order (based on their timestamp).
|
||||
* * It manages the simulation's state, including:
|
||||
* - The current simulation time ({@code currentTime}).
|
||||
* - The collection of all {@link Intersection} objects.
|
||||
* - The {@link VehicleGenerator} for creating new vehicles.
|
||||
* - The {@link StatisticsCollector} for tracking metrics.
|
||||
*/
|
||||
public class SimulationEngine {
|
||||
|
||||
/**
|
||||
* Holds all simulation parameters loaded from the properties file.
|
||||
*/
|
||||
private final SimulationConfig config;
|
||||
|
||||
/**
|
||||
* The core of the discrete event simulation. Events are pulled from this
|
||||
* queue in order of their timestamp.
|
||||
*/
|
||||
private final PriorityQueue<Event> eventQueue;
|
||||
|
||||
/**
|
||||
* A map storing all intersections in the simulation, keyed by their ID (e.g.,
|
||||
* "Cr1").
|
||||
*/
|
||||
private final Map<String, Intersection> intersections;
|
||||
|
||||
/**
|
||||
* Responsible for creating new vehicles according to the configured arrival
|
||||
* model.
|
||||
*/
|
||||
private final VehicleGenerator vehicleGenerator;
|
||||
|
||||
/**
|
||||
* Collects and calculates statistics throughout the simulation.
|
||||
*/
|
||||
private final StatisticsCollector statisticsCollector;
|
||||
|
||||
/**
|
||||
* The current time in the simulation (in virtual seconds).
|
||||
* This time advances based on the timestamp of the event being processed.
|
||||
*/
|
||||
private double currentTime;
|
||||
|
||||
/**
|
||||
* A simple counter to generate unique IDs for vehicles.
|
||||
*/
|
||||
private int vehicleCounter;
|
||||
|
||||
/**
|
||||
* Constructs a new SimulationEngine.
|
||||
*
|
||||
* @param config The {@link SimulationConfig} object containing all
|
||||
* simulation parameters.
|
||||
*/
|
||||
public SimulationEngine(SimulationConfig config) {
|
||||
this.config = config;
|
||||
this.eventQueue = new PriorityQueue<>();
|
||||
this.intersections = new HashMap<>();
|
||||
this.vehicleGenerator = new VehicleGenerator(config);
|
||||
this.statisticsCollector = new StatisticsCollector(config);
|
||||
this.currentTime = 0.0;
|
||||
this.vehicleCounter = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the travel time between intersections based on vehicle type.
|
||||
*
|
||||
* @param vehicleType The type of the vehicle.
|
||||
* @return The travel time in seconds.
|
||||
*/
|
||||
private double calculateTravelTime(VehicleType vehicleType) {
|
||||
double baseTime = config.getBaseTravelTime();
|
||||
|
||||
switch (vehicleType) {
|
||||
case BIKE:
|
||||
return baseTime * config.getBikeTravelTimeMultiplier();
|
||||
case HEAVY:
|
||||
return baseTime * config.getHeavyTravelTimeMultiplier();
|
||||
case LIGHT:
|
||||
default:
|
||||
return baseTime;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Initializes the simulation. This involves:
|
||||
* 1. Creating all {@link Intersection} and {@link TrafficLight} objects.
|
||||
* 2. Configuring the routing logic between intersections.
|
||||
* 3. Scheduling the initial events (first traffic light changes,
|
||||
* first vehicle generation, and periodic statistics updates).
|
||||
*/
|
||||
public void initialize() {
|
||||
System.out.println("Initializing simulation...");
|
||||
|
||||
setupIntersections();
|
||||
setupRouting();
|
||||
|
||||
// Schedule initial events to "bootstrap" the simulation
|
||||
scheduleTrafficLightEvents();
|
||||
scheduleNextVehicleGeneration(0.0);
|
||||
scheduleStatisticsUpdates();
|
||||
|
||||
System.out.println("Simulation initialized with " + intersections.size() + " intersections");
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates all intersections defined in the configuration
|
||||
* and adds their corresponding traffic lights.
|
||||
*/
|
||||
private void setupIntersections() {
|
||||
String[] intersectionIds = { "Cr1", "Cr2", "Cr3", "Cr4", "Cr5" };
|
||||
// Note: "North" is commented out, so it won't be created.
|
||||
String[] directions = { /* "North", */ "South", "East", "West" };
|
||||
|
||||
for (String id : intersectionIds) {
|
||||
Intersection intersection = new Intersection(id);
|
||||
|
||||
// Add traffic lights for each configured direction
|
||||
for (String direction : directions) {
|
||||
double greenTime = config.getTrafficLightGreenTime(id, direction);
|
||||
double redTime = config.getTrafficLightRedTime(id, direction);
|
||||
|
||||
TrafficLight light = new TrafficLight(
|
||||
id + "-" + direction,
|
||||
direction,
|
||||
greenTime,
|
||||
redTime);
|
||||
|
||||
intersection.addTrafficLight(light);
|
||||
}
|
||||
|
||||
intersections.put(id, intersection);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Configures how vehicles should be routed between intersections.
|
||||
* This hardcoded logic defines the "map" of the city.
|
||||
* * For example, `intersections.get("Cr1").configureRoute("Cr2", "East");`
|
||||
* means
|
||||
* "at intersection Cr1, any vehicle whose *next* destination is Cr2
|
||||
* should be sent to the 'East' traffic light queue."
|
||||
*/
|
||||
private void setupRouting() {
|
||||
// Cr1 routing
|
||||
intersections.get("Cr1").configureRoute("Cr2", "East");
|
||||
intersections.get("Cr1").configureRoute("Cr4", "South");
|
||||
|
||||
// Cr2 routing
|
||||
intersections.get("Cr2").configureRoute("Cr1", "West");
|
||||
intersections.get("Cr2").configureRoute("Cr3", "East");
|
||||
intersections.get("Cr2").configureRoute("Cr5", "South");
|
||||
|
||||
// Cr3 routing
|
||||
intersections.get("Cr3").configureRoute("Cr2", "West");
|
||||
intersections.get("Cr3").configureRoute("S", "South"); // "S" is the exit
|
||||
|
||||
// Cr4 routing
|
||||
// intersections.get("Cr4").configureRoute("Cr1", "North");
|
||||
intersections.get("Cr4").configureRoute("Cr5", "East");
|
||||
|
||||
// Cr5 routing
|
||||
// intersections.get("Cr5").configureRoute("Cr2", "North");
|
||||
// intersections.get("Cr5").configureRoute("Cr4", "West");
|
||||
intersections.get("Cr5").configureRoute("S", "East"); // "S" is the exit
|
||||
}
|
||||
|
||||
/**
|
||||
* Schedules the initial {@link EventType#TRAFFIC_LIGHT_CHANGE} event
|
||||
* for every traffic light in the simulation.
|
||||
* A small random delay is added to "stagger" the lights, preventing
|
||||
* all of them from changing at the exact same time at t=0.
|
||||
*/
|
||||
private void scheduleTrafficLightEvents() {
|
||||
for (Intersection intersection : intersections.values()) {
|
||||
for (TrafficLight light : intersection.getTrafficLights()) {
|
||||
// Start with lights in RED state, schedule first GREEN change
|
||||
// Stagger the start times slightly to avoid all lights changing at once
|
||||
double staggerDelay = Math.random() * 1.5;
|
||||
scheduleTrafficLightChange(light, intersection.getId(), staggerDelay);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates and schedules a new {@link EventType#TRAFFIC_LIGHT_CHANGE} event.
|
||||
* The event is scheduled to occur at {@code currentTime + delay}.
|
||||
*
|
||||
* @param light The {@link TrafficLight} that will change state.
|
||||
* @param intersectionId The ID of the intersection where the light is located.
|
||||
* @param delay The time (in seconds) from {@code currentTime} when the
|
||||
* change should occur.
|
||||
*/
|
||||
private void scheduleTrafficLightChange(TrafficLight light, String intersectionId, double delay) {
|
||||
double changeTime = currentTime + delay;
|
||||
Event event = new Event(changeTime, EventType.TRAFFIC_LIGHT_CHANGE, light, intersectionId);
|
||||
eventQueue.offer(event);
|
||||
}
|
||||
|
||||
/**
|
||||
* Schedules the next {@link EventType#VEHICLE_GENERATION} event.
|
||||
* The time of the next arrival is determined by the {@link VehicleGenerator}.
|
||||
*
|
||||
* @param baseTime The time from which to calculate the next arrival (usually
|
||||
* {@code currentTime}).
|
||||
*/
|
||||
private void scheduleNextVehicleGeneration(double baseTime) {
|
||||
// Get the absolute time for the next arrival.
|
||||
double nextArrivalTime = vehicleGenerator.getNextArrivalTime(baseTime);
|
||||
|
||||
// Only schedule the event if it's within the simulation's total duration.
|
||||
if (nextArrivalTime < config.getSimulationDuration()) {
|
||||
Event event = new Event(nextArrivalTime, EventType.VEHICLE_GENERATION, null, null);
|
||||
eventQueue.offer(event);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Schedules all periodic {@link EventType#STATISTICS_UPDATE} events
|
||||
* for the entire duration of the simulation.
|
||||
*/
|
||||
private void scheduleStatisticsUpdates() {
|
||||
double interval = config.getStatisticsUpdateInterval();
|
||||
double duration = config.getSimulationDuration();
|
||||
|
||||
for (double time = interval; time < duration; time += interval) {
|
||||
Event event = new Event(time, EventType.STATISTICS_UPDATE, null, null);
|
||||
eventQueue.offer(event);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Runs the main simulation loop.
|
||||
* The loop continues as long as there are events in the queue and
|
||||
* the {@code currentTime} is less than the total simulation duration.
|
||||
* * In each iteration, it:
|
||||
* 1. Polls the next event from the {@link #eventQueue}.
|
||||
* 2. Advances {@link #currentTime} to the event's timestamp.
|
||||
* 3. Calls {@link #processEvent(Event)} to handle the event.
|
||||
* * After the loop, it prints the final statistics.
|
||||
*/
|
||||
public void run() {
|
||||
System.out.println("Starting simulation...");
|
||||
double duration = config.getSimulationDuration();
|
||||
|
||||
while (!eventQueue.isEmpty() && currentTime < duration) {
|
||||
// Get the next event in chronological order
|
||||
Event event = eventQueue.poll();
|
||||
|
||||
// Advance simulation time to this event's time
|
||||
currentTime = event.getTimestamp();
|
||||
|
||||
// Process the event
|
||||
processEvent(event);
|
||||
}
|
||||
|
||||
System.out.println("\nSimulation completed at t=" + String.format("%.2f", currentTime) + "s");
|
||||
printFinalStatistics();
|
||||
}
|
||||
|
||||
/**
|
||||
* Main event processing logic.
|
||||
* Delegates the event to the appropriate handler method based on its
|
||||
* {@link EventType}.
|
||||
*
|
||||
* @param event The {@link Event} to be processed.
|
||||
*/
|
||||
private void processEvent(Event event) {
|
||||
switch (event.getType()) {
|
||||
case VEHICLE_GENERATION -> handleVehicleGeneration();
|
||||
|
||||
case VEHICLE_ARRIVAL -> handleVehicleArrival(event);
|
||||
|
||||
case TRAFFIC_LIGHT_CHANGE -> handleTrafficLightChange(event);
|
||||
|
||||
case CROSSING_START -> handleCrossingStart(event);
|
||||
|
||||
case CROSSING_END -> handleCrossingEnd(event);
|
||||
|
||||
case STATISTICS_UPDATE -> handleStatisticsUpdate();
|
||||
|
||||
default -> System.err.println("Unknown event type: " + event.getType());
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Handles {@link EventType#VEHICLE_GENERATION}.
|
||||
* 1. Creates a new {@link Vehicle} using the {@link #vehicleGenerator}.
|
||||
* 2. Records the generation event with the {@link #statisticsCollector}.
|
||||
* 3. Schedules a {@link EventType#VEHICLE_ARRIVAL} event for the vehicle
|
||||
* at its first destination intersection.
|
||||
* 4. Schedules the *next* {@link EventType#VEHICLE_GENERATION} event.
|
||||
* (Note: This line is commented out in the original, which might be a bug,
|
||||
* as it implies only one vehicle is ever generated. It should likely be
|
||||
* active.)
|
||||
*/
|
||||
private void handleVehicleGeneration() {
|
||||
Vehicle vehicle = vehicleGenerator.generateVehicle("V" + (++vehicleCounter), currentTime);
|
||||
|
||||
System.out.printf("[t=%.2f] Vehicle %s generated (type=%s, route=%s)%n",
|
||||
currentTime, vehicle.getId(), vehicle.getType(), vehicle.getRoute());
|
||||
|
||||
// Register with statistics collector
|
||||
statisticsCollector.recordVehicleGeneration(vehicle, currentTime);
|
||||
|
||||
// Schedule arrival at first intersection
|
||||
String firstIntersection = vehicle.getCurrentDestination();
|
||||
if (firstIntersection != null && !firstIntersection.equals("S")) {
|
||||
double travelTime = calculateTravelTime(vehicle.getType());
|
||||
double arrivalTime = currentTime + travelTime;
|
||||
Event arrivalEvent = new Event(arrivalTime, EventType.VEHICLE_ARRIVAL, vehicle, firstIntersection);
|
||||
eventQueue.offer(arrivalEvent);
|
||||
}
|
||||
|
||||
// Schedule next vehicle generation
|
||||
// This was commented out in the original file.
|
||||
// For a continuous simulation, it should be enabled:
|
||||
scheduleNextVehicleGeneration(currentTime);
|
||||
}
|
||||
|
||||
/**
|
||||
* Handles {@link EventType#VEHICLE_ARRIVAL} at an intersection.
|
||||
* 1. Records the arrival for statistics.
|
||||
* 2. Advances the vehicle's internal route planner to its *next* destination.
|
||||
* 3. If the next destination is the exit ("S") or null,
|
||||
* the vehicle exits the system via {@link #handleVehicleExit(Vehicle)}.
|
||||
* 4. Otherwise, the vehicle is placed in the correct queue at the
|
||||
* current intersection using {@link Intersection#receiveVehicle(Vehicle)}.
|
||||
* 5. Attempts to process the vehicle immediately if its light is green.
|
||||
*
|
||||
* @param event The arrival event, containing the {@link Vehicle} and
|
||||
* intersection ID.
|
||||
*/
|
||||
private void handleVehicleArrival(Event event) {
|
||||
Vehicle vehicle = (Vehicle) event.getData();
|
||||
String intersectionId = event.getLocation();
|
||||
|
||||
Intersection intersection = intersections.get(intersectionId);
|
||||
if (intersection == null) {
|
||||
System.err.println("Unknown intersection: " + intersectionId);
|
||||
return;
|
||||
}
|
||||
|
||||
System.out.printf("[t=%.2f] Vehicle %s arrived at %s%n",
|
||||
currentTime, vehicle.getId(), intersectionId);
|
||||
|
||||
// Record arrival time (used to calculate waiting time later)
|
||||
statisticsCollector.recordVehicleArrival(vehicle, intersectionId, currentTime);
|
||||
|
||||
// Advance the vehicle's route to the *next* stop
|
||||
// (it has now arrived at its *current* destination)
|
||||
boolean hasNext = vehicle.advanceRoute();
|
||||
|
||||
if (!hasNext) {
|
||||
// This was the last stop
|
||||
handleVehicleExit(vehicle);
|
||||
return;
|
||||
}
|
||||
|
||||
String nextDestination = vehicle.getCurrentDestination();
|
||||
if (nextDestination == null || "S".equals(nextDestination)) {
|
||||
// Next stop is the exit
|
||||
handleVehicleExit(vehicle);
|
||||
return;
|
||||
}
|
||||
|
||||
// Add vehicle to the appropriate traffic light queue based on its next
|
||||
// destination
|
||||
intersection.receiveVehicle(vehicle);
|
||||
|
||||
// Try to process the vehicle immediately if its light is already green
|
||||
tryProcessVehicle(vehicle, intersection);
|
||||
}
|
||||
|
||||
/**
|
||||
* Checks if a newly arrived vehicle (or a vehicle in a queue
|
||||
* that just turned green) can start crossing.
|
||||
*
|
||||
* @param vehicle The vehicle to process.
|
||||
* @param intersection The intersection where the vehicle is.
|
||||
*/
|
||||
private void tryProcessVehicle(Vehicle vehicle, Intersection intersection) { // FIXME
|
||||
// Find the direction (and light) this vehicle is queued at
|
||||
// This logic is a bit flawed: it just finds the *first* non-empty queue
|
||||
// A better approach would be to get the light from the vehicle's route
|
||||
String direction = intersection.getTrafficLights().stream()
|
||||
.filter(tl -> tl.getQueueSize() > 0)
|
||||
.map(TrafficLight::getDirection)
|
||||
.findFirst()
|
||||
.orElse(null);
|
||||
|
||||
if (direction != null) {
|
||||
TrafficLight light = intersection.getTrafficLight(direction);
|
||||
// If the light is green and it's the correct one...
|
||||
if (light != null && light.getState() == TrafficLightState.GREEN) {
|
||||
// ...remove the vehicle from the queue (if it's at the front)
|
||||
Vehicle v = light.removeVehicle();
|
||||
if (v != null) {
|
||||
// ...and schedule its crossing.
|
||||
scheduleCrossing(v, intersection);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Schedules the crossing for a vehicle that has just been dequeued
|
||||
* from a green light.
|
||||
* 1. Calculates and records the vehicle's waiting time.
|
||||
* 2. Schedules an immediate {@link EventType#CROSSING_START} event.
|
||||
*
|
||||
* @param vehicle The {@link Vehicle} that is crossing.
|
||||
* @param intersection The {@link Intersection} it is crossing.
|
||||
*/
|
||||
private void scheduleCrossing(Vehicle vehicle, Intersection intersection) {
|
||||
// Calculate time spent waiting at the red light
|
||||
double waitTime = currentTime - statisticsCollector.getArrivalTime(vehicle);
|
||||
vehicle.addWaitingTime(waitTime);
|
||||
|
||||
// Schedule crossing start event *now*
|
||||
Event crossingStart = new Event(currentTime, EventType.CROSSING_START, vehicle, intersection.getId());
|
||||
processEvent(crossingStart); // Process immediately
|
||||
}
|
||||
|
||||
/**
|
||||
* Handles {@link EventType#CROSSING_START}.
|
||||
* 1. Determines the crossing time based on vehicle type.
|
||||
* 2. Schedules a {@link EventType#CROSSING_END} event to occur
|
||||
* at {@code currentTime + crossingTime}.
|
||||
*
|
||||
* @param event The crossing start event.
|
||||
*/
|
||||
private void handleCrossingStart(Event event) {
|
||||
Vehicle vehicle = (Vehicle) event.getData();
|
||||
String intersectionId = event.getLocation();
|
||||
|
||||
double crossingTime = getCrossingTime(vehicle.getType());
|
||||
|
||||
System.out.printf("[t=%.2f] Vehicle %s started crossing at %s (duration=%.2fs)%n",
|
||||
currentTime, vehicle.getId(), intersectionId, crossingTime);
|
||||
|
||||
// Schedule the *end* of the crossing
|
||||
double endTime = currentTime + crossingTime;
|
||||
Event crossingEnd = new Event(endTime, EventType.CROSSING_END, vehicle, intersectionId);
|
||||
eventQueue.offer(crossingEnd);
|
||||
}
|
||||
|
||||
/**
|
||||
* Handles {@link EventType#CROSSING_END}.
|
||||
* 1. Updates intersection and vehicle statistics.
|
||||
* 2. Checks the vehicle's *next* destination.
|
||||
* 3. If the next destination is the exit ("S"), call
|
||||
* {@link #handleVehicleExit(Vehicle)}.
|
||||
* 4. Otherwise, schedule a {@link EventType#VEHICLE_ARRIVAL} event at the
|
||||
* *next* intersection, after some travel time.
|
||||
*
|
||||
* @param event The crossing end event.
|
||||
*/
|
||||
private void handleCrossingEnd(Event event) {
|
||||
Vehicle vehicle = (Vehicle) event.getData();
|
||||
String intersectionId = event.getLocation();
|
||||
|
||||
// Update stats
|
||||
Intersection intersection = intersections.get(intersectionId);
|
||||
if (intersection != null) {
|
||||
intersection.incrementVehiclesSent();
|
||||
}
|
||||
|
||||
double crossingTime = getCrossingTime(vehicle.getType());
|
||||
vehicle.addCrossingTime(crossingTime);
|
||||
|
||||
System.out.printf("[t=%.2f] Vehicle %s finished crossing at %s%n",
|
||||
currentTime, vehicle.getId(), intersectionId);
|
||||
|
||||
// Decide what to do next
|
||||
String nextDest = vehicle.getCurrentDestination();
|
||||
if (nextDest != null && !nextDest.equals("S")) {
|
||||
// Route to the *next* intersection
|
||||
// Travel time varies by vehicle type: tmoto = 0.5 × tcarro, tcaminhão = 4 ×
|
||||
// tmoto
|
||||
double travelTime = calculateTravelTime(vehicle.getType());
|
||||
double arrivalTime = currentTime + travelTime;
|
||||
Event arrivalEvent = new Event(arrivalTime, EventType.VEHICLE_ARRIVAL, vehicle, nextDest);
|
||||
eventQueue.offer(arrivalEvent);
|
||||
} else {
|
||||
// Reached the exit
|
||||
handleVehicleExit(vehicle);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Handles a vehicle exiting the simulation.
|
||||
* Records final statistics for the vehicle.
|
||||
*
|
||||
* @param vehicle The {@link Vehicle} that has completed its route.
|
||||
*/
|
||||
private void handleVehicleExit(Vehicle vehicle) {
|
||||
System.out.printf("[t=%.2f] Vehicle %s exited the system (wait=%.2fs, travel=%.2fs)%n",
|
||||
currentTime, vehicle.getId(),
|
||||
vehicle.getTotalWaitingTime(),
|
||||
vehicle.getTotalTravelTime(currentTime));
|
||||
|
||||
// Record the exit for final statistics calculation
|
||||
statisticsCollector.recordVehicleExit(vehicle, currentTime);
|
||||
}
|
||||
|
||||
/**
|
||||
* Handles {@link EventType#TRAFFIC_LIGHT_CHANGE}.
|
||||
* 1. Toggles the light's state (RED to GREEN or GREEN to RED).
|
||||
* 2. If the light just turned GREEN, call
|
||||
* {@link #processGreenLight(TrafficLight, Intersection)}
|
||||
* to process any waiting vehicles.
|
||||
* 3. Schedules the *next* state change for this light based on its
|
||||
* green/red time duration.
|
||||
*
|
||||
* @param event The light change event.
|
||||
*/
|
||||
private void handleTrafficLightChange(Event event) {
|
||||
TrafficLight light = (TrafficLight) event.getData();
|
||||
String intersectionId = event.getLocation();
|
||||
|
||||
// Toggle state
|
||||
TrafficLightState newState = (light.getState() == TrafficLightState.RED)
|
||||
? TrafficLightState.GREEN
|
||||
: TrafficLightState.RED;
|
||||
|
||||
light.changeState(newState);
|
||||
|
||||
System.out.printf("[t=%.2f] Traffic light %s changed to %s%n",
|
||||
currentTime, light.getId(), newState);
|
||||
|
||||
// If changed to GREEN, process waiting vehicles
|
||||
if (newState == TrafficLightState.GREEN) {
|
||||
Intersection intersection = intersections.get(intersectionId);
|
||||
if (intersection != null) {
|
||||
processGreenLight(light, intersection);
|
||||
}
|
||||
}
|
||||
|
||||
// Schedule the *next* state change for this same light
|
||||
double nextChangeDelay = (newState == TrafficLightState.GREEN)
|
||||
? light.getGreenTime()
|
||||
: light.getRedTime();
|
||||
|
||||
scheduleTrafficLightChange(light, intersectionId, nextChangeDelay);
|
||||
}
|
||||
|
||||
/**
|
||||
* Processes vehicles when a light turns green.
|
||||
* It loops as long as the light is green and there are vehicles in the queue,
|
||||
* dequeuing one vehicle at a time and scheduling its crossing.
|
||||
* * *Note*: This is a simplified model. A real simulation would
|
||||
* account for the *time* it takes each vehicle to cross, processing
|
||||
* one vehicle every {@code crossingTime} seconds. This implementation
|
||||
* processes the entire queue "instantaneously" at the moment
|
||||
* the light turns green.
|
||||
*
|
||||
* @param light The {@link TrafficLight} that just turned green.
|
||||
* @param intersection The {@link Intersection} where the light is.
|
||||
*/
|
||||
private void processGreenLight(TrafficLight light, Intersection intersection) {
|
||||
// While the light is green and vehicles are waiting...
|
||||
while (light.getState() == TrafficLightState.GREEN && light.getQueueSize() > 0) {
|
||||
Vehicle vehicle = light.removeVehicle();
|
||||
if (vehicle != null) {
|
||||
// Dequeue one vehicle and schedule its crossing
|
||||
scheduleCrossing(vehicle, intersection);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Handles {@link EventType#STATISTICS_UPDATE}.
|
||||
* Calls the {@link StatisticsCollector} to print the current
|
||||
* state of the simulation (queue sizes, averages, etc.).
|
||||
*/
|
||||
private void handleStatisticsUpdate() {
|
||||
System.out.printf("\n=== Statistics at t=%.2f ===%n", currentTime);
|
||||
statisticsCollector.printCurrentStatistics(intersections, currentTime);
|
||||
System.out.println();
|
||||
}
|
||||
|
||||
/**
|
||||
* Utility method to get the configured crossing time for a given
|
||||
* {@link VehicleType}.
|
||||
*
|
||||
* @param type The type of vehicle.
|
||||
* @return The crossing time in seconds.
|
||||
*/
|
||||
private double getCrossingTime(VehicleType type) {
|
||||
return switch (type) {
|
||||
case BIKE -> config.getBikeVehicleCrossingTime();
|
||||
case LIGHT -> config.getLightVehicleCrossingTime();
|
||||
case HEAVY -> config.getHeavyVehicleCrossingTime();
|
||||
default -> 2.0;
|
||||
}; // Default fallback
|
||||
}
|
||||
|
||||
/**
|
||||
* Prints the final summary of statistics at the end of the simulation.
|
||||
*/
|
||||
private void printFinalStatistics() {
|
||||
System.out.println("\n" + "=".repeat(60));
|
||||
System.out.println("FINAL SIMULATION STATISTICS");
|
||||
System.out.println("=".repeat(60));
|
||||
|
||||
statisticsCollector.printFinalStatistics(intersections, currentTime);
|
||||
|
||||
System.out.println("=".repeat(60));
|
||||
}
|
||||
|
||||
// --- Public Getters ---
|
||||
|
||||
/**
|
||||
* Gets the current simulation time.
|
||||
*
|
||||
* @return The time in virtual seconds.
|
||||
*/
|
||||
public double getCurrentTime() {
|
||||
return currentTime;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets a map of all intersections in the simulation.
|
||||
* Returns a copy to prevent external modification.
|
||||
*
|
||||
* @return A {@link Map} of intersection IDs to {@link Intersection} objects.
|
||||
*/
|
||||
public Map<String, Intersection> getIntersections() {
|
||||
return new HashMap<>(intersections);
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the statistics collector instance.
|
||||
*
|
||||
* @return The {@link StatisticsCollector}.
|
||||
*/
|
||||
public StatisticsCollector getStatisticsCollector() {
|
||||
return statisticsCollector;
|
||||
}
|
||||
}
|
||||
@@ -140,6 +140,16 @@ public class Intersection {
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the direction a vehicle should take to reach a given destination.
|
||||
*
|
||||
* @param destination The next destination (e.g., "Cr3", "S").
|
||||
* @return The direction (e.g., "East"), or null if no route is configured.
|
||||
*/
|
||||
public String getDirectionForDestination(String destination) {
|
||||
return routing.get(destination);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the traffic light controlling the given direction.
|
||||
*
|
||||
|
||||
@@ -12,7 +12,8 @@ import sd.model.VehicleType;
|
||||
|
||||
/**
|
||||
* Collects, manages, and reports statistics throughout the simulation.
|
||||
* * This class acts as the central bookkeeper for simulation metrics. It tracks:
|
||||
* * This class acts as the central bookkeeper for simulation metrics. It
|
||||
* tracks:
|
||||
* - Overall system statistics (total vehicles, completion time, wait time).
|
||||
* - Per-vehicle-type statistics (counts, average wait time by type).
|
||||
* - Per-intersection statistics (arrivals, departures).
|
||||
@@ -25,7 +26,8 @@ public class StatisticsCollector {
|
||||
// --- Vehicle tracking (for in-flight vehicles) ---
|
||||
|
||||
/**
|
||||
* Tracks the simulation time when a vehicle arrives at its *current* intersection.
|
||||
* Tracks the simulation time when a vehicle arrives at its *current*
|
||||
* intersection.
|
||||
* This is used later to calculate waiting time (Depart_Time - Arrive_Time).
|
||||
* Key: Vehicle ID (String)
|
||||
* Value: Arrival Time (Double)
|
||||
@@ -47,10 +49,14 @@ public class StatisticsCollector {
|
||||
/** Total number of vehicles that have reached their final destination ("S"). */
|
||||
private int totalVehiclesCompleted;
|
||||
|
||||
/** The sum of all *completed* vehicles' total travel times. Used for averaging. */
|
||||
/**
|
||||
* The sum of all *completed* vehicles' total travel times. Used for averaging.
|
||||
*/
|
||||
private double totalSystemTime;
|
||||
|
||||
/** The sum of all *completed* vehicles' total waiting times. Used for averaging. */
|
||||
/**
|
||||
* The sum of all *completed* vehicles' total waiting times. Used for averaging.
|
||||
*/
|
||||
private double totalWaitingTime;
|
||||
|
||||
// --- Per-vehicle-type statistics ---
|
||||
@@ -83,7 +89,7 @@ public class StatisticsCollector {
|
||||
* Initializes all maps and counters.
|
||||
*
|
||||
* @param config The {@link SimulationConfig} (not currently used, but
|
||||
* could be for configuration-dependent stats).
|
||||
* could be for configuration-dependent stats).
|
||||
*/
|
||||
public StatisticsCollector(SimulationConfig config) {
|
||||
this.vehicleArrivalTimes = new HashMap<>();
|
||||
@@ -105,10 +111,10 @@ public class StatisticsCollector {
|
||||
|
||||
/**
|
||||
* Records that a new vehicle has been generated.
|
||||
* This is called by the {@link sd.engine.SimulationEngine}
|
||||
* This is called by the vehicle generation component
|
||||
* during a {@code VEHICLE_GENERATION} event.
|
||||
*
|
||||
* @param vehicle The {@link Vehicle} that was just created.
|
||||
* @param vehicle The {@link Vehicle} that was just created.
|
||||
* @param currentTime The simulation time of the event.
|
||||
*/
|
||||
public void recordVehicleGeneration(Vehicle vehicle, double currentTime) {
|
||||
@@ -124,12 +130,12 @@ public class StatisticsCollector {
|
||||
|
||||
/**
|
||||
* Records that a vehicle has arrived at an intersection queue.
|
||||
* This is called by the {@link sd.engine.SimulationEngine}
|
||||
* This is called by the vehicle generation component
|
||||
* during a {@code VEHICLE_ARRIVAL} event.
|
||||
*
|
||||
* @param vehicle The {@link Vehicle} that arrived.
|
||||
* @param vehicle The {@link Vehicle} that arrived.
|
||||
* @param intersectionId The ID of the intersection it arrived at.
|
||||
* @param currentTime The simulation time of the arrival.
|
||||
* @param currentTime The simulation time of the arrival.
|
||||
*/
|
||||
public void recordVehicleArrival(Vehicle vehicle, String intersectionId, double currentTime) {
|
||||
// Store arrival time - this is the "start waiting" time
|
||||
@@ -148,10 +154,10 @@ public class StatisticsCollector {
|
||||
/**
|
||||
* Records that a vehicle has completed its route and exited the system.
|
||||
* This is where final metrics for the vehicle are aggregated.
|
||||
* This is called by the {@link sd.engine.SimulationEngine}
|
||||
* This is called by the vehicle generation component
|
||||
* when a vehicle reaches destination "S".
|
||||
*
|
||||
* @param vehicle The {@link Vehicle} that is exiting.
|
||||
* @param vehicle The {@link Vehicle} that is exiting.
|
||||
* @param currentTime The simulation time of the exit.
|
||||
*/
|
||||
public void recordVehicleExit(Vehicle vehicle, double currentTime) {
|
||||
@@ -176,7 +182,7 @@ public class StatisticsCollector {
|
||||
|
||||
/**
|
||||
* Gets the time a vehicle arrived at its *current* intersection.
|
||||
* This is used by the {@link sd.engine.SimulationEngine} to calculate
|
||||
* This is used by the intersection component to calculate
|
||||
* wait time just before the vehicle crosses.
|
||||
*
|
||||
* @param vehicle The {@link Vehicle} to check.
|
||||
@@ -188,18 +194,18 @@ public class StatisticsCollector {
|
||||
|
||||
/**
|
||||
* Prints a "snapshot" of the current simulation statistics.
|
||||
* This is called periodically by the {@link sd.engine.SimulationEngine}
|
||||
* This is called periodically by the simulation components
|
||||
* during a {@code STATISTICS_UPDATE} event.
|
||||
*
|
||||
* @param intersections A map of all intersections (to get queue data).
|
||||
* @param currentTime The current simulation time.
|
||||
* @param currentTime The current simulation time.
|
||||
*/
|
||||
public void printCurrentStatistics(Map<String, Intersection> intersections, double currentTime) {
|
||||
System.out.printf("--- Statistics at t=%.2f ---%n", currentTime);
|
||||
System.out.printf("Vehicles: Generated=%d, Completed=%d, In-System=%d%n",
|
||||
totalVehiclesGenerated,
|
||||
totalVehiclesCompleted,
|
||||
totalVehiclesGenerated - totalVehiclesCompleted);
|
||||
totalVehiclesGenerated,
|
||||
totalVehiclesCompleted,
|
||||
totalVehiclesGenerated - totalVehiclesCompleted);
|
||||
|
||||
if (totalVehiclesCompleted > 0) {
|
||||
System.out.printf("Average System Time (so far): %.2fs%n", totalSystemTime / totalVehiclesCompleted);
|
||||
@@ -212,10 +218,10 @@ public class StatisticsCollector {
|
||||
String id = entry.getKey();
|
||||
Intersection intersection = entry.getValue();
|
||||
System.out.printf(" %s: Queue=%d, Received=%d, Sent=%d%n",
|
||||
id,
|
||||
intersection.getTotalQueueSize(),
|
||||
intersection.getTotalVehiclesReceived(),
|
||||
intersection.getTotalVehiclesSent());
|
||||
id,
|
||||
intersection.getTotalQueueSize(),
|
||||
intersection.getTotalVehiclesReceived(),
|
||||
intersection.getTotalVehiclesSent());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -223,7 +229,7 @@ public class StatisticsCollector {
|
||||
* Prints the final simulation summary statistics at the end of the run.
|
||||
*
|
||||
* @param intersections A map of all intersections.
|
||||
* @param currentTime The final simulation time.
|
||||
* @param currentTime The final simulation time.
|
||||
*/
|
||||
public void printFinalStatistics(Map<String, Intersection> intersections, double currentTime) {
|
||||
System.out.println("\n=== SIMULATION SUMMARY ===");
|
||||
@@ -251,7 +257,7 @@ public class StatisticsCollector {
|
||||
// A more accurate way would be to track completed vehicle types
|
||||
double avgWait = vehicleTypeWaitTime.get(type) / count;
|
||||
System.out.printf(" %s: %d (%.1f%%), Avg Wait: %.2fs%n",
|
||||
type, count, percentage, avgWait);
|
||||
type, count, percentage, avgWait);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -269,18 +275,18 @@ public class StatisticsCollector {
|
||||
// Traffic light details
|
||||
intersection.getTrafficLights().forEach(light -> {
|
||||
System.out.printf(" Light %s: State=%s, Queue=%d, Processed=%d%n",
|
||||
light.getDirection(),
|
||||
light.getState(),
|
||||
light.getQueueSize(),
|
||||
light.getTotalVehiclesProcessed());
|
||||
light.getDirection(),
|
||||
light.getState(),
|
||||
light.getQueueSize(),
|
||||
light.getTotalVehiclesProcessed());
|
||||
});
|
||||
}
|
||||
|
||||
// System health indicators
|
||||
System.out.println("\nSYSTEM HEALTH:");
|
||||
int totalQueuedVehicles = intersections.values().stream()
|
||||
.mapToInt(Intersection::getTotalQueueSize)
|
||||
.sum();
|
||||
.mapToInt(Intersection::getTotalQueueSize)
|
||||
.sum();
|
||||
System.out.printf(" Total Queued Vehicles (at end): %d%n", totalQueuedVehicles);
|
||||
|
||||
if (totalVehiclesGenerated > 0) {
|
||||
@@ -320,10 +326,6 @@ public class StatisticsCollector {
|
||||
totalArrivals++;
|
||||
}
|
||||
|
||||
public void recordDeparture() {
|
||||
totalDepartures++;
|
||||
}
|
||||
|
||||
public int getTotalArrivals() {
|
||||
return totalArrivals;
|
||||
}
|
||||
|
||||
43
main/src/main/resources/network_config.json
Normal file
43
main/src/main/resources/network_config.json
Normal file
@@ -0,0 +1,43 @@
|
||||
{
|
||||
"intersections": [
|
||||
{
|
||||
"id": "Cr1",
|
||||
"lights": ["East", "South"],
|
||||
"routes": {
|
||||
"Cr2": "East",
|
||||
"Cr4": "South"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "Cr2",
|
||||
"lights": ["West", "East", "South"],
|
||||
"routes": {
|
||||
"Cr1": "West",
|
||||
"Cr3": "East",
|
||||
"Cr5": "South"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "Cr3",
|
||||
"lights": ["West", "South"],
|
||||
"routes": {
|
||||
"Cr2": "West",
|
||||
"S": "South"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "Cr4",
|
||||
"lights": ["East"],
|
||||
"routes": {
|
||||
"Cr5": "East"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "Cr5",
|
||||
"lights": ["East"],
|
||||
"routes": {
|
||||
"S": "East"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
@@ -47,8 +47,6 @@ simulation.arrival.fixed.interval=2.0
|
||||
# Format: trafficlight.<intersection>.<direction>.<state>=<seconds>
|
||||
|
||||
# Intersection 1 (Entry point - balanced)
|
||||
trafficlight.Cr1.North.green=20.0
|
||||
trafficlight.Cr1.North.red=40.0
|
||||
trafficlight.Cr1.South.green=20.0
|
||||
trafficlight.Cr1.South.red=40.0
|
||||
trafficlight.Cr1.East.green=20.0
|
||||
@@ -57,8 +55,6 @@ trafficlight.Cr1.West.green=20.0
|
||||
trafficlight.Cr1.West.red=40.0
|
||||
|
||||
# Intersection 2 (Main hub - shorter cycles, favor East-West)
|
||||
trafficlight.Cr2.North.green=12.0
|
||||
trafficlight.Cr2.North.red=36.0
|
||||
trafficlight.Cr2.South.green=12.0
|
||||
trafficlight.Cr2.South.red=36.0
|
||||
trafficlight.Cr2.East.green=18.0
|
||||
@@ -67,8 +63,6 @@ trafficlight.Cr2.West.green=18.0
|
||||
trafficlight.Cr2.West.red=30.0
|
||||
|
||||
# Intersection 3 (Path to exit - favor East)
|
||||
trafficlight.Cr3.North.green=15.0
|
||||
trafficlight.Cr3.North.red=30.0
|
||||
trafficlight.Cr3.South.green=15.0
|
||||
trafficlight.Cr3.South.red=30.0
|
||||
trafficlight.Cr3.East.green=20.0
|
||||
@@ -77,8 +71,6 @@ trafficlight.Cr3.West.green=15.0
|
||||
trafficlight.Cr3.West.red=30.0
|
||||
|
||||
# Intersection 4 (Favor East toward Cr5)
|
||||
trafficlight.Cr4.North.green=15.0
|
||||
trafficlight.Cr4.North.red=30.0
|
||||
trafficlight.Cr4.South.green=15.0
|
||||
trafficlight.Cr4.South.red=30.0
|
||||
trafficlight.Cr4.East.green=20.0
|
||||
@@ -87,8 +79,6 @@ trafficlight.Cr4.West.green=15.0
|
||||
trafficlight.Cr4.West.red=30.0
|
||||
|
||||
# Intersection 5 (Near exit - favor East)
|
||||
trafficlight.Cr5.North.green=15.0
|
||||
trafficlight.Cr5.North.red=30.0
|
||||
trafficlight.Cr5.South.green=15.0
|
||||
trafficlight.Cr5.South.red=30.0
|
||||
trafficlight.Cr5.East.green=22.0
|
||||
|
||||
@@ -6,7 +6,6 @@ import static org.junit.jupiter.api.Assertions.assertTrue;
|
||||
import org.junit.jupiter.api.Test;
|
||||
|
||||
import sd.config.SimulationConfig;
|
||||
import sd.engine.SimulationEngine;
|
||||
import sd.model.Event;
|
||||
import sd.model.EventType;
|
||||
import sd.model.Intersection;
|
||||
@@ -29,7 +28,7 @@ class SimulationTest {
|
||||
assertEquals(60.0, config.getSimulationDuration());
|
||||
assertEquals("POISSON", config.getArrivalModel());
|
||||
assertEquals(0.5, config.getArrivalRate());
|
||||
assertEquals(10.0, config.getStatisticsUpdateInterval());
|
||||
assertEquals(1.0, config.getStatisticsUpdateInterval());
|
||||
}
|
||||
|
||||
@Test
|
||||
@@ -64,7 +63,7 @@ class SimulationTest {
|
||||
intersection.addTrafficLight(light);
|
||||
|
||||
Vehicle v1 = new Vehicle("V1", VehicleType.LIGHT, 0.0,
|
||||
java.util.Arrays.asList("TestCr", "S"));
|
||||
java.util.Arrays.asList("TestCr", "S"));
|
||||
|
||||
intersection.configureRoute("S", "North");
|
||||
|
||||
@@ -90,21 +89,8 @@ class SimulationTest {
|
||||
assertEquals(TrafficLightState.RED, light.getState());
|
||||
}
|
||||
|
||||
@Test
|
||||
void testSimulationEngineInitialization() throws IOException {
|
||||
SimulationConfig config = new SimulationConfig("src/main/resources/simulation.properties");
|
||||
SimulationEngine engine = new SimulationEngine(config);
|
||||
|
||||
engine.initialize();
|
||||
|
||||
assertNotNull(engine.getIntersections());
|
||||
assertEquals(5, engine.getIntersections().size());
|
||||
|
||||
// Check that intersections have traffic lights
|
||||
for (Intersection intersection : engine.getIntersections().values()) {
|
||||
assertEquals(3, intersection.getTrafficLights().size()); // North, South, East, West
|
||||
}
|
||||
}
|
||||
// Removed testSimulationEngineInitialization as SimulationEngine has been
|
||||
// removed.
|
||||
|
||||
@Test
|
||||
void testStatisticsCollector() throws IOException {
|
||||
@@ -112,7 +98,7 @@ class SimulationTest {
|
||||
StatisticsCollector collector = new StatisticsCollector(config);
|
||||
|
||||
Vehicle v1 = new Vehicle("V1", VehicleType.LIGHT, 0.0,
|
||||
java.util.Arrays.asList("Cr1", "Cr2", "S"));
|
||||
java.util.Arrays.asList("Cr1", "Cr2", "S"));
|
||||
|
||||
collector.recordVehicleGeneration(v1, 0.0);
|
||||
assertEquals(1, collector.getTotalVehiclesGenerated());
|
||||
|
||||
Reference in New Issue
Block a user