32 Commits

Author SHA1 Message Date
173d9e54ce test: Reduce traffic light coordination test monitoring duration from 60s to 10s 2025-11-23 23:06:08 +00:00
5202032471 feat: Dynamically set simulation log file path using OS temporary directory and remove isSimulationRunning method. 2025-11-23 23:03:07 +00:00
46d148c9d5 Allow manual trigger for publish-release job 2025-11-23 22:23:13 +00:00
0d85d010bf Sync CI with main branch 2025-11-23 22:14:10 +00:00
906e958729 feat: Introduce Launcher class as the application entry point and update pom.xml to use it. 2025-11-23 21:53:52 +00:00
19709f0d7a feat: update main class to sd.dashboard.DashboardUI in pom.xml configurations. 2025-11-23 21:29:38 +00:00
13fa2f877d refactor: improve traffic light queue processing, add graceful intersection shutdown, and remove obsolete event and serialization classes. 2025-11-23 21:23:33 +00:00
96c5680f41 moved start to dashboard + fixed holding queue - looped sleep might be fine in this case + better customization via CSS file 2025-11-22 23:52:51 +00:00
d74517a27b starting the codebase cleanup for final delivery- single process prototype removal 2025-11-22 22:52:01 +00:00
ce7f642246 slight sim change and engine code fomat 2025-11-22 21:45:16 +00:00
8f97aab836 Merge pull request #34 from davidalves04/dev
testing
2025-11-22 21:43:33 +00:00
David Alves
86c0c4b5b3 Add configurable travel times by vehicle type
@0x1eo can u check this pls
2025-11-22 16:18:02 +00:00
6fdcf376b2 i might kms 2025-11-22 00:13:19 +00:00
David Alves
ecb70fa6a2 Merge pull request #33 from davidalves04/17-create-dashboardserver-process
Dashboard Server Implementation
2025-11-19 19:16:50 +00:00
06f079ce5b fix intersections starting independently with no coordination 2025-11-18 14:29:11 +00:00
72893f87ae added dashboard server and built an example implementation for the message protocol 2025-11-14 02:01:51 +00:00
6b94d727e2 shutdown and teardown fixes + incoming connection handler 2025-11-11 17:28:44 +00:00
84cba39597 bullshit fixes 2025-11-06 20:31:59 +00:00
5dc1b40c88 Merge pull request #32 from davidalves04/14-create-trafficlightthread-class
14 create trafficlightthread class
2025-11-06 13:53:12 +00:00
3117bdf332 Merge branch 'dev' into 14-create-trafficlightthread-class 2025-11-06 13:53:01 +00:00
1140c3ca48 Merge pull request #30 from davidalves04/13-create-exit-node-process
13 create exit node process
2025-11-06 13:49:21 +00:00
Gaa56
484cba1eee Update TrafficLightThread 2025-11-05 13:21:10 +00:00
Gaa56
0e5526c3f6 Merge pull request #31 from davidalves04/dev
Dev
2025-11-05 12:37:48 +00:00
David Alves
cf88db4297 Add traffic light coordination and tests
Sorry to add this on this branch ahah
2025-11-05 12:09:32 +00:00
David Alves
0960a7a141 Add ExitNodeProcess and unit tests 2025-11-05 11:54:34 +00:00
David Alves
3b4f968a59 Merge pull request #29 from davidalves04/12-implement-coordinatorgenerator-process
Coordinator Process Implementation
2025-11-03 00:02:56 +00:00
0c256ad6f5 Fix Intersection Destination - Doubled Advance 2025-11-02 23:56:54 +00:00
340e436063 Merge branch 'dev' into 12-implement-coordinatorgenerator-process 2025-11-02 23:21:36 +00:00
1684a6713e Implementation of the Coordinator Process 2025-11-02 23:17:15 +00:00
22a7081ade Merge pull request #28 from davidalves04/10-create-network-communication-classes
Fix Serialization
2025-11-02 22:39:38 +00:00
Gaa56
4710c96450 Create TrafficLightThread Class 2025-10-30 18:06:02 +00:00
f9644bd18c Merge pull request #26 from davidalves04/dev
#12 Req.
2025-10-30 16:09:04 +00:00
41 changed files with 5762 additions and 2020 deletions

View File

@@ -1,8 +1,9 @@
name: Java CI with Maven name: Java CI with Maven
on: on:
workflow_dispatch:
push: push:
branches: [ "main" ] branches: [ "dev", "cleanup" ]
tags: tags:
- 'v*.*.*' - 'v*.*.*'
pull_request: pull_request:
@@ -11,51 +12,93 @@ on:
jobs: jobs:
build: build:
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
- name: Set up JDK 17 - name: Set up JDK 17
uses: actions/setup-java@v4 uses: actions/setup-java@v4
with: with:
java-version: '17' java-version: '17'
distribution: 'temurin' distribution: 'temurin'
cache: maven cache: maven
- name: Build with Maven - name: Build with Maven
run: mvn -B package run: mvn -B package
working-directory: main working-directory: main
- name: Upload built JAR - name: Upload built JAR
uses: actions/upload-artifact@v4 uses: actions/upload-artifact@v4
with: with:
name: package name: package
path: main/target/*.jar path: main/target/*.jar
- name: Generate dependency graph - name: Generate dependency graph
run: mvn -B -f main/pom.xml com.github.ferstl:depgraph-maven-plugin:4.0.1:graph run: mvn -B -f main/pom.xml com.github.ferstl:depgraph-maven-plugin:4.0.1:graph
- name: Upload dependency graph artifact - name: Upload dependency graph artifact
uses: actions/upload-artifact@v4 uses: actions/upload-artifact@v4
with: with:
name: dependency-graph name: dependency-graph
path: main/target/** path: main/target/**
build-windows:
runs-on: windows-latest
steps:
- uses: actions/checkout@v4
- name: Set up JDK 17
uses: actions/setup-java@v4
with:
java-version: '17'
distribution: 'temurin'
cache: maven
- name: Build with Maven (Skip Tests)
run: mvn -B package -DskipTests
working-directory: main
- name: Create JPackage App Image
shell: pwsh
run: |
New-Item -ItemType Directory -Force -Path "dist"
jpackage --name "DTSS" `
--input main/target `
--main-jar main-1.0-SNAPSHOT.jar `
--dest dist `
--type app-image `
--win-console
- name: Inject java.exe
shell: pwsh
run: |
$javaPath = (Get-Command java).Source
Copy-Item -Path $javaPath -Destination "dist/DTSS/runtime/bin/"
- name: Zip Windows Release
shell: pwsh
run: |
Compress-Archive -Path "dist/DTSS" -DestinationPath "dist/DTSS-Windows.zip"
- name: Upload Windows Artifact
uses: actions/upload-artifact@v4
with:
name: windows-package
path: dist/DTSS-Windows.zip
publish-release: publish-release:
runs-on: ubuntu-latest runs-on: ubuntu-latest
needs: [build] needs: [build, build-windows]
if: startsWith(github.ref, 'refs/tags/') if: startsWith(github.ref, 'refs/tags/') || github.event_name == 'workflow_dispatch'
permissions: permissions:
contents: write contents: write
steps: steps:
- name: Download built JAR - name: Download Linux JAR
uses: actions/download-artifact@v4 uses: actions/download-artifact@v4
with: with:
name: package name: package
path: main/target/ path: main/target/
- name: Download Windows Zip
uses: actions/download-artifact@v4
with:
name: windows-package
path: windows-dist/
- name: Create GitHub Release - name: Create GitHub Release
uses: softprops/action-gh-release@v2 uses: softprops/action-gh-release@v2
with: with:
files: main/target/*.jar tag_name: ${{ startsWith(github.ref, 'refs/tags/') && github.ref_name || 'snapshot-build' }}
name: ${{ startsWith(github.ref, 'refs/tags/') && github.ref_name || 'Manual Snapshot Build' }}
draft: false
prerelease: true
make_latest: false
files: |
main/target/*.jar
windows-dist/*.zip

3
.gitignore vendored
View File

@@ -48,3 +48,6 @@ build/
# Other # Other
*.swp *.swp
*.pdf *.pdf
# JAR built pom file
dependency-reduced-pom.xml

View File

@@ -29,6 +29,18 @@
<artifactId>gson</artifactId> <artifactId>gson</artifactId>
<version>2.10.1</version> <version>2.10.1</version>
</dependency> </dependency>
<!-- JavaFX for UI -->
<dependency>
<groupId>org.openjfx</groupId>
<artifactId>javafx-controls</artifactId>
<version>17.0.2</version>
</dependency>
<dependency>
<groupId>org.openjfx</groupId>
<artifactId>javafx-fxml</artifactId>
<version>17.0.2</version>
</dependency>
</dependencies> </dependencies>
<build> <build>
@@ -39,7 +51,16 @@
<artifactId>exec-maven-plugin</artifactId> <artifactId>exec-maven-plugin</artifactId>
<version>3.1.0</version> <version>3.1.0</version>
<configuration> <configuration>
<mainClass>sd.Entry</mainClass> <mainClass>sd.dashboard.Launcher</mainClass>
</configuration>
</plugin>
<!-- JavaFX Maven Plugin -->
<plugin>
<groupId>org.openjfx</groupId>
<artifactId>javafx-maven-plugin</artifactId>
<version>0.0.8</version>
<configuration>
<mainClass>sd.dashboard.Launcher</mainClass>
</configuration> </configuration>
</plugin> </plugin>
<plugin> <plugin>
@@ -55,7 +76,7 @@
<configuration> <configuration>
<transformers> <transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer"> <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass>sd.Entry</mainClass> <mainClass>sd.dashboard.Launcher</mainClass>
</transformer> </transformer>
</transformers> </transformers>
</configuration> </configuration>

View File

@@ -1,94 +0,0 @@
package sd;
import java.io.IOException;
import sd.config.SimulationConfig;
import sd.engine.SimulationEngine;
/**
* Main entry point for the traffic simulation.
* * This class is responsible for loading the simulation configuration,
* initializing the {@link SimulationEngine}, and starting the simulation run.
* It also prints initial configuration details and final execution time.
*/
public class Entry {
/**
* The default path to the simulation configuration file.
* This is used if no command-line arguments are provided.
*/
private static final String DEFAULT_CONFIG_FILE = "src/main/resources/simulation.properties";
/**
* The main method to start the simulation.
* * @param args Command-line arguments. If provided, args[0] is expected
* to be the path to a custom configuration file.
*/
public static void main(String[] args) {
System.out.println("=".repeat(60));
System.out.println("TRAFFIC SIMULATION - DISCRETE EVENT SIMULATOR");
System.out.println("=".repeat(60));
try {
// 1. Load configuration
String configFile = args.length > 0 ? args[0] : DEFAULT_CONFIG_FILE;
System.out.println("Loading configuration from: " + configFile);
SimulationConfig config = new SimulationConfig(configFile);
// 2. Display configuration
displayConfiguration(config);
// 3. Create and initialize simulation engine
SimulationEngine engine = new SimulationEngine(config);
engine.initialize();
System.out.println("\n" + "=".repeat(60));
// 4. Run simulation
long startTime = System.currentTimeMillis();
engine.run();
long endTime = System.currentTimeMillis();
// 5. Display execution time
double executionTime = (endTime - startTime) / 1000.0;
System.out.println("\nExecution time: " + String.format("%.2f", executionTime) + " seconds");
System.out.println("=".repeat(60));
} catch (IOException e) {
System.err.println("Error loading configuration: " + e.getMessage());
e.printStackTrace();
} catch (Exception e) {
System.err.println("Error during simulation: " + e.getMessage());
e.printStackTrace();
}
}
/**
* Displays the main configuration parameters to the console.
* This provides a summary of the simulation settings before it starts.
*
* @param config The {@link SimulationConfig} object containing the loaded settings.
*/
private static void displayConfiguration(SimulationConfig config) {
System.out.println("\nSIMULATION CONFIGURATION:");
System.out.println(" Duration: " + config.getSimulationDuration() + " seconds");
System.out.println(" Arrival Model: " + config.getArrivalModel());
if ("POISSON".equalsIgnoreCase(config.getArrivalModel())) {
System.out.println(" Arrival Rate (λ): " + config.getArrivalRate() + " vehicles/second");
} else {
System.out.println(" Fixed Interval: " + config.getFixedArrivalInterval() + " seconds");
}
System.out.println(" Statistics Update Interval: " + config.getStatisticsUpdateInterval() + " seconds");
System.out.println("\nVEHICLE TYPES:");
System.out.println(" Bike: " + (config.getBikeVehicleProbability() * 100) + "% " +
"(crossing time: " + config.getBikeVehicleCrossingTime() + "s)");
System.out.println(" Light: " + (config.getLightVehicleProbability() * 100) + "% " +
"(crossing time: " + config.getLightVehicleCrossingTime() + "s)");
System.out.println(" Heavy: " + (config.getHeavyVehicleProbability() * 100) + "% " +
"(crossing time: " + config.getHeavyVehicleCrossingTime() + "s)");
}
}

View File

@@ -0,0 +1,426 @@
package sd;
import java.io.IOException;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
import sd.config.SimulationConfig;
import sd.coordinator.SocketClient;
import sd.dashboard.StatsUpdatePayload;
import sd.model.Message;
import sd.model.MessageType;
import sd.model.Vehicle;
import sd.model.VehicleType;
import sd.protocol.MessageProtocol;
import sd.protocol.SocketConnection;
/**
* Processo responsável pelo nó de saída do sistema de simulação de tráfego
* distribuído.
*
* Este processo representa o ponto final ("S") onde os veículos completam as
* suas rotas.
* As suas principais responsabilidades são:
* - Receber veículos que terminam a sua rota vindos das interseções
* - Calcular e agregar estatísticas finais dos veículos
* - Enviar estatísticas periódicas para o dashboard
* - Gerar relatórios finais ao terminar a simulação
*/
public class ExitNodeProcess {
private final SimulationConfig config;
private ServerSocket serverSocket;
private final ExecutorService connectionHandlerPool;
/**
* Flag para controlar a execução do processo (volatile para visibilidade entre
* threads)
*/
private volatile boolean running;
/** Simulation start time (milliseconds) to calculate relative times */
private long simulationStartMillis;
/** Counter de veículos que completaram a rota */
private int totalVehiclesReceived;
/** Soma dos tempos no sistema de todos os veículos */
private double totalSystemTime;
/** Soma dos tempos de espera de todos os veículos */
private double totalWaitingTime;
/** Soma dos tempos de travessia de todos os veículos */
private double totalCrossingTime;
/** Contagem de veículos por tipo */
private final Map<VehicleType, Integer> vehicleTypeCount;
/** Tempo total de espera acumulado por tipo de veículo */
private final Map<VehicleType, Double> vehicleTypeWaitTime;
/** Socket para comunicação com o dashboard */
private SocketClient dashboardClient;
/**
* Método para iniciar o processo
*
* @param args Argumentos da linha de comandos. Se fornecido, args[0] deve ser
* o caminho para um ficheiro de configuração personalizado.
*/
public static void main(String[] args) {
System.out.println("=".repeat(60));
System.out.println("EXIT NODE PROCESS");
System.out.println("=".repeat(60));
try {
String configFile = args.length > 0 ? args[0] : "src/main/resources/simulation.properties";
System.out.println("Loading configuration from: " + configFile);
SimulationConfig config = new SimulationConfig(configFile);
ExitNodeProcess exitNode = new ExitNodeProcess(config);
System.out.println("\n" + "=".repeat(60));
exitNode.initialize();
System.out.println("\n" + "=".repeat(60));
exitNode.start();
} catch (IOException e) {
System.err.println("Failed to start exit node: " + e.getMessage());
System.exit(1);
} catch (Exception e) {
System.err.println("Exit node error: " + e.getMessage());
System.exit(1);
}
}
/**
* Constrói um novo processo de nó de saída.
*
* Inicializa todas as estruturas de dados necessárias para recolher
* estatísticas
* e configura o pool de threads para processar as ligações concorrentes.
*
* @param config Configuração da simulação contendo portas e endereços dos
* serviços
*/
public ExitNodeProcess(SimulationConfig config) {
this.config = config;
this.connectionHandlerPool = Executors.newCachedThreadPool();
this.running = false;
this.totalVehiclesReceived = 0;
this.totalSystemTime = 0.0;
this.totalWaitingTime = 0.0;
this.totalCrossingTime = 0.0;
this.vehicleTypeCount = new HashMap<>();
this.vehicleTypeWaitTime = new HashMap<>();
// Inicializa os counters para cada tipo de veículo
for (VehicleType type : VehicleType.values()) {
vehicleTypeCount.put(type, 0);
vehicleTypeWaitTime.put(type, 0.0);
}
System.out.println("Exit node initialized");
System.out.println(" - Exit port: " + config.getExitPort());
System.out.println(" - Dashboard: " + config.getDashboardHost() + ":" + config.getDashboardPort());
}
/**
* Inicializa o processo de ligação ao dashboard.
*
* Tenta conectar-se ao dashboard. Se a ligação falhar, o processo
* continua a funcionar normalmente, mas sem enviar estatísticas.
*
*/
public void initialize() {
System.out.println("Connecting to dashboard...");
try {
String host = config.getDashboardHost();
int port = config.getDashboardPort();
dashboardClient = new SocketClient("Dashboard", host, port);
dashboardClient.connect();
System.out.println("Successfully connected to dashboard");
} catch (IOException e) {
System.err.println("WARNING: Failed to connect to dashboard: " + e.getMessage());
System.err.println("Exit node will continue without dashboard connection");
}
}
/**
* Inicia o socket e começa a aceitar ligações.
*
* Este é o loop principal do processo que:
* 1. Cria um socket na porta definida
* 2. Aguarda pelas ligações das interseções
* 3. Delega cada ligação a uma thread da pool para processamento assíncrono
*
* @throws IOException Se o socket não puder ser criado ou houver erro na
* aceitação
*/
public void start() throws IOException {
int port = config.getExitPort();
serverSocket = new ServerSocket(port);
running = true;
simulationStartMillis = System.currentTimeMillis();
System.out.println("Exit node started on port " + port);
System.out.println("Waiting for vehicles...\\n");
while (running) {
try {
Socket clientSocket = serverSocket.accept();
connectionHandlerPool.submit(() -> handleIncomingConnection(clientSocket));
} catch (IOException e) {
if (running) {
System.err.println("Error accepting connection: " + e.getMessage());
}
}
}
}
/**
* Processa uma ligação recebida de uma interseção.
*
* Mantém a ligação aberta e processa continuamente mensagens do tipo
* VEHICLE_TRANSFER. Cada mensagem representa um veículo que chegou ao nó de
* saída.
*
* @param clientSocket Socket da ligação estabelecida com a interseção
*/
private void handleIncomingConnection(Socket clientSocket) {
String clientAddress = clientSocket.getInetAddress().getHostAddress();
System.out.println("New connection accepted from " + clientAddress);
try (SocketConnection connection = new SocketConnection(clientSocket)) {
while (running && connection.isConnected()) {
try {
System.out.println("[Exit] Waiting for message from " + clientAddress);
MessageProtocol message = connection.receiveMessage();
System.out.println("[Exit] Received message type: " + message.getType() +
" from " + message.getSourceNode());
if (message.getType() == MessageType.SIMULATION_START) {
// Coordinator sends start time - use it instead of our local start
simulationStartMillis = ((Number) message.getPayload()).longValue();
System.out.println("[Exit] Simulation start time synchronized");
} else if (message.getType() == MessageType.VEHICLE_TRANSFER) {
Object payload = message.getPayload();
System.out.println("[Exit] Payload type: " + payload.getClass().getName());
// Handle Gson LinkedHashMap
Vehicle vehicle;
if (payload instanceof com.google.gson.internal.LinkedTreeMap ||
payload instanceof java.util.LinkedHashMap) {
String json = new com.google.gson.Gson().toJson(payload);
vehicle = new com.google.gson.Gson().fromJson(json, Vehicle.class);
} else {
vehicle = (Vehicle) payload;
}
processExitingVehicle(vehicle);
}
} catch (ClassNotFoundException e) {
System.err.println("[Exit] Unknown message type: " + e.getMessage());
e.printStackTrace();
} catch (Exception e) {
System.err.println("[Exit] Error processing message: " + e.getMessage());
e.printStackTrace();
}
}
System.out.println("[Exit] Connection closed from " + clientAddress);
} catch (IOException e) {
if (running) {
System.err.println("[Exit] Connection error from " + clientAddress + ": " + e.getMessage());
e.printStackTrace();
}
}
}
/**
* Processa um veículo que chegou ao nó de saída.
*
* Método sincronizado para garantir thread-safety ao atualizar as estatísticas.
* Calcula as métricas finais do veículo e atualiza:
* - Counters globais;
* - Estatísticas por tipo de veículo;
* - Faz update ao dashboard a cada 10 veículos.
*
* @param vehicle Veículo que completou a sua rota
*/
private synchronized void processExitingVehicle(Vehicle vehicle) {
totalVehiclesReceived++;
// Calculate relative simulation time (seconds since simulation start)
double currentSimTime = (System.currentTimeMillis() - simulationStartMillis) / 1000.0;
// System time = time vehicle spent in system (current time - entry time)
double systemTime = currentSimTime - vehicle.getEntryTime();
double waitTime = vehicle.getTotalWaitingTime();
double crossingTime = vehicle.getTotalCrossingTime();
// Store times in seconds, will be converted to ms when sending to dashboard
totalSystemTime += systemTime;
totalWaitingTime += waitTime;
totalCrossingTime += crossingTime;
VehicleType type = vehicle.getType();
vehicleTypeCount.put(type, vehicleTypeCount.get(type) + 1);
vehicleTypeWaitTime.put(type, vehicleTypeWaitTime.get(type) + waitTime);
System.out.printf("[Exit] Vehicle %s completed (type=%s, system_time=%.2fs, wait=%.2fs, crossing=%.2fs)%n",
vehicle.getId(), vehicle.getType(), systemTime, waitTime, crossingTime);
// Send stats after every vehicle to ensure dashboard updates quickly
sendStatsToDashboard();
}
/**
* Envia as estatísticas para o dashboard.
*
* Prepara e envia uma mensagem STATS_UPDATE com:
* - O total de veículos processados;
* - A média dos tempos (sistema, espera, travessia);
* - As contagens e médias por cada tipo de veículo.
*
*/
private void sendStatsToDashboard() {
if (dashboardClient == null || !dashboardClient.isConnected()) {
return;
}
try {
// Create stats payload
StatsUpdatePayload payload = new StatsUpdatePayload();
// Set global stats - convert seconds to milliseconds
payload.setTotalVehiclesCompleted(totalVehiclesReceived);
payload.setTotalSystemTime((long) (totalSystemTime * 1000.0)); // s -> ms
payload.setTotalWaitingTime((long) (totalWaitingTime * 1000.0)); // s -> ms
// Set intersection-like stats so it shows up correctly in the dashboard table
payload.setIntersectionArrivals(totalVehiclesReceived);
payload.setIntersectionDepartures(totalVehiclesReceived);
payload.setIntersectionQueueSize(0);
// Set vehicle type stats
Map<VehicleType, Integer> typeCounts = new HashMap<>();
Map<VehicleType, Long> typeWaitTimes = new HashMap<>();
for (VehicleType type : VehicleType.values()) {
typeCounts.put(type, vehicleTypeCount.get(type));
typeWaitTimes.put(type, (long) (vehicleTypeWaitTime.get(type) * 1000.0)); // s -> ms
}
payload.setVehicleTypeCounts(typeCounts);
payload.setVehicleTypeWaitTimes(typeWaitTimes);
// Send message
Message message = new Message(
MessageType.STATS_UPDATE,
"ExitNode",
"Dashboard",
payload);
dashboardClient.send(message);
double avgWait = totalVehiclesReceived > 0 ? totalWaitingTime / totalVehiclesReceived : 0.0;
System.out.printf("[Exit] Sent stats to dashboard (total=%d, avg_wait=%.2fs)%n",
totalVehiclesReceived, avgWait);
} catch (Exception e) {
System.err.println("[Exit] Failed to send stats to dashboard: " + e.getMessage());
}
}
/**
* Termina o processo
*
* Executa a seguinte sequência:
* Imprime as estatísticas finais no terminal;
* Envia a última atualização de estatísticas ao dashboard;
* Fecha o socket;
* Aguarda pela finalização das threads;
* Fecha a ligação com o dashboard;
*/
public void shutdown() {
System.out.println("\n[Exit] Shutting down...");
running = false;
printFinalStatistics();
sendStatsToDashboard();
try {
if (serverSocket != null && !serverSocket.isClosed()) {
serverSocket.close();
}
} catch (IOException e) {
System.err.println("Error closing server socket: " + e.getMessage());
}
connectionHandlerPool.shutdown();
try {
if (!connectionHandlerPool.awaitTermination(5, TimeUnit.SECONDS)) {
connectionHandlerPool.shutdownNow();
}
} catch (InterruptedException e) {
connectionHandlerPool.shutdownNow();
}
if (dashboardClient != null) {
dashboardClient.close();
}
System.out.println("[Exit] Shutdown complete.");
System.out.println("=".repeat(60));
}
/**
* Imprime as estatísticas finais detalhadas no terminal
*
* Gera um relatório com:
* Total de veículos que completaram a rota;
* Médias de tempo no sistema, espera e travessia;
* Distribuição e médias pelo tipo de veículo (BIKE, LIGHT, HEAVY);
*
* Este método é chamado durante o shutdown para fornecer um resumo
* da simulação antes de terminar o processo.
*/
private void printFinalStatistics() {
System.out.println("\n=== EXIT NODE STATISTICS ===");
System.out.printf("Total Vehicles Completed: %d%n", totalVehiclesReceived);
if (totalVehiclesReceived > 0) {
System.out.printf("%nAVERAGE METRICS:%n");
System.out.printf(" System Time: %.2f seconds%n", totalSystemTime / totalVehiclesReceived);
System.out.printf(" Waiting Time: %.2f seconds%n", totalWaitingTime / totalVehiclesReceived);
System.out.printf(" Crossing Time: %.2f seconds%n", totalCrossingTime / totalVehiclesReceived);
}
System.out.println("\nVEHICLE TYPE DISTRIBUTION:");
for (VehicleType type : VehicleType.values()) {
int count = vehicleTypeCount.get(type);
if (count > 0) {
double percentage = (count * 100.0) / totalVehiclesReceived;
double avgWait = vehicleTypeWaitTime.get(type) / count;
System.out.printf(" %s: %d (%.1f%%), Avg Wait: %.2fs%n",
type, count, percentage, avgWait);
}
}
}
}

View File

@@ -4,23 +4,32 @@ import java.io.IOException;
import java.net.ServerSocket; import java.net.ServerSocket;
import java.net.Socket; import java.net.Socket;
import java.util.HashMap; import java.util.HashMap;
import java.util.List;
import java.util.Map; import java.util.Map;
import java.util.concurrent.ExecutorService; import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors; import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit; import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
import sd.config.SimulationConfig; import sd.config.SimulationConfig;
import sd.coordinator.SocketClient;
import sd.dashboard.StatsUpdatePayload;
import sd.engine.TrafficLightThread;
import sd.model.Intersection; import sd.model.Intersection;
import sd.model.Message;
import sd.model.MessageType; import sd.model.MessageType;
import sd.model.TrafficLight; import sd.model.TrafficLight;
import sd.model.TrafficLightState;
import sd.model.Vehicle; import sd.model.Vehicle;
import sd.protocol.MessageProtocol; import sd.protocol.MessageProtocol;
import sd.protocol.SocketConnection; import sd.protocol.SocketConnection;
import sd.serialization.SerializationException;
/** /**
* Main class for an Intersection Process in the distributed traffic simulation. * Main class for an Intersection Process in the distributed traffic simulation.
* * Each IntersectionProcess runs as an independent Java application (JVM instance) * * Each IntersectionProcess runs as an independent Java application (JVM
* instance)
* representing one of the five intersections (Cr1-Cr5) in the network. * representing one of the five intersections (Cr1-Cr5) in the network.
*/ */
public class IntersectionProcess { public class IntersectionProcess {
@@ -39,8 +48,28 @@ public class IntersectionProcess {
private final ExecutorService trafficLightPool; private final ExecutorService trafficLightPool;
private volatile boolean running; //Quando uma thread escreve um valor volatile, todas as outras private ScheduledExecutorService statsExecutor;
//threads veem a mudança imediatamente.
private volatile boolean running; // Quando uma thread escreve um valor volatile, todas as outras
// threads veem a mudança imediatamente.
// Traffic Light Coordination
/**
* Lock to ensure mutual exclusion between traffic lights.
* Only one traffic light can be green at any given time within this
* intersection.
*/
private final Lock trafficCoordinationLock;
/**
* Tracks which direction currently has the green light.
* null means no direction is currently green (all are red).
*/
private volatile String currentGreenDirection;
private SocketClient dashboardClient;
private volatile int totalArrivals = 0;
private volatile int totalDepartures = 0;
/** /**
* Constructs a new IntersectionProcess. * Constructs a new IntersectionProcess.
@@ -56,13 +85,45 @@ public class IntersectionProcess {
this.outgoingConnections = new HashMap<>(); this.outgoingConnections = new HashMap<>();
this.connectionHandlerPool = Executors.newCachedThreadPool(); this.connectionHandlerPool = Executors.newCachedThreadPool();
this.trafficLightPool = Executors.newFixedThreadPool(4); // Max 4 directions this.trafficLightPool = Executors.newFixedThreadPool(4); // Max 4 directions
this.statsExecutor = Executors.newSingleThreadScheduledExecutor();
this.running = false; this.running = false;
this.trafficCoordinationLock = new ReentrantLock(true); // Fair lock to prevent starvation
this.currentGreenDirection = null;
System.out.println("=".repeat(60)); System.out.println("=".repeat(60));
System.out.println("INTERSECTION PROCESS: " + intersectionId); System.out.println("INTERSECTION PROCESS: " + intersectionId);
System.out.println("=".repeat(60)); System.out.println("=".repeat(60));
} }
// Main entry point for running an intersection process
public static void main(String[] args) {
if (args.length < 1) {
System.err.println("Usage: java IntersectionProcess <intersectionId> [configFile]");
System.err.println("Example: java IntersectionProcess Cr1");
System.exit(1);
}
String intersectionId = args[0];
String configFile = args.length > 1 ? args[1] : "src/main/resources/simulation.properties";
try {
IntersectionProcess process = new IntersectionProcess(intersectionId, configFile);
process.initialize();
process.start();
// Add shutdown hook
Runtime.getRuntime().addShutdownHook(new Thread(() -> {
System.out.println("\nShutdown signal received...");
process.shutdown();
}));
} catch (IOException e) {
System.err.println("Failed to start intersection process: " + e.getMessage());
e.printStackTrace();
System.exit(1);
}
}
public void initialize() { public void initialize() {
System.out.println("\n[" + intersectionId + "] Initializing intersection..."); System.out.println("\n[" + intersectionId + "] Initializing intersection...");
@@ -70,36 +131,50 @@ public class IntersectionProcess {
configureRouting(); configureRouting();
startTrafficLights(); connectToDashboard();
System.out.println("[" + intersectionId + "] Initialization complete."); System.out.println("[" + intersectionId + "] Initialization complete.");
} }
/** /**
* Creates traffic lights for this intersection based on its physical connections. * Establishes connection to the dashboard server for statistics reporting.
*/
private void connectToDashboard() {
try {
String dashboardHost = config.getDashboardHost();
int dashboardPort = config.getDashboardPort();
System.out.println("[" + intersectionId + "] Connecting to dashboard at " +
dashboardHost + ":" + dashboardPort + "...");
dashboardClient = new SocketClient(intersectionId, dashboardHost, dashboardPort);
dashboardClient.connect();
System.out.println("[" + intersectionId + "] Connected to dashboard.");
} catch (IOException e) {
System.err.println("[" + intersectionId + "] Failed to connect to dashboard: " +
e.getMessage());
System.err.println("[" + intersectionId + "] Will continue without dashboard reporting.");
dashboardClient = null;
}
}
/**
* Creates traffic lights for this intersection based on its physical
* connections.
* Each intersection has different number and directions of traffic lights * Each intersection has different number and directions of traffic lights
* according to the network topology. * according to the network topology.
*/ */
private void createTrafficLights() { private void createTrafficLights() {
System.out.println("\n[" + intersectionId + "] Creating traffic lights..."); System.out.println("\n[" + intersectionId + "] Creating traffic lights...");
String[] directions = new String[0]; SimulationConfig.IntersectionConfig intersectionConfig = getIntersectionConfig();
switch (intersectionId) { List<String> directions = intersectionConfig.getLights();
case "Cr1":
directions = new String[]{"East", "South"}; if (directions == null || directions.isEmpty()) {
break; System.err.println(" Warning: No traffic lights configured for " + intersectionId);
case "Cr2": return;
directions = new String[]{"West", "East", "South"};
break;
case "Cr3":
directions = new String[]{"West", "South"};
break;
case "Cr4":
directions = new String[]{"East"};
break;
case "Cr5":
directions = new String[]{"East"};
break;
} }
for (String direction : directions) { for (String direction : directions) {
@@ -110,8 +185,7 @@ public class IntersectionProcess {
intersectionId + "-" + direction, intersectionId + "-" + direction,
direction, direction,
greenTime, greenTime,
redTime redTime);
);
intersection.addTrafficLight(light); intersection.addTrafficLight(light);
System.out.println(" Created traffic light: " + direction + System.out.println(" Created traffic light: " + direction +
@@ -119,41 +193,59 @@ public class IntersectionProcess {
} }
} }
private SimulationConfig.IntersectionConfig getIntersectionConfig() {
if (config.getNetworkConfig() == null || config.getNetworkConfig().getIntersections() == null) {
throw new RuntimeException("Network configuration not loaded or empty.");
}
return config.getNetworkConfig().getIntersections().stream()
.filter(i -> i.getId().equals(intersectionId))
.findFirst()
.orElseThrow(() -> new RuntimeException("Intersection config not found for " + intersectionId));
}
private void configureRouting() { private void configureRouting() {
System.out.println("\n[" + intersectionId + "] Configuring routing..."); System.out.println("\n[" + intersectionId + "] Configuring routing...");
switch (intersectionId) { SimulationConfig.IntersectionConfig intersectionConfig = getIntersectionConfig();
case "Cr1": Map<String, String> routes = intersectionConfig.getRoutes();
intersection.configureRoute("Cr2", "East");
intersection.configureRoute("Cr4", "South");
break;
case "Cr2": if (routes != null) {
intersection.configureRoute("Cr1", "West"); for (Map.Entry<String, String> entry : routes.entrySet()) {
intersection.configureRoute("Cr3", "East"); String destination = entry.getKey();
intersection.configureRoute("Cr5", "South"); String direction = entry.getValue();
break; intersection.configureRoute(destination, direction);
System.out.println(" Route configured: To " + destination + " -> Use " + direction);
case "Cr3": }
intersection.configureRoute("Cr2", "West"); } else {
intersection.configureRoute("S", "South"); System.out.println(" No routes configured.");
break;
case "Cr4":
intersection.configureRoute("Cr5", "East");
break;
case "Cr5":
intersection.configureRoute("S", "East");
break;
default:
System.err.println(" Error: unknown intersection ID: " + intersectionId);
} }
System.out.println(" Routing configured."); System.out.println(" Routing configured.");
} }
/**
* Requests permission for a traffic light to turn green.
* Blocks until permission is granted (no other light is green).
*
* @param direction The direction requesting green light
*/
public void requestGreenLight(String direction) {
trafficCoordinationLock.lock();
currentGreenDirection = direction;
}
/**
* Releases the green light permission, allowing another light to turn green.
*
* @param direction The direction releasing green light
*/
public void releaseGreenLight(String direction) {
if (direction.equals(currentGreenDirection)) {
currentGreenDirection = null;
trafficCoordinationLock.unlock();
}
}
/** /**
* Starts all traffic light threads. * Starts all traffic light threads.
*/ */
@@ -161,125 +253,43 @@ public class IntersectionProcess {
System.out.println("\n[" + intersectionId + "] Starting traffic light threads..."); System.out.println("\n[" + intersectionId + "] Starting traffic light threads...");
for (TrafficLight light : intersection.getTrafficLights()) { for (TrafficLight light : intersection.getTrafficLights()) {
trafficLightPool.submit(() -> runTrafficLightCycle(light));
TrafficLightThread lightTask = new TrafficLightThread(light, this, config);
trafficLightPool.submit(lightTask);
System.out.println(" Started thread for: " + light.getDirection()); System.out.println(" Started thread for: " + light.getDirection());
} }
} }
/**
* The main loop for a traffic light thread.
* Continuously cycles between GREEN and RED states.
*
* @param light The traffic light to control.
*/
private void runTrafficLightCycle(TrafficLight light) {
System.out.println("[" + light.getId() + "] Traffic light thread started.");
while (running) {
try {
// Green state
light.changeState(TrafficLightState.GREEN);
System.out.println("[" + light.getId() + "] State: GREEN");
// Process vehicles while green
processGreenLight(light);
// Wait for green duration
Thread.sleep((long) (light.getGreenTime() * 1000));
// RED state
light.changeState(TrafficLightState.RED);
System.out.println("[" + light.getId() + "] State: RED");
// Wait for red duration
Thread.sleep((long) (light.getRedTime() * 1000));
} catch (InterruptedException e) {
System.out.println("[" + light.getId() + "] Traffic light thread interrupted.");
break;
}
}
System.out.println("[" + light.getId() + "] Traffic light thread stopped.");
}
/**
* Processes vehicles when a traffic light is GREEN.
* Dequeues vehicles and sends them to their next destination.
*
* @param light The traffic light that is currently green.
*/
private void processGreenLight(TrafficLight light) {
while (light.getState() == TrafficLightState.GREEN && light.getQueueSize() > 0) {
Vehicle vehicle = light.removeVehicle();
if (vehicle != null) {
// Get crossing time based on vehicle type
double crossingTime = getCrossingTimeForVehicle(vehicle);
// Simulate crossing time
try {
Thread.sleep((long) (crossingTime * 1000));
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
break;
}
// Update vehicle statistics
vehicle.addCrossingTime(crossingTime);
// Update intersection statistics
intersection.incrementVehiclesSent();
// Send vehicle to next destination
sendVehicleToNextDestination(vehicle);
}
}
}
/**
* Gets the crossing time for a vehicle based on its type.
*
* @param vehicle The vehicle.
* @return The crossing time in seconds.
*/
private double getCrossingTimeForVehicle(Vehicle vehicle) {
switch (vehicle.getType()) {
case BIKE:
return config.getBikeVehicleCrossingTime();
case LIGHT:
return config.getLightVehicleCrossingTime();
case HEAVY:
return config.getHeavyVehicleCrossingTime();
default:
return config.getLightVehicleCrossingTime();
}
}
/** /**
* Sends a vehicle to its next destination via socket connection. * Sends a vehicle to its next destination via socket connection.
* *
* @param vehicle The vehicle that has crossed this intersection. * @param vehicle The vehicle that has crossed this intersection.
*/ */
private void sendVehicleToNextDestination(Vehicle vehicle) { public void sendVehicleToNextDestination(Vehicle vehicle) {
String nextDestination = vehicle.getCurrentDestination(); String nextDestination = vehicle.getCurrentDestination();
try { try {
// Get or create connection to next destination // Get or create connection to next destination
SocketConnection connection = getOrCreateConnection(nextDestination); SocketConnection connection = getOrCreateConnection(nextDestination);
// Create and send message // Create and send message using Message class
MessageProtocol message = new VehicleTransferMessage( MessageProtocol message = new Message(
MessageType.VEHICLE_TRANSFER,
intersectionId, intersectionId,
nextDestination, nextDestination,
vehicle vehicle,
); System.currentTimeMillis());
connection.sendMessage(message); connection.sendMessage(message);
System.out.println("[" + intersectionId + "] Sent vehicle " + vehicle.getId() + System.out.println("[" + intersectionId + "] Sent vehicle " + vehicle.getId() +
" to " + nextDestination); " to " + nextDestination);
// Record departure for statistics
recordVehicleDeparture();
// Note: vehicle route is advanced when it arrives at the next intersection // Note: vehicle route is advanced when it arrives at the next intersection
} catch (IOException | InterruptedException e) { } catch (IOException | InterruptedException e) {
@@ -353,6 +363,13 @@ public class IntersectionProcess {
running = true; running = true;
System.out.println("\n[" + intersectionId + "] Server started on port " + port); System.out.println("\n[" + intersectionId + "] Server started on port " + port);
// Start traffic light threads when running is true
startTrafficLights();
// Start stats updater
statsExecutor.scheduleAtFixedRate(this::sendStatsToDashboard, 1, 1, TimeUnit.SECONDS);
System.out.println("[" + intersectionId + "] Waiting for incoming connections...\n"); System.out.println("[" + intersectionId + "] Waiting for incoming connections...\n");
// Main accept loop // Main accept loop
@@ -360,17 +377,37 @@ public class IntersectionProcess {
try { try {
Socket clientSocket = serverSocket.accept(); Socket clientSocket = serverSocket.accept();
System.out.println("[" + intersectionId + "] New connection accepted from " +
clientSocket.getInetAddress().getHostAddress());
// Check running flag again before handling
if (!running) {
clientSocket.close();
break;
}
// **Set timeout before submitting to handler**
try {
clientSocket.setSoTimeout(1000);
} catch (java.net.SocketException e) {
System.err.println("[" + intersectionId + "] Failed to set timeout: " + e.getMessage());
clientSocket.close();
continue;
}
// Handle each connection in a separate thread // Handle each connection in a separate thread
connectionHandlerPool.submit(() -> handleIncomingConnection(clientSocket)); connectionHandlerPool.submit(() -> handleIncomingConnection(clientSocket));
} catch (IOException e) { } catch (IOException e) {
if (running) { // Expected when serverSocket.close() is called during shutdown
if (!running) {
break; // Normal shutdown
}
System.err.println("[" + intersectionId + "] Error accepting connection: " + System.err.println("[" + intersectionId + "] Error accepting connection: " +
e.getMessage()); e.getMessage());
} }
} }
} }
}
/** /**
* Handles an incoming connection from another process. * Handles an incoming connection from another process.
@@ -379,6 +416,14 @@ public class IntersectionProcess {
* @param clientSocket The accepted socket connection. * @param clientSocket The accepted socket connection.
*/ */
private void handleIncomingConnection(Socket clientSocket) { private void handleIncomingConnection(Socket clientSocket) {
try {
clientSocket.setSoTimeout(1000); // 1 second timeout
} catch (java.net.SocketException e) {
System.err.println("[" + intersectionId + "] Failed to set socket timeout: " + e.getMessage());
return;
}
try (SocketConnection connection = new SocketConnection(clientSocket)) { try (SocketConnection connection = new SocketConnection(clientSocket)) {
System.out.println("[" + intersectionId + "] New connection accepted from " + System.out.println("[" + intersectionId + "] New connection accepted from " +
@@ -389,19 +434,66 @@ public class IntersectionProcess {
try { try {
MessageProtocol message = connection.receiveMessage(); MessageProtocol message = connection.receiveMessage();
if (message.getType() == MessageType.VEHICLE_TRANSFER) { // Handle simulation start time synchronization
Vehicle vehicle = (Vehicle) message.getPayload(); if (message.getType() == MessageType.SIMULATION_START) {
System.out.println("[" + intersectionId + "] Simulation start time synchronized");
continue;
}
// Accept both VEHICLE_TRANSFER and VEHICLE_SPAWN (from coordinator)
if (message.getType() == MessageType.VEHICLE_TRANSFER ||
message.getType() == MessageType.VEHICLE_SPAWN) {
// Cast payload to Vehicle - handle Gson deserialization
Vehicle vehicle;
Object payload = message.getPayload();
if (payload instanceof Vehicle) {
vehicle = (Vehicle) payload;
} else if (payload instanceof java.util.Map) {
// Gson deserialized as LinkedHashMap - re-serialize and deserialize as Vehicle
com.google.gson.Gson gson = new com.google.gson.Gson();
String json = gson.toJson(payload);
vehicle = gson.fromJson(json, Vehicle.class);
} else {
System.err.println("[" + intersectionId + "] Unknown payload type: " + payload.getClass());
continue;
}
System.out.println("[" + intersectionId + "] Received vehicle: " + System.out.println("[" + intersectionId + "] Received vehicle: " +
vehicle.getId() + " from " + message.getSourceNode()); vehicle.getId() + " from " + message.getSourceNode());
// Advance vehicle to next destination in its route
vehicle.advanceRoute();
// Add vehicle to appropriate queue // Add vehicle to appropriate queue
intersection.receiveVehicle(vehicle); intersection.receiveVehicle(vehicle);
// Record arrival for statistics
recordVehicleArrival();
} else if (message.getType() == MessageType.SHUTDOWN) {
System.out.println(
"[" + intersectionId + "] Received SHUTDOWN command from " + message.getSourceNode());
running = false;
// Close this specific connection
break;
} }
} catch (java.net.SocketTimeoutException e) {
// Timeout - check running flag and continue
if (!running) {
break;
}
// Continue waiting for next message
} catch (ClassNotFoundException e) { } catch (ClassNotFoundException e) {
System.err.println("[" + intersectionId + "] Unknown message type received: " + System.err.println("[" + intersectionId + "] Unknown message type received: " +
e.getMessage()); e.getMessage());
break; // Invalid message, close connection
} catch (IOException e) {
if (running) {
System.err.println("[" + intersectionId + "] Failed to deserialize message: " +
e.getMessage());
e.printStackTrace(); // For debugging - maybe change//remove later
}
break; // Connection error, close connection
} }
} }
@@ -409,6 +501,7 @@ public class IntersectionProcess {
if (running) { if (running) {
System.err.println("[" + intersectionId + "] Connection error: " + e.getMessage()); System.err.println("[" + intersectionId + "] Connection error: " + e.getMessage());
} }
// Expected during shutdown
} }
} }
@@ -417,85 +510,130 @@ public class IntersectionProcess {
* Shuts down all threads and closes all connections. * Shuts down all threads and closes all connections.
*/ */
public void shutdown() { public void shutdown() {
// Check if already shutdown
if (!running) {
return; // Already shutdown, do nothing
}
System.out.println("\n[" + intersectionId + "] Shutting down..."); System.out.println("\n[" + intersectionId + "] Shutting down...");
running = false; running = false;
// Close server socket // Send final stats before closing connections
try { sendStatsToDashboard();
// 1. Close ServerSocket first
if (serverSocket != null && !serverSocket.isClosed()) { if (serverSocket != null && !serverSocket.isClosed()) {
serverSocket.close();
}
} catch (IOException e) {
System.err.println("[" + intersectionId + "] Error closing server socket: " +
e.getMessage());
}
// Shutdown thread pools
trafficLightPool.shutdown();
connectionHandlerPool.shutdown();
try { try {
if (!trafficLightPool.awaitTermination(5, TimeUnit.SECONDS)) { serverSocket.close();
} catch (IOException e) {
// Expected
}
}
// 2. Shutdown thread pools with force
if (trafficLightPool != null && !trafficLightPool.isShutdown()) {
trafficLightPool.shutdownNow(); trafficLightPool.shutdownNow();
} }
if (!connectionHandlerPool.awaitTermination(5, TimeUnit.SECONDS)) { if (connectionHandlerPool != null && !connectionHandlerPool.isShutdown()) {
connectionHandlerPool.shutdownNow(); connectionHandlerPool.shutdownNow();
} }
if (statsExecutor != null && !statsExecutor.isShutdown()) {
statsExecutor.shutdownNow();
}
// 3. Wait briefly for termination (don't block forever)
try {
if (trafficLightPool != null) {
trafficLightPool.awaitTermination(1, TimeUnit.SECONDS);
}
if (connectionHandlerPool != null) {
connectionHandlerPool.awaitTermination(1, TimeUnit.SECONDS);
}
if (statsExecutor != null) {
statsExecutor.awaitTermination(1, TimeUnit.SECONDS);
}
} catch (InterruptedException e) { } catch (InterruptedException e) {
trafficLightPool.shutdownNow(); Thread.currentThread().interrupt();
connectionHandlerPool.shutdownNow();
} }
// Close all outgoing connections // 4. Close outgoing connections
for (Map.Entry<String, SocketConnection> entry : outgoingConnections.entrySet()) { synchronized (outgoingConnections) {
for (SocketConnection conn : outgoingConnections.values()) {
try { try {
entry.getValue().close(); conn.close();
} catch (IOException e) { } catch (Exception e) {
System.err.println("[" + intersectionId + "] Error closing connection to " + // Ignore
entry.getKey() + ": " + e.getMessage());
} }
} }
outgoingConnections.clear();
}
// 5. Close dashboard connection
if (dashboardClient != null) {
dashboardClient.close();
}
System.out.println("[" + intersectionId + "] Shutdown complete."); System.out.println("[" + intersectionId + "] Shutdown complete.");
System.out.println("=".repeat(60)); System.out.println("============================================================\n");
} }
// --- Inner class for Vehicle Transfer Messages ---
/** /**
* Implementation of MessageProtocol for vehicle transfers between processes. * Gets the Intersection object managed by this process.
* Useful for testing and monitoring.
*
* @return The Intersection object.
*/ */
private static class VehicleTransferMessage implements MessageProtocol { public Intersection getIntersection() {
private static final long serialVersionUID = 1L; return intersection;
private final String sourceNode;
private final String destinationNode;
private final Vehicle payload;
public VehicleTransferMessage(String sourceNode, String destinationNode, Vehicle vehicle) {
this.sourceNode = sourceNode;
this.destinationNode = destinationNode;
this.payload = vehicle;
} }
@Override /**
public MessageType getType() { * Records that a vehicle has arrived at this intersection.
return MessageType.VEHICLE_TRANSFER; */
public void recordVehicleArrival() {
totalArrivals++;
} }
@Override /**
public Object getPayload() { * Records that a vehicle has departed from this intersection.
return payload; */
public void recordVehicleDeparture() {
totalDepartures++;
} }
@Override /**
public String getSourceNode() { * Sends current statistics to the dashboard server.
return sourceNode; */
private void sendStatsToDashboard() {
if (dashboardClient == null || !dashboardClient.isConnected()) {
return;
} }
@Override try {
public String getDestinationNode() { // Calculate current queue size
return destinationNode; int currentQueueSize = intersection.getTrafficLights().stream()
.mapToInt(TrafficLight::getQueueSize)
.sum();
StatsUpdatePayload payload = new StatsUpdatePayload()
.setIntersectionArrivals(totalArrivals)
.setIntersectionDepartures(totalDepartures)
.setIntersectionQueueSize(currentQueueSize);
// Send StatsUpdatePayload directly as the message payload
sd.model.Message message = new sd.model.Message(
MessageType.STATS_UPDATE,
intersectionId,
"Dashboard",
payload);
dashboardClient.send(message);
System.out.printf("[%s] Sent stats to dashboard (arrivals=%d, departures=%d, queue=%d)%n",
intersectionId, totalArrivals, totalDepartures, currentQueueSize);
} catch (SerializationException | IOException e) {
System.err.println("[" + intersectionId + "] Failed to send stats to dashboard: " + e.getMessage());
} }
} }
} }

View File

@@ -3,8 +3,16 @@ package sd.config;
import java.io.FileInputStream; import java.io.FileInputStream;
import java.io.IOException; import java.io.IOException;
import java.io.InputStream; import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.Reader;
import java.nio.charset.StandardCharsets;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.Properties; import java.util.Properties;
import com.google.gson.Gson;
/** /**
* Class to load and manage simulation configurations. * Class to load and manage simulation configurations.
* Configurations are read from a .properties file. This class provides * Configurations are read from a .properties file. This class provides
@@ -17,59 +25,144 @@ public class SimulationConfig {
* Holds all properties loaded from the file. * Holds all properties loaded from the file.
*/ */
private final Properties properties; private final Properties properties;
private NetworkConfig networkConfig;
public static class NetworkConfig {
private List<IntersectionConfig> intersections;
public List<IntersectionConfig> getIntersections() {
return intersections;
}
}
public static class IntersectionConfig {
private String id;
private List<String> lights;
private Map<String, String> routes;
public String getId() {
return id;
}
public List<String> getLights() {
return lights;
}
public Map<String, String> getRoutes() {
return routes;
}
}
/** /**
* Constructs a new SimulationConfig object by loading properties * Constructs a new SimulationConfig object by loading properties
* from the specified file path. * from the specified file path.
* *
* @param filePath The path to the .properties file (e.g., "src/main/resources/simulation.properties"). * This constructor attempts to load the configuration file using multiple
* @throws IOException If the file cannot be found or read. * strategies:
* 1. Direct file system path
* 2. Classpath resource (with automatic path normalization)
* 3. Classpath resource with leading slash
*
* @param filePath The path to the .properties file (e.g.,
* "src/main/resources/simulation.properties").
* @throws IOException If the file cannot be found or read from any location.
*/ */
public SimulationConfig(String filePath) throws IOException { public SimulationConfig(String filePath) throws IOException {
properties = new Properties(); properties = new Properties();
/**Tenta carregar diretamente a partir do sistema de ficheiros, se o ficheiro não existir
* (por exemplo quando executado a partir do classpath/jar),
* faz fallback para carregar a partir do classpath usando o ClassLoader.
*/
IOException lastException = null; //FIXME: melhorar esta parte para reportar erros de forma mais clara
try { // List to track all attempted paths for better error reporting
List<String> attemptedPaths = new ArrayList<>();
IOException fileSystemException = null;
// Strategy 1: Try to load directly from file system
try (InputStream input = new FileInputStream(filePath)) { try (InputStream input = new FileInputStream(filePath)) {
properties.load(input); properties.load(input);
return; // carregado com sucesso a partir do caminho fornecido loadNetworkConfig();
} return; // Successfully loaded from file system
} catch (IOException e) { } catch (IOException e) {
lastException = e; fileSystemException = e;
//tenta carregar a partir do classpath sem prefixos comuns attemptedPaths.add("File system: " + filePath);
String resourcePath = filePath;
//Remove prefixos que apontam para src/main/resources quando presentes
resourcePath = resourcePath.replace("src/main/resources/", "").replace("src\\main\\resources\\", "");
//Remove prefixo classpath: se fornecido
if (resourcePath.startsWith("classpath:")) {
resourcePath = resourcePath.substring("classpath:".length());
if (resourcePath.startsWith("/")) resourcePath = resourcePath.substring(1);
} }
// Strategy 2: Try to load from classpath with path normalization
String resourcePath = filePath;
// Remove common src/main/resources prefixes
resourcePath = resourcePath.replace("src/main/resources/", "").replace("src\\main\\resources\\", "");
// Remove classpath: prefix if provided
if (resourcePath.startsWith("classpath:")) {
resourcePath = resourcePath.substring("classpath:".length());
if (resourcePath.startsWith("/")) {
resourcePath = resourcePath.substring(1);
}
}
// Try loading from classpath using thread context class loader
InputStream resourceStream = Thread.currentThread().getContextClassLoader().getResourceAsStream(resourcePath); InputStream resourceStream = Thread.currentThread().getContextClassLoader().getResourceAsStream(resourcePath);
attemptedPaths.add("Classpath (context): " + resourcePath);
if (resourceStream == null) { if (resourceStream == null) {
//como último recurso, tentar com um leading slash // Strategy 3: Try with leading slash
resourceStream = SimulationConfig.class.getResourceAsStream('/' + resourcePath); String slashPath = "/" + resourcePath;
resourceStream = SimulationConfig.class.getResourceAsStream(slashPath);
attemptedPaths.add("Classpath (class): " + slashPath);
} }
if (resourceStream != null) { if (resourceStream != null) {
try (InputStream input = resourceStream) { try (InputStream input = resourceStream) {
properties.load(input); properties.load(input);
loadNetworkConfig();
return; // Successfully loaded from classpath
} catch (IOException e) {
// Failed to read from classpath resource
throw new IOException(
String.format("Failed to read properties from classpath resource '%s': %s",
resourcePath, e.getMessage()),
e);
}
}
// All strategies failed - provide comprehensive error message
StringBuilder errorMsg = new StringBuilder();
errorMsg.append("Configuration file '").append(filePath).append("' could not be found.\n");
errorMsg.append("Attempted locations:\n");
for (String path : attemptedPaths) {
errorMsg.append(" - ").append(path).append("\n");
}
if (fileSystemException != null) {
errorMsg.append("\nOriginal error: ").append(fileSystemException.getMessage());
}
throw new IOException(errorMsg.toString(), fileSystemException);
}
private void loadNetworkConfig() {
try (InputStream is = getClass().getClassLoader().getResourceAsStream("network_config.json")) {
if (is == null) {
System.err.println("Warning: network_config.json not found in classpath. Using defaults/empty.");
return; return;
} }
try (Reader reader = new InputStreamReader(is, StandardCharsets.UTF_8)) {
Gson gson = new Gson();
this.networkConfig = gson.fromJson(reader, NetworkConfig.class);
}
} catch (IOException e) {
System.err.println("Failed to load network_config.json: " + e.getMessage());
e.printStackTrace();
} }
} }
if (lastException != null) throw lastException;
public NetworkConfig getNetworkConfig() {
return networkConfig;
} }
// --- Network configurations --- // --- Network configurations ---
/** /**
* Gets the host address for a specific intersection. * Gets the host address for a specific intersection.
*
* @param intersectionId The ID of the intersection (e.g., "Cr1"). * @param intersectionId The ID of the intersection (e.g., "Cr1").
* @return The host (e.g., "localhost"). * @return The host (e.g., "localhost").
*/ */
@@ -79,6 +172,7 @@ public class SimulationConfig {
/** /**
* Gets the port number for a specific intersection. * Gets the port number for a specific intersection.
*
* @param intersectionId The ID of the intersection (e.g., "Cr1"). * @param intersectionId The ID of the intersection (e.g., "Cr1").
* @return The port number. * @return The port number.
*/ */
@@ -88,6 +182,7 @@ public class SimulationConfig {
/** /**
* Gets the host address for the dashboard server. * Gets the host address for the dashboard server.
*
* @return The dashboard host. * @return The dashboard host.
*/ */
public String getDashboardHost() { public String getDashboardHost() {
@@ -96,6 +191,7 @@ public class SimulationConfig {
/** /**
* Gets the port number for the dashboard server. * Gets the port number for the dashboard server.
*
* @return The dashboard port. * @return The dashboard port.
*/ */
public int getDashboardPort() { public int getDashboardPort() {
@@ -104,6 +200,7 @@ public class SimulationConfig {
/** /**
* Gets the host address for the exit node. * Gets the host address for the exit node.
*
* @return The exit node host. * @return The exit node host.
*/ */
public String getExitHost() { public String getExitHost() {
@@ -112,6 +209,7 @@ public class SimulationConfig {
/** /**
* Gets the port number for the exit node. * Gets the port number for the exit node.
*
* @return The exit node port. * @return The exit node port.
*/ */
public int getExitPort() { public int getExitPort() {
@@ -122,14 +220,26 @@ public class SimulationConfig {
/** /**
* Gets the total duration of the simulation in virtual seconds. * Gets the total duration of the simulation in virtual seconds.
*
* @return The simulation duration. * @return The simulation duration.
*/ */
public double getSimulationDuration() { public double getSimulationDuration() {
return Double.parseDouble(properties.getProperty("simulation.duration", "3600.0")); return Double.parseDouble(properties.getProperty("simulation.duration", "3600.0"));
} }
/**
* Gets the drain time (in virtual seconds) to allow vehicles to exit after
* generation stops.
*
* @return The drain time.
*/
public double getDrainTime() {
return Double.parseDouble(properties.getProperty("simulation.drain.time", "60.0"));
}
/** /**
* Gets the vehicle arrival model ("POISSON" or "FIXED"). * Gets the vehicle arrival model ("POISSON" or "FIXED").
*
* @return The arrival model as a string. * @return The arrival model as a string.
*/ */
public String getArrivalModel() { public String getArrivalModel() {
@@ -139,6 +249,7 @@ public class SimulationConfig {
/** /**
* Gets the average arrival rate (lambda) for the POISSON model. * Gets the average arrival rate (lambda) for the POISSON model.
* This represents the average number of vehicles arriving per second. * This represents the average number of vehicles arriving per second.
*
* @return The arrival rate. * @return The arrival rate.
*/ */
public double getArrivalRate() { public double getArrivalRate() {
@@ -147,6 +258,7 @@ public class SimulationConfig {
/** /**
* Gets the fixed time interval between vehicle arrivals for the FIXED model. * Gets the fixed time interval between vehicle arrivals for the FIXED model.
*
* @return The fixed interval in seconds. * @return The fixed interval in seconds.
*/ */
public double getFixedArrivalInterval() { public double getFixedArrivalInterval() {
@@ -157,6 +269,7 @@ public class SimulationConfig {
/** /**
* Gets the duration of the GREEN light state for a specific traffic light. * Gets the duration of the GREEN light state for a specific traffic light.
*
* @param intersectionId The ID of the intersection (e.g., "Cr1"). * @param intersectionId The ID of the intersection (e.g., "Cr1").
* @param direction The direction of the light (e.g., "North"). * @param direction The direction of the light (e.g., "North").
* @return The green light time in seconds. * @return The green light time in seconds.
@@ -168,6 +281,7 @@ public class SimulationConfig {
/** /**
* Gets the duration of the RED light state for a specific traffic light. * Gets the duration of the RED light state for a specific traffic light.
*
* @param intersectionId The ID of the intersection (e.g., "Cr1"). * @param intersectionId The ID of the intersection (e.g., "Cr1").
* @param direction The direction of the light (e.g., "North"). * @param direction The direction of the light (e.g., "North").
* @return The red light time in seconds. * @return The red light time in seconds.
@@ -181,6 +295,7 @@ public class SimulationConfig {
/** /**
* Gets the probability (0.0 to 1.0) that a generated vehicle is of type LIGHT. * Gets the probability (0.0 to 1.0) that a generated vehicle is of type LIGHT.
*
* @return The probability for LIGHT vehicles. * @return The probability for LIGHT vehicles.
*/ */
public double getLightVehicleProbability() { public double getLightVehicleProbability() {
@@ -189,6 +304,7 @@ public class SimulationConfig {
/** /**
* Gets the average time it takes a LIGHT vehicle to cross an intersection. * Gets the average time it takes a LIGHT vehicle to cross an intersection.
*
* @return The crossing time in seconds. * @return The crossing time in seconds.
*/ */
public double getLightVehicleCrossingTime() { public double getLightVehicleCrossingTime() {
@@ -197,6 +313,7 @@ public class SimulationConfig {
/** /**
* Gets the probability (0.0 to 1.0) that a generated vehicle is of type BIKE. * Gets the probability (0.0 to 1.0) that a generated vehicle is of type BIKE.
*
* @return The probability for BIKE vehicles. * @return The probability for BIKE vehicles.
*/ */
public double getBikeVehicleProbability() { public double getBikeVehicleProbability() {
@@ -205,6 +322,7 @@ public class SimulationConfig {
/** /**
* Gets the average time it takes a BIKE vehicle to cross an intersection. * Gets the average time it takes a BIKE vehicle to cross an intersection.
*
* @return The crossing time in seconds. * @return The crossing time in seconds.
*/ */
public double getBikeVehicleCrossingTime() { public double getBikeVehicleCrossingTime() {
@@ -213,6 +331,7 @@ public class SimulationConfig {
/** /**
* Gets the probability (0.0 to 1.0) that a generated vehicle is of type HEAVY. * Gets the probability (0.0 to 1.0) that a generated vehicle is of type HEAVY.
*
* @return The probability for HEAVY vehicles. * @return The probability for HEAVY vehicles.
*/ */
public double getHeavyVehicleProbability() { public double getHeavyVehicleProbability() {
@@ -221,26 +340,58 @@ public class SimulationConfig {
/** /**
* Gets the average time it takes a HEAVY vehicle to cross an intersection. * Gets the average time it takes a HEAVY vehicle to cross an intersection.
*
* @return The crossing time in seconds. * @return The crossing time in seconds.
*/ */
public double getHeavyVehicleCrossingTime() { public double getHeavyVehicleCrossingTime() {
return Double.parseDouble(properties.getProperty("vehicle.crossing.time.heavy", "4.0")); return Double.parseDouble(properties.getProperty("vehicle.crossing.time.heavy", "4.0"));
} }
/**
* Gets the base travel time between intersections for light vehicles.
*
* @return The base travel time in seconds.
*/
public double getBaseTravelTime() {
return Double.parseDouble(properties.getProperty("vehicle.travel.time.base", "8.0"));
}
/**
* Gets the travel time multiplier for bike vehicles.
* Bike travel time = base time × this multiplier.
*
* @return The multiplier for bike travel time.
*/
public double getBikeTravelTimeMultiplier() {
return Double.parseDouble(properties.getProperty("vehicle.travel.time.bike.multiplier", "0.5"));
}
/**
* Gets the travel time multiplier for heavy vehicles.
* Heavy vehicle travel time = base time × this multiplier.
*
* @return The multiplier for heavy vehicle travel time.
*/
public double getHeavyTravelTimeMultiplier() {
return Double.parseDouble(properties.getProperty("vehicle.travel.time.heavy.multiplier", "2.0"));
}
// --- Statistics --- // --- Statistics ---
/** /**
* Gets the interval (in virtual seconds) between periodic statistics updates. * Gets the interval (in virtual seconds) between periodic statistics updates.
*
* @return The statistics update interval. * @return The statistics update interval.
*/ */
public double getStatisticsUpdateInterval() { public double getStatisticsUpdateInterval() {
return Double.parseDouble(properties.getProperty("statistics.update.interval", "10.0")); return Double.parseDouble(properties.getProperty("statistics.update.interval", "1.0"));
} }
// --- Generic getters --- // --- Generic getters ---
/** /**
* Generic method to get any property as a string, with a default value. * Generic method to get any property as a string, with a default value.
*
* @param key The property key. * @param key The property key.
* @param defaultValue The value to return if the key is not found. * @param defaultValue The value to return if the key is not found.
* @return The property value or the default. * @return The property value or the default.
@@ -251,6 +402,7 @@ public class SimulationConfig {
/** /**
* Generic method to get any property as a string. * Generic method to get any property as a string.
*
* @param key The property key. * @param key The property key.
* @return The property value, or null if not found. * @return The property value, or null if not found.
*/ */

View File

@@ -0,0 +1,302 @@
package sd.coordinator;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import sd.config.SimulationConfig;
import sd.dashboard.StatsUpdatePayload;
import sd.model.Message;
import sd.model.MessageType;
import sd.model.Vehicle;
import sd.serialization.SerializationException;
import sd.util.VehicleGenerator;
/**
* Coordinator process responsible for:
* 1. Vehicle generation (using VehicleGenerator)
* 2. Distributing vehicles to intersection processes via sockets
* 3. Managing simulation timing and shutdown
*
* This is the main entry point for the distributed simulation architecture.
*/
public class CoordinatorProcess {
private final SimulationConfig config;
private final VehicleGenerator vehicleGenerator;
private final Map<String, SocketClient> intersectionClients;
private SocketClient dashboardClient;
private double currentTime;
private int vehicleCounter;
private boolean running;
private double nextGenerationTime;
public static void main(String[] args) {
System.out.println("=".repeat(60));
System.out.println("COORDINATOR PROCESS - DISTRIBUTED TRAFFIC SIMULATION");
System.out.println("=".repeat(60));
try {
// 1. Load configuration
String configFile = args.length > 0 ? args[0] : "src/main/resources/simulation.properties";
System.out.println("Loading configuration from: " + configFile);
SimulationConfig config = new SimulationConfig(configFile);
CoordinatorProcess coordinator = new CoordinatorProcess(config);
// 2. Connect to intersection processes
System.out.println("\n" + "=".repeat(60));
coordinator.initialize();
// 3. Run the sim
System.out.println("\n" + "=".repeat(60));
coordinator.run();
} catch (IOException e) {
System.err.println("Failed to load configuration: " + e.getMessage());
System.exit(1);
} catch (Exception e) {
System.err.println("Coordinator error: " + e.getMessage());
System.exit(1);
}
}
public CoordinatorProcess(SimulationConfig config) {
this.config = config;
this.vehicleGenerator = new VehicleGenerator(config);
this.intersectionClients = new HashMap<>();
this.currentTime = 0.0;
this.vehicleCounter = 0;
this.running = false;
this.nextGenerationTime = 0.0;
System.out.println("Coordinator initialized with configuration:");
System.out.println(" - Simulation duration: " + config.getSimulationDuration() + "s");
System.out.println(" - Arrival model: " + config.getArrivalModel());
System.out.println(" - Arrival rate: " + config.getArrivalRate() + " vehicles/s");
}
public void initialize() {
// Connect to dashboard first
connectToDashboard();
System.out.println("Connecting to intersection processes...");
String[] intersectionIds = { "Cr1", "Cr2", "Cr3", "Cr4", "Cr5" };
for (String intersectionId : intersectionIds) {
try {
String host = config.getIntersectionHost(intersectionId);
int port = config.getIntersectionPort(intersectionId);
SocketClient client = new SocketClient(intersectionId, host, port);
client.connect();
intersectionClients.put(intersectionId, client);
} catch (IOException e) {
System.err.println("Failed to connect to " + intersectionId + ": " + e.getMessage());
}
}
System.out.println("Successfully connected to " + intersectionClients.size() + " intersection(s)");
if (intersectionClients.isEmpty()) {
System.err.println("WARNING: No intersections connected. Simulation cannot proceed.");
}
}
public void run() {
double duration = config.getSimulationDuration();
running = true;
System.out.println("Starting vehicle generation simulation...");
System.out.println("Duration: " + duration + " seconds");
System.out.println();
// Send simulation start time to all processes for synchronization
sendSimulationStartTime();
nextGenerationTime = vehicleGenerator.getNextArrivalTime(currentTime);
final double TIME_STEP = 0.1;
double drainTime = config.getDrainTime();
double totalDuration = duration + drainTime;
boolean draining = false;
while (running && currentTime < totalDuration) {
// Only generate vehicles during the main duration
if (currentTime < duration) {
if (currentTime >= nextGenerationTime) {
generateAndSendVehicle();
nextGenerationTime = vehicleGenerator.getNextArrivalTime(currentTime);
}
} else if (!draining) {
draining = true;
System.out.println("\n[t=" + String.format("%.2f", currentTime)
+ "] Generation complete. Entering DRAIN MODE for " + drainTime + "s...");
}
try {
Thread.sleep((long) (TIME_STEP * 1000));
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
break;
}
currentTime += TIME_STEP;
}
System.out.println();
System.out.println("Simulation complete at t=" + String.format("%.2f", currentTime) + "s");
System.out.println("Total vehicles generated: " + vehicleCounter);
shutdown();
}
private void generateAndSendVehicle() {
Vehicle vehicle = vehicleGenerator.generateVehicle("V" + (++vehicleCounter), currentTime);
System.out.printf("[t=%.2f] Vehicle %s generated (type=%s, route=%s)%n",
currentTime, vehicle.getId(), vehicle.getType(), vehicle.getRoute());
// Send generation count to dashboard
sendGenerationStatsToDashboard();
if (vehicle.getRoute().isEmpty()) {
System.err.println("ERROR: Vehicle " + vehicle.getId() + " has empty route!");
return;
}
String entryIntersection = vehicle.getRoute().get(0);
sendVehicleToIntersection(vehicle, entryIntersection);
}
private void sendVehicleToIntersection(Vehicle vehicle, String intersectionId) {
SocketClient client = intersectionClients.get(intersectionId);
if (client == null || !client.isConnected()) {
System.err.println("ERROR: No connection to " + intersectionId + " for vehicle " + vehicle.getId());
return;
}
try {
Message message = new Message(
MessageType.VEHICLE_SPAWN,
"COORDINATOR",
intersectionId,
vehicle);
client.send(message);
System.out.printf("->Sent to %s%n", intersectionId);
} catch (SerializationException | IOException e) {
System.err.println("ERROR: Failed to send vehicle " + vehicle.getId() + " to " + intersectionId);
System.err.println("Reason: " + e.getMessage());
}
}
public void shutdown() {
System.out.println();
System.out.println("=".repeat(60));
System.out.println("Shutting down coordinator...");
for (Map.Entry<String, SocketClient> entry : intersectionClients.entrySet()) {
String intersectionId = entry.getKey();
SocketClient client = entry.getValue();
try {
if (client.isConnected()) {
Message personalizedShutdown = new Message(
MessageType.SHUTDOWN,
"COORDINATOR",
intersectionId,
"Simulation complete");
client.send(personalizedShutdown);
System.out.println("Sent shutdown message to " + intersectionId);
}
} catch (SerializationException | IOException e) {
System.err.println("Error sending shutdown to " + intersectionId + ": " + e.getMessage());
} finally {
client.close();
}
}
System.out.println("Coordinator shutdown complete");
System.out.println("=".repeat(60));
}
public void stop() {
System.out.println("\nStop signal received...");
running = false;
}
private void connectToDashboard() {
try {
String host = config.getDashboardHost();
int port = config.getDashboardPort();
System.out.println("Connecting to dashboard at " + host + ":" + port);
dashboardClient = new SocketClient("Dashboard", host, port);
dashboardClient.connect();
System.out.println("Successfully connected to dashboard\n");
} catch (IOException e) {
System.err.println("WARNING: Failed to connect to dashboard: " + e.getMessage());
System.err.println("Coordinator will continue without dashboard connection\n");
}
}
private void sendGenerationStatsToDashboard() {
if (dashboardClient == null || !dashboardClient.isConnected()) {
return;
}
try {
// Create stats payload with vehicle generation count
StatsUpdatePayload payload = new StatsUpdatePayload();
payload.setTotalVehiclesGenerated(vehicleCounter);
Message message = new Message(
MessageType.STATS_UPDATE,
"COORDINATOR",
"Dashboard",
payload);
dashboardClient.send(message);
} catch (Exception e) { // This is fine - can add IOException if need be
// Don't crash if dashboard update fails
System.err.println("Failed to send stats to dashboard: " + e.getMessage());
}
}
private void sendSimulationStartTime() {
long startTimeMillis = System.currentTimeMillis();
// Send to all intersections
for (Map.Entry<String, SocketClient> entry : intersectionClients.entrySet()) {
try {
Message message = new Message(
MessageType.SIMULATION_START,
"COORDINATOR",
entry.getKey(),
startTimeMillis);
entry.getValue().send(message);
} catch (Exception e) { // Same thing here
System.err.println("Failed to send start time to " + entry.getKey() + ": " + e.getMessage());
}
}
// Send to dashboard
if (dashboardClient != null && dashboardClient.isConnected()) {
try {
Message message = new Message(
MessageType.SIMULATION_START,
"COORDINATOR",
"Dashboard",
startTimeMillis);
dashboardClient.send(message);
} catch (Exception e) { // And here
// Don't crash
}
}
}
}

View File

@@ -0,0 +1,124 @@
package sd.coordinator;
import java.io.IOException;
import java.io.OutputStream;
import java.net.Socket;
import sd.model.Message;
import sd.serialization.MessageSerializer;
import sd.serialization.SerializationException;
import sd.serialization.SerializerFactory;
/**
* Socket client for communication with a single intersection process.
*
* Handles a persistent TCP connection to one intersection,
* providing a simple way to send serialized messages.
*/
public class SocketClient {
private final String intersectionId;
private final String host;
private final int port;
private Socket socket;
private OutputStream outputStream;
private MessageSerializer serializer;
/**
* Creates a new SocketClient for a given intersection.
*
* @param intersectionId Intersection ID (ex. "Cr1")
* @param host Host address (ex. "localhost")
* @param port Port number
*/
public SocketClient(String intersectionId, String host, int port) {
this.intersectionId = intersectionId;
this.host = host;
this.port = port;
this.serializer = SerializerFactory.createDefault();
}
/**
* Connects to the intersection process via TCP.
*
* @throws IOException if the connection cannot be established
*/
public void connect() throws IOException {
try {
socket = new Socket(host, port);
outputStream = socket.getOutputStream();
System.out.println("Connected to " + intersectionId + " at " + host + ":" + port);
} catch (IOException e) {
System.err.println("Failed to connect to " + intersectionId + " at " + host + ":" + port);
throw e;
}
}
/**
* Sends a message to the connected intersection.
* The message is serialized and written over the socket.
*
* @param message The message to send
* @throws SerializationException if serialization fails
* @throws IOException if the socket write fails
*/
public void send(Message message) throws SerializationException, IOException {
if (socket == null || socket.isClosed()) {
throw new IOException("Socket is not connected to " + intersectionId);
}
try {
byte[] data = serializer.serialize(message);
// Prefix with message length (so receiver knows how much to read)
int length = data.length;
outputStream.write((length >> 24) & 0xFF);
outputStream.write((length >> 16) & 0xFF);
outputStream.write((length >> 8) & 0xFF);
outputStream.write(length & 0xFF);
outputStream.write(data);
outputStream.flush();
} catch (SerializationException | IOException e) {
System.err.println("Error sending message to " + intersectionId + ": " + e.getMessage());
throw e;
}
}
/**
* Closes the socket connection safely.
* Calling it multiple times wont cause issues.
*/
public void close() {
try {
if (outputStream != null) {
outputStream.close();
}
if (socket != null && !socket.isClosed()) {
socket.close();
System.out.println("Closed connection to " + intersectionId);
}
} catch (IOException e) {
System.err.println("Error closing connection to " + intersectionId + ": " + e.getMessage());
}
}
/**
* @return true if connected and socket is open, false otherwise
*/
public boolean isConnected() {
return socket != null && socket.isConnected() && !socket.isClosed();
}
public String getIntersectionId() {
return intersectionId;
}
@Override
public String toString() {
return String.format("SocketClient[intersection=%s, host=%s, port=%d, connected=%s]",
intersectionId, host, port, isConnected());
}
}

View File

@@ -0,0 +1,137 @@
package sd.dashboard;
import java.io.IOException;
import java.net.Socket;
import java.util.Map;
import sd.model.MessageType;
import sd.protocol.MessageProtocol;
import sd.protocol.SocketConnection;
/**
* Processes statistics messages from a single client connection.
* Runs in a separate thread per client.
*/
public class DashboardClientHandler implements Runnable {
private final Socket clientSocket;
private final DashboardStatistics statistics;
public DashboardClientHandler(Socket clientSocket, DashboardStatistics statistics) {
this.clientSocket = clientSocket;
this.statistics = statistics;
}
@Override
public void run() {
String clientInfo = clientSocket.getInetAddress().getHostAddress() + ":" + clientSocket.getPort();
try (SocketConnection connection = new SocketConnection(clientSocket)) {
System.out.println("[Handler] Started handling client: " + clientInfo);
while (!Thread.currentThread().isInterrupted()) {
try {
MessageProtocol message = connection.receiveMessage();
if (message == null) {
System.out.println("[Handler] Client disconnected: " + clientInfo);
break;
}
processMessage(message);
} catch (ClassNotFoundException e) {
System.err.println("[Handler] Unknown message class from " + clientInfo + ": " + e.getMessage());
} catch (IOException e) {
System.out.println("[Handler] Connection error with " + clientInfo + ": " + e.getMessage());
break;
}
}
} catch (IOException e) {
System.err.println("[Handler] Error initializing connection with " + clientInfo + ": " + e.getMessage());
} finally {
try {
if (!clientSocket.isClosed()) {
clientSocket.close();
}
} catch (IOException e) {
System.err.println("[Handler] Error closing socket for " + clientInfo + ": " + e.getMessage());
}
}
}
private void processMessage(MessageProtocol message) {
if (message.getType() != MessageType.STATS_UPDATE) {
System.out.println("[Handler] Ignoring non-statistics message type: " + message.getType());
return;
}
String senderId = message.getSourceNode();
Object payload = message.getPayload();
System.out.println("[Handler] Received STATS_UPDATE from: " + senderId);
// Handle both direct StatsUpdatePayload and Gson-deserialized Map
StatsUpdatePayload stats;
if (payload instanceof StatsUpdatePayload) {
stats = (StatsUpdatePayload) payload;
} else if (payload instanceof java.util.Map) {
// Gson deserialized as LinkedHashMap - re-serialize and deserialize properly
com.google.gson.Gson gson = new com.google.gson.Gson();
String json = gson.toJson(payload);
stats = gson.fromJson(json, StatsUpdatePayload.class);
} else {
System.err.println("[Handler] Unknown payload type: " +
(payload != null ? payload.getClass().getName() : "null"));
return;
}
updateStatistics(senderId, stats);
}
private void updateStatistics(String senderId, StatsUpdatePayload stats) {
if (stats.getTotalVehiclesGenerated() >= 0) {
statistics.updateVehiclesGenerated(stats.getTotalVehiclesGenerated());
}
if (stats.getTotalVehiclesCompleted() >= 0) {
statistics.updateVehiclesCompleted(stats.getTotalVehiclesCompleted());
}
// Exit Node sends cumulative totals, so we SET rather than ADD
if (stats.getTotalSystemTime() >= 0) {
statistics.setTotalSystemTime(stats.getTotalSystemTime());
}
if (stats.getTotalWaitingTime() >= 0) {
statistics.setTotalWaitingTime(stats.getTotalWaitingTime());
}
// Process vehicle type statistics (from Exit Node)
if (stats.getVehicleTypeCounts() != null && !stats.getVehicleTypeCounts().isEmpty()) {
Map<sd.model.VehicleType, Integer> counts = stats.getVehicleTypeCounts();
Map<sd.model.VehicleType, Long> waitTimes = stats.getVehicleTypeWaitTimes();
for (var entry : counts.entrySet()) {
sd.model.VehicleType type = entry.getKey();
int count = entry.getValue();
long waitTime = (waitTimes != null && waitTimes.containsKey(type))
? waitTimes.get(type) : 0L;
statistics.updateVehicleTypeStats(type, count, waitTime);
}
}
// Process intersection statistics (from Intersection processes)
if (senderId.startsWith("Cr") || senderId.startsWith("E")) {
statistics.updateIntersectionStats(
senderId,
stats.getIntersectionArrivals(),
stats.getIntersectionDepartures(),
stats.getIntersectionQueueSize()
);
}
System.out.println("[Handler] Successfully updated statistics from: " + senderId);
}
}

View File

@@ -0,0 +1,165 @@
package sd.dashboard;
import java.io.IOException;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.atomic.AtomicBoolean;
import sd.config.SimulationConfig;
/**
* Aggregates and displays real-time statistics from all simulation processes.
* Uses a thread pool to handle concurrent client connections.
*/
public class DashboardServer {
private final int port;
private final DashboardStatistics statistics;
private final ExecutorService clientHandlerPool;
private final AtomicBoolean running;
private ServerSocket serverSocket;
public static void main(String[] args) {
// Check if GUI mode is requested
boolean useGUI = false;
String configFile = "src/main/resources/simulation.properties";
for (int i = 0; i < args.length; i++) {
if (args[i].equals("--gui") || args[i].equals("-g")) {
useGUI = true;
} else {
configFile = args[i];
}
}
if (useGUI) {
// Launch JavaFX UI
System.out.println("Launching Dashboard with JavaFX GUI...");
DashboardUI.main(args);
} else {
// Traditional terminal mode
System.out.println("=".repeat(60));
System.out.println("DASHBOARD SERVER - DISTRIBUTED TRAFFIC SIMULATION");
System.out.println("=".repeat(60));
try {
System.out.println("Loading configuration from: " + configFile);
SimulationConfig config = new SimulationConfig(configFile);
DashboardServer server = new DashboardServer(config);
// Start the server
System.out.println("\n" + "=".repeat(60));
server.start();
// Keep running until interrupted
Runtime.getRuntime().addShutdownHook(new Thread(() -> {
System.out.println("\n\nShutdown signal received...");
server.stop();
}));
// Display statistics periodically
server.displayLoop();
} catch (IOException e) {
System.err.println("Failed to start Dashboard Server: " + e.getMessage());
System.exit(1);
}
}
}
public DashboardServer(SimulationConfig config) {
this.port = config.getDashboardPort();
this.statistics = new DashboardStatistics();
this.clientHandlerPool = Executors.newFixedThreadPool(10);
this.running = new AtomicBoolean(false);
}
public void start() throws IOException {
if (running.get()) {
System.out.println("Dashboard Server is already running.");
return;
}
serverSocket = new ServerSocket(port);
running.set(true);
System.out.println("Dashboard Server started on port " + port);
System.out.println("Waiting for statistics updates from simulation processes...");
System.out.println("=".repeat(60));
Thread acceptThread = new Thread(this::acceptConnections, "DashboardServer-Accept");
acceptThread.setDaemon(false);
acceptThread.start();
}
private void acceptConnections() {
while (running.get()) {
try {
Socket clientSocket = serverSocket.accept();
System.out.println("[Connection] New client connected: " +
clientSocket.getInetAddress().getHostAddress() + ":" + clientSocket.getPort());
clientHandlerPool.execute(new DashboardClientHandler(clientSocket, statistics));
} catch (IOException e) {
if (running.get()) {
System.err.println("[Error] Failed to accept client connection: " + e.getMessage());
}
}
}
}
@SuppressWarnings("BusyWait")
private void displayLoop() {
final long DISPLAY_INTERVAL_MS = 5000;
while (running.get()) {
try {
Thread.sleep(DISPLAY_INTERVAL_MS);
displayStatistics();
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
break;
}
}
}
public void displayStatistics() {
System.out.println("\n" + "=".repeat(60));
System.out.println("REAL-TIME SIMULATION STATISTICS");
System.out.println("=".repeat(60));
statistics.display();
System.out.println("=".repeat(60));
}
public void stop() {
if (!running.get()) {
return;
}
System.out.println("\nStopping Dashboard Server...");
running.set(false);
try {
if (serverSocket != null && !serverSocket.isClosed()) {
serverSocket.close();
}
} catch (IOException e) {
System.err.println("Error closing server socket: " + e.getMessage());
}
clientHandlerPool.shutdownNow();
System.out.println("Dashboard Server stopped.");
}
public DashboardStatistics getStatistics() {
return statistics;
}
public boolean isRunning() {
return running.get();
}
}

View File

@@ -0,0 +1,224 @@
package sd.dashboard;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;
import sd.model.VehicleType;
/**
* Thread-safe storage for aggregated simulation statistics.
* Uses atomic types and concurrent collections for lock-free updates.
*/
public class DashboardStatistics {
private final AtomicInteger totalVehiclesGenerated;
private final AtomicInteger totalVehiclesCompleted;
private final AtomicLong totalSystemTime;
private final AtomicLong totalWaitingTime;
private final Map<String, IntersectionStats> intersectionStats;
private final Map<VehicleType, AtomicInteger> vehicleTypeCount;
private final Map<VehicleType, AtomicLong> vehicleTypeWaitTime;
private volatile long lastUpdateTime;
public DashboardStatistics() {
this.totalVehiclesGenerated = new AtomicInteger(0);
this.totalVehiclesCompleted = new AtomicInteger(0);
this.totalSystemTime = new AtomicLong(0);
this.totalWaitingTime = new AtomicLong(0);
this.intersectionStats = new ConcurrentHashMap<>();
this.vehicleTypeCount = new ConcurrentHashMap<>();
this.vehicleTypeWaitTime = new ConcurrentHashMap<>();
for (VehicleType type : VehicleType.values()) {
vehicleTypeCount.put(type, new AtomicInteger(0));
vehicleTypeWaitTime.put(type, new AtomicLong(0));
}
this.lastUpdateTime = System.currentTimeMillis();
}
public void updateVehiclesGenerated(int count) {
totalVehiclesGenerated.set(count);
updateTimestamp();
}
public void incrementVehiclesGenerated() {
totalVehiclesGenerated.incrementAndGet();
updateTimestamp();
}
public void updateVehiclesCompleted(int count) {
totalVehiclesCompleted.set(count);
updateTimestamp();
}
public void incrementVehiclesCompleted() {
totalVehiclesCompleted.incrementAndGet();
updateTimestamp();
}
public void addSystemTime(long timeMs) {
totalSystemTime.addAndGet(timeMs);
updateTimestamp();
}
public void setTotalSystemTime(long timeMs) {
totalSystemTime.set(timeMs);
updateTimestamp();
}
public void addWaitingTime(long timeMs) {
totalWaitingTime.addAndGet(timeMs);
updateTimestamp();
}
public void setTotalWaitingTime(long timeMs) {
totalWaitingTime.set(timeMs);
updateTimestamp();
}
public void updateVehicleTypeStats(VehicleType type, int count, long waitTimeMs) {
vehicleTypeCount.get(type).set(count);
vehicleTypeWaitTime.get(type).set(waitTimeMs);
updateTimestamp();
}
public void incrementVehicleType(VehicleType type) {
vehicleTypeCount.get(type).incrementAndGet();
updateTimestamp();
}
public void updateIntersectionStats(String intersectionId, int arrivals,
int departures, int currentQueueSize) {
intersectionStats.compute(intersectionId, (id, stats) -> {
if (stats == null) {
stats = new IntersectionStats(intersectionId);
}
stats.updateStats(arrivals, departures, currentQueueSize);
return stats;
});
updateTimestamp();
}
private void updateTimestamp() {
lastUpdateTime = System.currentTimeMillis();
}
public int getTotalVehiclesGenerated() {
return totalVehiclesGenerated.get();
}
public int getTotalVehiclesCompleted() {
return totalVehiclesCompleted.get();
}
public double getAverageSystemTime() {
int completed = totalVehiclesCompleted.get();
if (completed == 0) return 0.0;
return (double) totalSystemTime.get() / completed;
}
public double getAverageWaitingTime() {
int completed = totalVehiclesCompleted.get();
if (completed == 0) return 0.0;
return (double) totalWaitingTime.get() / completed;
}
public int getVehicleTypeCount(VehicleType type) {
return vehicleTypeCount.get(type).get();
}
public double getAverageWaitingTimeByType(VehicleType type) {
int count = vehicleTypeCount.get(type).get();
if (count == 0) return 0.0;
return (double) vehicleTypeWaitTime.get(type).get() / count;
}
public IntersectionStats getIntersectionStats(String intersectionId) {
return intersectionStats.get(intersectionId);
}
public Map<String, IntersectionStats> getAllIntersectionStats() {
return new HashMap<>(intersectionStats);
}
public long getLastUpdateTime() {
return lastUpdateTime;
}
public void display() {
System.out.println("\n--- GLOBAL STATISTICS ---");
System.out.printf("Total Vehicles Generated: %d%n", getTotalVehiclesGenerated());
System.out.printf("Total Vehicles Completed: %d%n", getTotalVehiclesCompleted());
System.out.printf("Vehicles In Transit: %d%n",
getTotalVehiclesGenerated() - getTotalVehiclesCompleted());
System.out.printf("Average System Time: %.2f ms%n", getAverageSystemTime());
System.out.printf("Average Waiting Time: %.2f ms%n", getAverageWaitingTime());
System.out.println("\n--- VEHICLE TYPE STATISTICS ---");
for (VehicleType type : VehicleType.values()) {
int count = getVehicleTypeCount(type);
double avgWait = getAverageWaitingTimeByType(type);
System.out.printf("%s: %d vehicles, avg wait: %.2f ms%n",
type, count, avgWait);
}
System.out.println("\n--- INTERSECTION STATISTICS ---");
if (intersectionStats.isEmpty()) {
System.out.println("(No data received yet)");
} else {
for (IntersectionStats stats : intersectionStats.values()) {
stats.display();
}
}
System.out.printf("%nLast Update: %tT%n", lastUpdateTime);
}
public static class IntersectionStats {
private final String intersectionId;
private final AtomicInteger totalArrivals;
private final AtomicInteger totalDepartures;
private final AtomicInteger currentQueueSize;
public IntersectionStats(String intersectionId) {
this.intersectionId = intersectionId;
this.totalArrivals = new AtomicInteger(0);
this.totalDepartures = new AtomicInteger(0);
this.currentQueueSize = new AtomicInteger(0);
}
public void updateStats(int arrivals, int departures, int queueSize) {
this.totalArrivals.set(arrivals);
this.totalDepartures.set(departures);
this.currentQueueSize.set(queueSize);
}
public String getIntersectionId() {
return intersectionId;
}
public int getTotalArrivals() {
return totalArrivals.get();
}
public int getTotalDepartures() {
return totalDepartures.get();
}
public int getCurrentQueueSize() {
return currentQueueSize.get();
}
public void display() {
System.out.printf("%s: Arrivals=%d, Departures=%d, Queue=%d%n",
intersectionId, getTotalArrivals(), getTotalDepartures(), getCurrentQueueSize());
}
}
}

View File

@@ -0,0 +1,450 @@
package sd.dashboard;
import java.io.IOException;
import java.util.Map;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;
import javafx.application.Application;
import javafx.application.Platform;
import javafx.geometry.Insets;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Alert;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TableColumn;
import javafx.scene.control.TableView;
import javafx.scene.control.cell.PropertyValueFactory;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.GridPane;
import javafx.scene.layout.HBox;
import javafx.scene.layout.Priority;
import javafx.scene.layout.Region;
import javafx.scene.layout.VBox;
import javafx.scene.shape.Circle;
import javafx.stage.Stage;
import sd.config.SimulationConfig;
import sd.model.VehicleType;
/**
* JavaFX-based Dashboard UI for displaying real-time simulation statistics.
* Provides a graphical interface with auto-updating statistics panels.
*/
public class DashboardUI extends Application {
private DashboardServer server;
private DashboardStatistics statistics;
// Global Statistics Labels
private Label lblVehiclesGenerated;
private Label lblVehiclesCompleted;
private Label lblVehiclesInTransit;
private Label lblAvgSystemTime;
private Label lblAvgWaitingTime;
private Label lblLastUpdate;
// Vehicle Type Table
private TableView<VehicleTypeRow> vehicleTypeTable;
// Intersection Table
private TableView<IntersectionRow> intersectionTable;
// Update scheduler
private ScheduledExecutorService updateScheduler;
@Override
public void start(Stage primaryStage) {
try {
// Initialize server
String configFile = getParameters().getRaw().isEmpty()
? "src/main/resources/simulation.properties"
: getParameters().getRaw().get(0);
SimulationConfig config = new SimulationConfig(configFile);
server = new DashboardServer(config);
statistics = server.getStatistics();
// Start the dashboard server
server.start();
// Build UI
BorderPane root = new BorderPane();
root.getStyleClass().add("root");
// Header
VBox header = createHeader();
root.setTop(header);
// Main content
VBox mainContent = createMainContent();
root.setCenter(mainContent);
// Footer
HBox footer = createFooter();
root.setBottom(footer);
// Create scene
Scene scene = new Scene(root, 1200, 850);
// Load CSS
String cssUrl = getClass().getResource("/dashboard.css").toExternalForm();
scene.getStylesheets().add(cssUrl);
primaryStage.setTitle("Traffic Simulation Dashboard - Real-time Statistics");
primaryStage.setScene(scene);
primaryStage.show();
// Start periodic updates
startPeriodicUpdates();
// Handle window close
primaryStage.setOnCloseRequest(event -> {
shutdown();
});
} catch (Exception e) {
showErrorAlert("Failed to start Dashboard Server", e.getMessage());
e.printStackTrace();
Platform.exit();
}
}
private VBox createHeader() {
VBox header = new VBox(10);
header.getStyleClass().add("header");
header.setAlignment(Pos.CENTER);
Label title = new Label("DISTRIBUTED TRAFFIC SIMULATION DASHBOARD");
title.getStyleClass().add("header-title");
Label subtitle = new Label("Real-time Statistics and Monitoring");
subtitle.getStyleClass().add("header-subtitle");
// Control Buttons
HBox controls = new HBox(15);
controls.setAlignment(Pos.CENTER);
Button btnStart = new Button("START SIMULATION");
btnStart.getStyleClass().add("button-start");
Button btnStop = new Button("STOP SIMULATION");
btnStop.getStyleClass().add("button-stop");
btnStop.setDisable(true);
SimulationProcessManager processManager = new SimulationProcessManager();
btnStart.setOnAction(e -> {
try {
processManager.startSimulation();
btnStart.setDisable(true);
btnStop.setDisable(false);
} catch (IOException ex) {
showErrorAlert("Start Failed", "Could not start simulation processes: " + ex.getMessage());
}
});
btnStop.setOnAction(e -> {
processManager.stopSimulation();
btnStart.setDisable(false);
btnStop.setDisable(true);
});
controls.getChildren().addAll(btnStart, btnStop);
header.getChildren().addAll(title, subtitle, controls);
return header;
}
private VBox createMainContent() {
VBox mainContent = new VBox(20);
mainContent.setPadding(new Insets(20));
// Global Statistics Panel
VBox globalStatsCard = createGlobalStatisticsPanel();
// Tables Container
HBox tablesContainer = new HBox(20);
tablesContainer.setAlignment(Pos.TOP_CENTER);
// Vehicle Type Statistics Panel
VBox vehicleTypeCard = createVehicleTypePanel();
HBox.setHgrow(vehicleTypeCard, Priority.ALWAYS);
// Intersection Statistics Panel
VBox intersectionCard = createIntersectionPanel();
HBox.setHgrow(intersectionCard, Priority.ALWAYS);
tablesContainer.getChildren().addAll(vehicleTypeCard, intersectionCard);
mainContent.getChildren().addAll(globalStatsCard, tablesContainer);
return mainContent;
}
private VBox createGlobalStatisticsPanel() {
VBox card = new VBox();
card.getStyleClass().add("card");
// Card Header
HBox cardHeader = new HBox();
cardHeader.getStyleClass().add("card-header");
Label cardTitle = new Label("Global Statistics");
cardTitle.getStyleClass().add("card-title");
cardHeader.getChildren().add(cardTitle);
// Card Content
GridPane grid = new GridPane();
grid.getStyleClass().add("card-content");
grid.setHgap(40);
grid.setVgap(15);
grid.setAlignment(Pos.CENTER);
// Initialize labels
lblVehiclesGenerated = createStatValueLabel("0");
lblVehiclesCompleted = createStatValueLabel("0");
lblVehiclesInTransit = createStatValueLabel("0");
lblAvgSystemTime = createStatValueLabel("0.00 s");
lblAvgWaitingTime = createStatValueLabel("0.00 s");
// Add labels with descriptions
addStatRow(grid, 0, 0, "Total Vehicles Generated", lblVehiclesGenerated);
addStatRow(grid, 1, 0, "Total Vehicles Completed", lblVehiclesCompleted);
addStatRow(grid, 2, 0, "Vehicles In Transit", lblVehiclesInTransit);
addStatRow(grid, 0, 1, "Average System Time", lblAvgSystemTime);
addStatRow(grid, 1, 1, "Average Waiting Time", lblAvgWaitingTime);
card.getChildren().addAll(cardHeader, grid);
return card;
}
private VBox createVehicleTypePanel() {
VBox card = new VBox();
card.getStyleClass().add("card");
// Card Header
HBox cardHeader = new HBox();
cardHeader.getStyleClass().add("card-header");
Label cardTitle = new Label("Vehicle Type Statistics");
cardTitle.getStyleClass().add("card-title");
cardHeader.getChildren().add(cardTitle);
// Table
vehicleTypeTable = new TableView<>();
vehicleTypeTable.setColumnResizePolicy(TableView.CONSTRAINED_RESIZE_POLICY);
vehicleTypeTable.setPrefHeight(300);
TableColumn<VehicleTypeRow, String> typeCol = new TableColumn<>("Vehicle Type");
typeCol.setCellValueFactory(new PropertyValueFactory<>("vehicleType"));
TableColumn<VehicleTypeRow, Integer> countCol = new TableColumn<>("Count");
countCol.setCellValueFactory(new PropertyValueFactory<>("count"));
TableColumn<VehicleTypeRow, String> avgWaitCol = new TableColumn<>("Avg Wait Time");
avgWaitCol.setCellValueFactory(new PropertyValueFactory<>("avgWaitTime"));
vehicleTypeTable.getColumns().addAll(typeCol, countCol, avgWaitCol);
card.getChildren().addAll(cardHeader, vehicleTypeTable);
return card;
}
private VBox createIntersectionPanel() {
VBox card = new VBox();
card.getStyleClass().add("card");
// Card Header
HBox cardHeader = new HBox();
cardHeader.getStyleClass().add("card-header");
Label cardTitle = new Label("Intersection Statistics");
cardTitle.getStyleClass().add("card-title");
cardHeader.getChildren().add(cardTitle);
// Table
intersectionTable = new TableView<>();
intersectionTable.setColumnResizePolicy(TableView.CONSTRAINED_RESIZE_POLICY);
intersectionTable.setPrefHeight(300);
TableColumn<IntersectionRow, String> idCol = new TableColumn<>("Intersection ID");
idCol.setCellValueFactory(new PropertyValueFactory<>("intersectionId"));
TableColumn<IntersectionRow, Integer> arrivalsCol = new TableColumn<>("Total Arrivals");
arrivalsCol.setCellValueFactory(new PropertyValueFactory<>("arrivals"));
TableColumn<IntersectionRow, Integer> departuresCol = new TableColumn<>("Total Departures");
departuresCol.setCellValueFactory(new PropertyValueFactory<>("departures"));
TableColumn<IntersectionRow, Integer> queueCol = new TableColumn<>("Current Queue");
queueCol.setCellValueFactory(new PropertyValueFactory<>("queueSize"));
intersectionTable.getColumns().addAll(idCol, arrivalsCol, departuresCol, queueCol);
card.getChildren().addAll(cardHeader, intersectionTable);
return card;
}
private HBox createFooter() {
HBox footer = new HBox(10);
footer.getStyleClass().add("footer");
footer.setAlignment(Pos.CENTER_LEFT);
Label statusLabel = new Label("Status:");
statusLabel.getStyleClass().add("footer-text");
statusLabel.setStyle("-fx-font-weight: bold;");
Circle statusIndicator = new Circle(6);
statusIndicator.setFill(javafx.scene.paint.Color.LIME);
Label statusText = new Label("Connected and Receiving Data");
statusText.getStyleClass().add("footer-text");
lblLastUpdate = new Label("Last Update: --:--:--");
lblLastUpdate.getStyleClass().add("footer-text");
Region spacer = new Region();
HBox.setHgrow(spacer, Priority.ALWAYS);
footer.getChildren().addAll(statusLabel, statusIndicator, statusText, spacer, lblLastUpdate);
return footer;
}
private Label createStatValueLabel(String initialValue) {
Label label = new Label(initialValue);
label.getStyleClass().add("stat-value");
return label;
}
private void addStatRow(GridPane grid, int row, int colGroup, String description, Label valueLabel) {
VBox container = new VBox(5);
container.setAlignment(Pos.CENTER_LEFT);
Label descLabel = new Label(description);
descLabel.getStyleClass().add("stat-label");
container.getChildren().addAll(descLabel, valueLabel);
grid.add(container, colGroup, row);
}
private void startPeriodicUpdates() {
updateScheduler = Executors.newSingleThreadScheduledExecutor();
updateScheduler.scheduleAtFixedRate(() -> {
Platform.runLater(this::updateUI);
}, 0, 5, TimeUnit.SECONDS);
}
private void updateUI() {
// Update global statistics
lblVehiclesGenerated.setText(String.valueOf(statistics.getTotalVehiclesGenerated()));
lblVehiclesCompleted.setText(String.valueOf(statistics.getTotalVehiclesCompleted()));
lblVehiclesInTransit.setText(String.valueOf(
statistics.getTotalVehiclesGenerated() - statistics.getTotalVehiclesCompleted()));
lblAvgSystemTime.setText(String.format("%.2f s", statistics.getAverageSystemTime() / 1000.0));
lblAvgWaitingTime.setText(String.format("%.2f s", statistics.getAverageWaitingTime() / 1000.0));
lblLastUpdate.setText(String.format("Last Update: %tT", statistics.getLastUpdateTime()));
// Update vehicle type table
vehicleTypeTable.getItems().clear();
for (VehicleType type : VehicleType.values()) {
int count = statistics.getVehicleTypeCount(type);
double avgWait = statistics.getAverageWaitingTimeByType(type);
vehicleTypeTable.getItems().add(new VehicleTypeRow(
type.toString(), count, String.format("%.2f s", avgWait / 1000.0)));
}
// Update intersection table
intersectionTable.getItems().clear();
Map<String, DashboardStatistics.IntersectionStats> intersectionStats = statistics.getAllIntersectionStats();
for (DashboardStatistics.IntersectionStats stats : intersectionStats.values()) {
intersectionTable.getItems().add(new IntersectionRow(
stats.getIntersectionId(),
stats.getTotalArrivals(),
stats.getTotalDepartures(),
stats.getCurrentQueueSize()));
}
}
private void shutdown() {
System.out.println("Shutting down Dashboard UI...");
if (updateScheduler != null && !updateScheduler.isShutdown()) {
updateScheduler.shutdownNow();
}
if (server != null) {
server.stop();
}
Platform.exit();
}
private void showErrorAlert(String title, String message) {
Alert alert = new Alert(Alert.AlertType.ERROR);
alert.setTitle(title);
alert.setHeaderText(null);
alert.setContentText(message);
alert.showAndWait();
}
public static void main(String[] args) {
launch(args);
}
// Inner classes for TableView data models
public static class VehicleTypeRow {
private final String vehicleType;
private final int count;
private final String avgWaitTime;
public VehicleTypeRow(String vehicleType, int count, String avgWaitTime) {
this.vehicleType = vehicleType;
this.count = count;
this.avgWaitTime = avgWaitTime;
}
public String getVehicleType() {
return vehicleType;
}
public int getCount() {
return count;
}
public String getAvgWaitTime() {
return avgWaitTime;
}
}
public static class IntersectionRow {
private final String intersectionId;
private final int arrivals;
private final int departures;
private final int queueSize;
public IntersectionRow(String intersectionId, int arrivals, int departures, int queueSize) {
this.intersectionId = intersectionId;
this.arrivals = arrivals;
this.departures = departures;
this.queueSize = queueSize;
}
public String getIntersectionId() {
return intersectionId;
}
public int getArrivals() {
return arrivals;
}
public int getDepartures() {
return departures;
}
public int getQueueSize() {
return queueSize;
}
}
}

View File

@@ -0,0 +1,7 @@
package sd.dashboard;
public class Launcher {
public static void main(String[] args) {
DashboardUI.main(args);
}
}

View File

@@ -0,0 +1,118 @@
package sd.dashboard;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
/**
* Manages the lifecycle of simulation processes (Intersections, Exit Node,
* Coordinator).
* Allows starting and stopping the distributed simulation from within the Java
* application.
*/
public class SimulationProcessManager {
private final List<Process> runningProcesses;
private final String classpath;
public SimulationProcessManager() {
this.runningProcesses = new ArrayList<>();
this.classpath = System.getProperty("java.class.path");
}
/**
* Starts the full simulation: 5 Intersections, 1 Exit Node, and 1 Coordinator.
*
* @throws IOException If a process fails to start.
*/
public void startSimulation() throws IOException {
if (!runningProcesses.isEmpty()) {
stopSimulation();
}
System.out.println("Starting simulation processes...");
// 1. Start Intersections (Cr1 - Cr5)
String[] intersectionIds = { "Cr1", "Cr2", "Cr3", "Cr4", "Cr5" };
for (String id : intersectionIds) {
startProcess("sd.IntersectionProcess", id);
}
// 2. Start Exit Node
startProcess("sd.ExitNodeProcess", null);
// 3. Start Coordinator (Wait a bit for others to initialize)
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
startProcess("sd.coordinator.CoordinatorProcess", null);
System.out.println("All simulation processes started.");
}
/**
* Stops all running simulation processes.
*/
public void stopSimulation() {
System.out.println("Stopping simulation processes...");
for (Process process : runningProcesses) {
if (process.isAlive()) {
process.destroy(); // Try graceful termination first
}
}
// Wait a bit and force kill if necessary
try {
Thread.sleep(500);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
for (Process process : runningProcesses) {
if (process.isAlive()) {
process.destroyForcibly();
}
}
runningProcesses.clear();
System.out.println("All simulation processes stopped.");
}
/**
* Helper to start a single Java process.
*/
private void startProcess(String className, String arg) throws IOException {
String javaBin = System.getProperty("java.home") + File.separator + "bin" + File.separator + "java";
ProcessBuilder builder;
if (arg != null) {
builder = new ProcessBuilder(javaBin, "-cp", classpath, className, arg);
} else {
builder = new ProcessBuilder(javaBin, "-cp", classpath, className);
}
// get the OS temp folder
// Linux: /tmp/
// Windows: %AppData%\Local\Temp\
String tempDir = System.getProperty("java.io.tmpdir");
String logName = className.substring(className.lastIndexOf('.') + 1) + (arg != null ? "-" + arg : "") + ".log";
// use the (File parent, String child) constructor to handle slash/backslash
// automatically
File logFile = new File(tempDir, logName);
builder.redirectOutput(logFile);
builder.redirectError(logFile);
Process process = builder.start();
runningProcesses.add(process);
System.out.println("Started " + className + (arg != null ? " " + arg : ""));
// print where the logs are actually going
System.out.println("Logs redirected to: " + logFile.getAbsolutePath());
}
}

View File

@@ -0,0 +1,48 @@
package sd.dashboard;
import sd.model.MessageType;
import sd.protocol.MessageProtocol;
/**
* Message wrapper for sending statistics to the dashboard.
*/
public class StatsMessage implements MessageProtocol {
private static final long serialVersionUID = 1L;
private final String sourceNode;
private final String destinationNode;
private final StatsUpdatePayload payload;
public StatsMessage(String sourceNode, StatsUpdatePayload payload) {
this.sourceNode = sourceNode;
this.destinationNode = "DashboardServer";
this.payload = payload;
}
@Override
public MessageType getType() {
return MessageType.STATS_UPDATE;
}
@Override
public Object getPayload() {
return payload;
}
@Override
public String getSourceNode() {
return sourceNode;
}
@Override
public String getDestinationNode() {
return destinationNode;
}
@Override
public String toString() {
return String.format("StatsMessage[from=%s, to=%s, payload=%s]",
sourceNode, destinationNode, payload);
}
}

View File

@@ -0,0 +1,121 @@
package sd.dashboard;
import java.io.Serializable;
import java.util.HashMap;
import java.util.Map;
import sd.model.VehicleType;
/**
* Data transfer object for statistics updates to the dashboard.
* Use -1 for fields not being updated in this message.
*/
public class StatsUpdatePayload implements Serializable {
private static final long serialVersionUID = 1L;
private int totalVehiclesGenerated = -1;
private int totalVehiclesCompleted = -1;
private long totalSystemTime = -1;
private long totalWaitingTime = -1;
private int intersectionArrivals = 0;
private int intersectionDepartures = 0;
private int intersectionQueueSize = 0;
private Map<VehicleType, Integer> vehicleTypeCounts;
private Map<VehicleType, Long> vehicleTypeWaitTimes;
public StatsUpdatePayload() {
this.vehicleTypeCounts = new HashMap<>();
this.vehicleTypeWaitTimes = new HashMap<>();
}
public int getTotalVehiclesGenerated() {
return totalVehiclesGenerated;
}
public int getTotalVehiclesCompleted() {
return totalVehiclesCompleted;
}
public long getTotalSystemTime() {
return totalSystemTime;
}
public long getTotalWaitingTime() {
return totalWaitingTime;
}
public int getIntersectionArrivals() {
return intersectionArrivals;
}
public int getIntersectionDepartures() {
return intersectionDepartures;
}
public int getIntersectionQueueSize() {
return intersectionQueueSize;
}
public Map<VehicleType, Integer> getVehicleTypeCounts() {
return vehicleTypeCounts;
}
public Map<VehicleType, Long> getVehicleTypeWaitTimes() {
return vehicleTypeWaitTimes;
}
public StatsUpdatePayload setTotalVehiclesGenerated(int totalVehiclesGenerated) {
this.totalVehiclesGenerated = totalVehiclesGenerated;
return this;
}
public StatsUpdatePayload setTotalVehiclesCompleted(int totalVehiclesCompleted) {
this.totalVehiclesCompleted = totalVehiclesCompleted;
return this;
}
public StatsUpdatePayload setTotalSystemTime(long totalSystemTime) {
this.totalSystemTime = totalSystemTime;
return this;
}
public StatsUpdatePayload setTotalWaitingTime(long totalWaitingTime) {
this.totalWaitingTime = totalWaitingTime;
return this;
}
public StatsUpdatePayload setIntersectionArrivals(int intersectionArrivals) {
this.intersectionArrivals = intersectionArrivals;
return this;
}
public StatsUpdatePayload setIntersectionDepartures(int intersectionDepartures) {
this.intersectionDepartures = intersectionDepartures;
return this;
}
public StatsUpdatePayload setIntersectionQueueSize(int intersectionQueueSize) {
this.intersectionQueueSize = intersectionQueueSize;
return this;
}
public StatsUpdatePayload setVehicleTypeCounts(Map<VehicleType, Integer> vehicleTypeCounts) {
this.vehicleTypeCounts = vehicleTypeCounts;
return this;
}
public StatsUpdatePayload setVehicleTypeWaitTimes(Map<VehicleType, Long> vehicleTypeWaitTimes) {
this.vehicleTypeWaitTimes = vehicleTypeWaitTimes;
return this;
}
@Override
public String toString() {
return String.format("StatsUpdatePayload[generated=%d, completed=%d, arrivals=%d, departures=%d, queueSize=%d]",
totalVehiclesGenerated, totalVehiclesCompleted, intersectionArrivals,
intersectionDepartures, intersectionQueueSize);
}
}

View File

@@ -1,628 +0,0 @@
package sd.engine;
import java.util.HashMap;
import java.util.Map;
import java.util.PriorityQueue;
import sd.config.SimulationConfig;
import sd.model.Event;
import sd.model.EventType;
import sd.model.Intersection;
import sd.model.TrafficLight;
import sd.model.TrafficLightState;
import sd.model.Vehicle;
import sd.model.VehicleType;
import sd.util.StatisticsCollector;
import sd.util.VehicleGenerator;
/**
* Core simulation engine using discrete event simulation (DES).
* * This class orchestrates the entire simulation. It maintains a
* {@link PriorityQueue} of {@link Event} objects, representing all
* scheduled future actions. The engine processes events in strict
* chronological order (based on their timestamp).
* * It manages the simulation's state, including:
* - The current simulation time ({@code currentTime}).
* - The collection of all {@link Intersection} objects.
* - The {@link VehicleGenerator} for creating new vehicles.
* - The {@link StatisticsCollector} for tracking metrics.
*/
public class SimulationEngine {
/**
* Holds all simulation parameters loaded from the properties file.
*/
private final SimulationConfig config;
/**
* The core of the discrete event simulation. Events are pulled from this
* queue in order of their timestamp.
*/
private final PriorityQueue<Event> eventQueue;
/**
* A map storing all intersections in the simulation, keyed by their ID (e.g., "Cr1").
*/
private final Map<String, Intersection> intersections;
/**
* Responsible for creating new vehicles according to the configured arrival model.
*/
private final VehicleGenerator vehicleGenerator;
/**
* Collects and calculates statistics throughout the simulation.
*/
private final StatisticsCollector statisticsCollector;
/**
* The current time in the simulation (in virtual seconds).
* This time advances based on the timestamp of the event being processed.
*/
private double currentTime;
/**
* A simple counter to generate unique IDs for vehicles.
*/
private int vehicleCounter;
/**
* Constructs a new SimulationEngine.
*
* @param config The {@link SimulationConfig} object containing all
* simulation parameters.
*/
public SimulationEngine(SimulationConfig config) {
this.config = config;
this.eventQueue = new PriorityQueue<>();
this.intersections = new HashMap<>();
this.vehicleGenerator = new VehicleGenerator(config);
this.statisticsCollector = new StatisticsCollector(config);
this.currentTime = 0.0;
this.vehicleCounter = 0;
}
/**
* Initializes the simulation. This involves:
* 1. Creating all {@link Intersection} and {@link TrafficLight} objects.
* 2. Configuring the routing logic between intersections.
* 3. Scheduling the initial events (first traffic light changes,
* first vehicle generation, and periodic statistics updates).
*/
public void initialize() {
System.out.println("Initializing simulation...");
setupIntersections();
setupRouting();
// Schedule initial events to "bootstrap" the simulation
scheduleTrafficLightEvents();
scheduleNextVehicleGeneration(0.0);
scheduleStatisticsUpdates();
System.out.println("Simulation initialized with " + intersections.size() + " intersections");
}
/**
* Creates all intersections defined in the configuration
* and adds their corresponding traffic lights.
*/
private void setupIntersections() {
String[] intersectionIds = {"Cr1", "Cr2", "Cr3", "Cr4", "Cr5"};
// Note: "North" is commented out, so it won't be created.
String[] directions = {/*"North",*/ "South", "East", "West"};
for (String id : intersectionIds) {
Intersection intersection = new Intersection(id);
// Add traffic lights for each configured direction
for (String direction : directions) {
double greenTime = config.getTrafficLightGreenTime(id, direction);
double redTime = config.getTrafficLightRedTime(id, direction);
TrafficLight light = new TrafficLight(
id + "-" + direction,
direction,
greenTime,
redTime
);
intersection.addTrafficLight(light);
}
intersections.put(id, intersection);
}
}
/**
* Configures how vehicles should be routed between intersections.
* This hardcoded logic defines the "map" of the city.
* * For example, `intersections.get("Cr1").configureRoute("Cr2", "East");` means
* "at intersection Cr1, any vehicle whose *next* destination is Cr2
* should be sent to the 'East' traffic light queue."
*/
private void setupRouting() {
// Cr1 routing
intersections.get("Cr1").configureRoute("Cr2", "East");
intersections.get("Cr1").configureRoute("Cr4", "South");
// Cr2 routing
intersections.get("Cr2").configureRoute("Cr1", "West");
intersections.get("Cr2").configureRoute("Cr3", "East");
intersections.get("Cr2").configureRoute("Cr5", "South");
// Cr3 routing
intersections.get("Cr3").configureRoute("Cr2", "West");
intersections.get("Cr3").configureRoute("S", "South"); // "S" is the exit
// Cr4 routing
//intersections.get("Cr4").configureRoute("Cr1", "North");
intersections.get("Cr4").configureRoute("Cr5", "East");
// Cr5 routing
//intersections.get("Cr5").configureRoute("Cr2", "North");
//intersections.get("Cr5").configureRoute("Cr4", "West");
intersections.get("Cr5").configureRoute("S", "East"); // "S" is the exit
}
/**
* Schedules the initial {@link EventType#TRAFFIC_LIGHT_CHANGE} event
* for every traffic light in the simulation.
* A small random delay is added to "stagger" the lights, preventing
* all of them from changing at the exact same time at t=0.
*/
private void scheduleTrafficLightEvents() {
for (Intersection intersection : intersections.values()) {
for (TrafficLight light : intersection.getTrafficLights()) {
// Start with lights in RED state, schedule first GREEN change
// Stagger the start times slightly to avoid all lights changing at once
double staggerDelay = Math.random() * 1.5;
scheduleTrafficLightChange(light, intersection.getId(), staggerDelay);
}
}
}
/**
* Creates and schedules a new {@link EventType#TRAFFIC_LIGHT_CHANGE} event.
* The event is scheduled to occur at {@code currentTime + delay}.
*
* @param light The {@link TrafficLight} that will change state.
* @param intersectionId The ID of the intersection where the light is located.
* @param delay The time (in seconds) from {@code currentTime} when the change should occur.
*/
private void scheduleTrafficLightChange(TrafficLight light, String intersectionId, double delay) {
double changeTime = currentTime + delay;
Event event = new Event(changeTime, EventType.TRAFFIC_LIGHT_CHANGE, light, intersectionId);
eventQueue.offer(event);
}
/**
* Schedules the next {@link EventType#VEHICLE_GENERATION} event.
* The time of the next arrival is determined by the {@link VehicleGenerator}.
*
* @param baseTime The time from which to calculate the next arrival (usually {@code currentTime}).
*/
private void scheduleNextVehicleGeneration(double baseTime) {
// Get the absolute time for the next arrival.
double nextArrivalTime = vehicleGenerator.getNextArrivalTime(baseTime);
// Only schedule the event if it's within the simulation's total duration.
if (nextArrivalTime < config.getSimulationDuration()) {
Event event = new Event(nextArrivalTime, EventType.VEHICLE_GENERATION, null, null);
eventQueue.offer(event);
}
}
/**
* Schedules all periodic {@link EventType#STATISTICS_UPDATE} events
* for the entire duration of the simulation.
*/
private void scheduleStatisticsUpdates() {
double interval = config.getStatisticsUpdateInterval();
double duration = config.getSimulationDuration();
for (double time = interval; time < duration; time += interval) {
Event event = new Event(time, EventType.STATISTICS_UPDATE, null, null);
eventQueue.offer(event);
}
}
/**
* Runs the main simulation loop.
* The loop continues as long as there are events in the queue and
* the {@code currentTime} is less than the total simulation duration.
* * In each iteration, it:
* 1. Polls the next event from the {@link #eventQueue}.
* 2. Advances {@link #currentTime} to the event's timestamp.
* 3. Calls {@link #processEvent(Event)} to handle the event.
* * After the loop, it prints the final statistics.
*/
public void run() {
System.out.println("Starting simulation...");
double duration = config.getSimulationDuration();
while (!eventQueue.isEmpty() && currentTime < duration) {
// Get the next event in chronological order
Event event = eventQueue.poll();
// Advance simulation time to this event's time
currentTime = event.getTimestamp();
// Process the event
processEvent(event);
}
System.out.println("\nSimulation completed at t=" + String.format("%.2f", currentTime) + "s");
printFinalStatistics();
}
/**
* Main event processing logic.
* Delegates the event to the appropriate handler method based on its {@link EventType}.
*
* @param event The {@link Event} to be processed.
*/
private void processEvent(Event event) {
switch (event.getType()) {
case VEHICLE_GENERATION -> handleVehicleGeneration();
case VEHICLE_ARRIVAL -> handleVehicleArrival(event);
case TRAFFIC_LIGHT_CHANGE -> handleTrafficLightChange(event);
case CROSSING_START -> handleCrossingStart(event);
case CROSSING_END -> handleCrossingEnd(event);
case STATISTICS_UPDATE -> handleStatisticsUpdate();
default -> System.err.println("Unknown event type: " + event.getType());
}
}
/**
* Handles {@link EventType#VEHICLE_GENERATION}.
* 1. Creates a new {@link Vehicle} using the {@link #vehicleGenerator}.
* 2. Records the generation event with the {@link #statisticsCollector}.
* 3. Schedules a {@link EventType#VEHICLE_ARRIVAL} event for the vehicle
* at its first destination intersection.
* 4. Schedules the *next* {@link EventType#VEHICLE_GENERATION} event.
* (Note: This line is commented out in the original, which might be a bug,
* as it implies only one vehicle is ever generated. It should likely be active.)
*/
private void handleVehicleGeneration() {
Vehicle vehicle = vehicleGenerator.generateVehicle("V" + (++vehicleCounter), currentTime);
System.out.printf("[t=%.2f] Vehicle %s generated (type=%s, route=%s)%n",
currentTime, vehicle.getId(), vehicle.getType(), vehicle.getRoute());
// Register with statistics collector
statisticsCollector.recordVehicleGeneration(vehicle, currentTime);
// Schedule arrival at first intersection
String firstIntersection = vehicle.getCurrentDestination();
if (firstIntersection != null && !firstIntersection.equals("S")) {
// Assume minimal travel time to first intersection (e.g., 1-3 seconds)
double arrivalTime = currentTime + 1.0 + Math.random() * 2.0;
Event arrivalEvent = new Event(arrivalTime, EventType.VEHICLE_ARRIVAL, vehicle, firstIntersection);
eventQueue.offer(arrivalEvent);
}
// Schedule next vehicle generation
// This was commented out in the original file.
// For a continuous simulation, it should be enabled:
scheduleNextVehicleGeneration(currentTime);
}
/**
* Handles {@link EventType#VEHICLE_ARRIVAL} at an intersection.
* 1. Records the arrival for statistics.
* 2. Advances the vehicle's internal route planner to its *next* destination.
* 3. If the next destination is the exit ("S") or null,
* the vehicle exits the system via {@link #handleVehicleExit(Vehicle)}.
* 4. Otherwise, the vehicle is placed in the correct queue at the
* current intersection using {@link Intersection#receiveVehicle(Vehicle)}.
* 5. Attempts to process the vehicle immediately if its light is green.
*
* @param event The arrival event, containing the {@link Vehicle} and intersection ID.
*/
private void handleVehicleArrival(Event event) {
Vehicle vehicle = (Vehicle) event.getData();
String intersectionId = event.getLocation();
Intersection intersection = intersections.get(intersectionId);
if (intersection == null) {
System.err.println("Unknown intersection: " + intersectionId);
return;
}
System.out.printf("[t=%.2f] Vehicle %s arrived at %s%n",
currentTime, vehicle.getId(), intersectionId);
// Record arrival time (used to calculate waiting time later)
statisticsCollector.recordVehicleArrival(vehicle, intersectionId, currentTime);
// Advance the vehicle's route to the *next* stop
// (it has now arrived at its *current* destination)
boolean hasNext = vehicle.advanceRoute();
if (!hasNext) {
// This was the last stop
handleVehicleExit(vehicle);
return;
}
String nextDestination = vehicle.getCurrentDestination();
if (nextDestination == null || "S".equals(nextDestination)) {
// Next stop is the exit
handleVehicleExit(vehicle);
return;
}
// Add vehicle to the appropriate traffic light queue based on its next destination
intersection.receiveVehicle(vehicle);
// Try to process the vehicle immediately if its light is already green
tryProcessVehicle(vehicle, intersection);
}
/**
* Checks if a newly arrived vehicle (or a vehicle in a queue
* that just turned green) can start crossing.
*
* @param vehicle The vehicle to process.
* @param intersection The intersection where the vehicle is.
*/
private void tryProcessVehicle(Vehicle vehicle, Intersection intersection) { //FIXME
// Find the direction (and light) this vehicle is queued at
// This logic is a bit flawed: it just finds the *first* non-empty queue
// A better approach would be to get the light from the vehicle's route
String direction = intersection.getTrafficLights().stream()
.filter(tl -> tl.getQueueSize() > 0)
.map(TrafficLight::getDirection)
.findFirst()
.orElse(null);
if (direction != null) {
TrafficLight light = intersection.getTrafficLight(direction);
// If the light is green and it's the correct one...
if (light != null && light.getState() == TrafficLightState.GREEN) {
// ...remove the vehicle from the queue (if it's at the front)
Vehicle v = light.removeVehicle();
if (v != null) {
// ...and schedule its crossing.
scheduleCrossing(v, intersection);
}
}
}
}
/**
* Schedules the crossing for a vehicle that has just been dequeued
* from a green light.
* 1. Calculates and records the vehicle's waiting time.
* 2. Schedules an immediate {@link EventType#CROSSING_START} event.
*
* @param vehicle The {@link Vehicle} that is crossing.
* @param intersection The {@link Intersection} it is crossing.
*/
private void scheduleCrossing(Vehicle vehicle, Intersection intersection) {
// Calculate time spent waiting at the red light
double waitTime = currentTime - statisticsCollector.getArrivalTime(vehicle);
vehicle.addWaitingTime(waitTime);
// Schedule crossing start event *now*
Event crossingStart = new Event(currentTime, EventType.CROSSING_START, vehicle, intersection.getId());
processEvent(crossingStart); // Process immediately
}
/**
* Handles {@link EventType#CROSSING_START}.
* 1. Determines the crossing time based on vehicle type.
* 2. Schedules a {@link EventType#CROSSING_END} event to occur
* at {@code currentTime + crossingTime}.
*
* @param event The crossing start event.
*/
private void handleCrossingStart(Event event) {
Vehicle vehicle = (Vehicle) event.getData();
String intersectionId = event.getLocation();
double crossingTime = getCrossingTime(vehicle.getType());
System.out.printf("[t=%.2f] Vehicle %s started crossing at %s (duration=%.2fs)%n",
currentTime, vehicle.getId(), intersectionId, crossingTime);
// Schedule the *end* of the crossing
double endTime = currentTime + crossingTime;
Event crossingEnd = new Event(endTime, EventType.CROSSING_END, vehicle, intersectionId);
eventQueue.offer(crossingEnd);
}
/**
* Handles {@link EventType#CROSSING_END}.
* 1. Updates intersection and vehicle statistics.
* 2. Checks the vehicle's *next* destination.
* 3. If the next destination is the exit ("S"), call {@link #handleVehicleExit(Vehicle)}.
* 4. Otherwise, schedule a {@link EventType#VEHICLE_ARRIVAL} event at the
* *next* intersection, after some travel time.
*
* @param event The crossing end event.
*/
private void handleCrossingEnd(Event event) {
Vehicle vehicle = (Vehicle) event.getData();
String intersectionId = event.getLocation();
// Update stats
Intersection intersection = intersections.get(intersectionId);
if (intersection != null) {
intersection.incrementVehiclesSent();
}
double crossingTime = getCrossingTime(vehicle.getType());
vehicle.addCrossingTime(crossingTime);
System.out.printf("[t=%.2f] Vehicle %s finished crossing at %s%n",
currentTime, vehicle.getId(), intersectionId);
// Decide what to do next
String nextDest = vehicle.getCurrentDestination();
if (nextDest != null && !nextDest.equals("S")) {
// Route to the *next* intersection
// Assume 5-10 seconds travel time between intersections
double travelTime = 5.0 + Math.random() * 5.0;
double arrivalTime = currentTime + travelTime;
Event arrivalEvent = new Event(arrivalTime, EventType.VEHICLE_ARRIVAL, vehicle, nextDest);
eventQueue.offer(arrivalEvent);
} else {
// Reached the exit
handleVehicleExit(vehicle);
}
}
/**
* Handles a vehicle exiting the simulation.
* Records final statistics for the vehicle.
*
* @param vehicle The {@link Vehicle} that has completed its route.
*/
private void handleVehicleExit(Vehicle vehicle) {
System.out.printf("[t=%.2f] Vehicle %s exited the system (wait=%.2fs, travel=%.2fs)%n",
currentTime, vehicle.getId(),
vehicle.getTotalWaitingTime(),
vehicle.getTotalTravelTime(currentTime));
// Record the exit for final statistics calculation
statisticsCollector.recordVehicleExit(vehicle, currentTime);
}
/**
* Handles {@link EventType#TRAFFIC_LIGHT_CHANGE}.
* 1. Toggles the light's state (RED to GREEN or GREEN to RED).
* 2. If the light just turned GREEN, call {@link #processGreenLight(TrafficLight, Intersection)}
* to process any waiting vehicles.
* 3. Schedules the *next* state change for this light based on its
* green/red time duration.
*
* @param event The light change event.
*/
private void handleTrafficLightChange(Event event) {
TrafficLight light = (TrafficLight) event.getData();
String intersectionId = event.getLocation();
// Toggle state
TrafficLightState newState = (light.getState() == TrafficLightState.RED)
? TrafficLightState.GREEN
: TrafficLightState.RED;
light.changeState(newState);
System.out.printf("[t=%.2f] Traffic light %s changed to %s%n",
currentTime, light.getId(), newState);
// If changed to GREEN, process waiting vehicles
if (newState == TrafficLightState.GREEN) {
Intersection intersection = intersections.get(intersectionId);
if (intersection != null) {
processGreenLight(light, intersection);
}
}
// Schedule the *next* state change for this same light
double nextChangeDelay = (newState == TrafficLightState.GREEN)
? light.getGreenTime()
: light.getRedTime();
scheduleTrafficLightChange(light, intersectionId, nextChangeDelay);
}
/**
* Processes vehicles when a light turns green.
* It loops as long as the light is green and there are vehicles in the queue,
* dequeuing one vehicle at a time and scheduling its crossing.
* * *Note*: This is a simplified model. A real simulation would
* account for the *time* it takes each vehicle to cross, processing
* one vehicle every {@code crossingTime} seconds. This implementation
* processes the entire queue "instantaneously" at the moment
* the light turns green.
*
* @param light The {@link TrafficLight} that just turned green.
* @param intersection The {@link Intersection} where the light is.
*/
private void processGreenLight(TrafficLight light, Intersection intersection) {
// While the light is green and vehicles are waiting...
while (light.getState() == TrafficLightState.GREEN && light.getQueueSize() > 0) {
Vehicle vehicle = light.removeVehicle();
if (vehicle != null) {
// Dequeue one vehicle and schedule its crossing
scheduleCrossing(vehicle, intersection);
}
}
}
/**
* Handles {@link EventType#STATISTICS_UPDATE}.
* Calls the {@link StatisticsCollector} to print the current
* state of the simulation (queue sizes, averages, etc.).
*/
private void handleStatisticsUpdate() {
System.out.printf("\n=== Statistics at t=%.2f ===%n", currentTime);
statisticsCollector.printCurrentStatistics(intersections, currentTime);
System.out.println();
}
/**
* Utility method to get the configured crossing time for a given {@link VehicleType}.
*
* @param type The type of vehicle.
* @return The crossing time in seconds.
*/
private double getCrossingTime(VehicleType type) {
return switch (type) {
case BIKE -> config.getBikeVehicleCrossingTime();
case LIGHT -> config.getLightVehicleCrossingTime();
case HEAVY -> config.getHeavyVehicleCrossingTime();
default -> 2.0;
}; // Default fallback
}
/**
* Prints the final summary of statistics at the end of the simulation.
*/
private void printFinalStatistics() {
System.out.println("\n" + "=".repeat(60));
System.out.println("FINAL SIMULATION STATISTICS");
System.out.println("=".repeat(60));
statisticsCollector.printFinalStatistics(intersections, currentTime);
System.out.println("=".repeat(60));
}
// --- Public Getters ---
/**
* Gets the current simulation time.
* @return The time in virtual seconds.
*/
public double getCurrentTime() {
return currentTime;
}
/**
* Gets a map of all intersections in the simulation.
* Returns a copy to prevent external modification.
* @return A {@link Map} of intersection IDs to {@link Intersection} objects.
*/
public Map<String, Intersection> getIntersections() {
return new HashMap<>(intersections);
}
/**
* Gets the statistics collector instance.
* @return The {@link StatisticsCollector}.
*/
public StatisticsCollector getStatisticsCollector() {
return statisticsCollector;
}
}

View File

@@ -0,0 +1,126 @@
package sd.engine;
import sd.IntersectionProcess;
import sd.config.SimulationConfig;
import sd.model.TrafficLight;
import sd.model.TrafficLightState;
import sd.model.Vehicle;
/**
* Implements the control logic for a single TrafficLight
* as a Runnable task that runs in its own Thread.
*/
public class TrafficLightThread implements Runnable {
private final TrafficLight light;
private final IntersectionProcess process;
private final SimulationConfig config;
private volatile boolean running;
// Store the thread reference for proper interruption
private Thread currentThread;
public TrafficLightThread(TrafficLight light, IntersectionProcess process, SimulationConfig config) {
this.light = light;
this.process = process;
this.config = config;
this.running = false;
}
@Override
public void run() {
this.currentThread = Thread.currentThread();
this.running = true;
System.out.println("[" + light.getId() + "] Traffic light thread started.");
try {
while (running && !Thread.currentThread().isInterrupted()) {
// Request permission to turn green (blocks until granted)
process.requestGreenLight(light.getDirection());
try {
// --- GREEN Phase ---
light.changeState(TrafficLightState.GREEN);
System.out.println("[" + light.getId() + "] State: GREEN");
// Process queue for the duration of the green light
long greenDurationMs = (long) (light.getGreenTime() * 1000);
processGreenLightQueue(greenDurationMs);
if (!running || Thread.currentThread().isInterrupted())
break;
// --- RED Phase ---
light.changeState(TrafficLightState.RED);
System.out.println("[" + light.getId() + "] State: RED");
} finally {
// Always release the green light permission
process.releaseGreenLight(light.getDirection());
}
// Wait for red duration
Thread.sleep((long) (light.getRedTime() * 1000));
}
} catch (InterruptedException e) {
System.out.println("[" + light.getId() + "] Traffic light thread interrupted.");
Thread.currentThread().interrupt();
} finally {
this.running = false;
System.out.println("[" + light.getId() + "] Traffic light thread stopped.");
}
}
private void processGreenLightQueue(long greenDurationMs) throws InterruptedException {
long startTime = System.currentTimeMillis();
while (running && !Thread.currentThread().isInterrupted()
&& light.getState() == TrafficLightState.GREEN) {
// Check if green time has expired
long elapsed = System.currentTimeMillis() - startTime;
if (elapsed >= greenDurationMs) {
break;
}
if (light.getQueueSize() > 0) {
Vehicle vehicle = light.removeVehicle();
if (vehicle != null) {
double crossingTime = getCrossingTimeForVehicle(vehicle);
long crossingTimeMs = (long) (crossingTime * 1000);
Thread.sleep(crossingTimeMs);
vehicle.addCrossingTime(crossingTime);
process.getIntersection().incrementVehiclesSent();
process.sendVehicleToNextDestination(vehicle);
}
} else {
// Queue is empty, wait briefly for new vehicles or until time expires
Thread.sleep(50);
}
}
}
private double getCrossingTimeForVehicle(Vehicle vehicle) {
return switch (vehicle.getType()) {
case BIKE -> config.getBikeVehicleCrossingTime();
case LIGHT -> config.getLightVehicleCrossingTime();
case HEAVY -> config.getHeavyVehicleCrossingTime();
default -> config.getLightVehicleCrossingTime();
};
}
/**
* Requests the thread to stop gracefully.
* Sets the running flag and interrupts the thread to unblock any sleep() calls.
*/
public void shutdown() {
this.running = false;
if (currentThread != null && currentThread.isAlive()) {
currentThread.interrupt();
}
}
}

View File

@@ -1,131 +0,0 @@
package sd.model;
import java.io.Serializable;
/**
* Represents a single event in the discrete event simulation.
* * An Event is the fundamental unit of action in the simulation. It contains:
* - A {@code timestamp} (when the event should occur).
* - A {@link EventType} (what kind of event it is).
* - Associated {@code data} (e.g., the {@link Vehicle} or {@link TrafficLight} involved).
* - An optional {@code location} (e.g., the ID of the {@link Intersection}).
* * Events are {@link Comparable}, allowing them to be sorted in a
* {@link java.util.PriorityQueue}. The primary sorting key is the
* {@code timestamp}. If timestamps are equal, {@code EventType} is used
* as a tie-breaker to ensure a consistent, deterministic order.
* * Implements {@link Serializable} so events could (in theory) be sent
* across a network in a distributed simulation.
*/
public class Event implements Comparable<Event>, Serializable {
private static final long serialVersionUID = 1L;
/**
* The simulation time (in seconds) when this event is scheduled to occur.
*/
private final double timestamp;
/**
* The type of event (e.g., VEHICLE_ARRIVAL, TRAFFIC_LIGHT_CHANGE).
*/
private final EventType type;
/**
* The data payload associated with this event.
* This could be a {@link Vehicle}, {@link TrafficLight}, or null.
*/
private final Object data;
/**
* The ID of the location where the event occurs (e.g., "Cr1").
* Can be null if the event is not location-specific (like VEHICLE_GENERATION).
*/
private final String location;
/**
* Constructs a new Event.
*
* @param timestamp The simulation time when the event occurs.
* @param type The {@link EventType} of the event.
* @param data The associated data (e.g., a Vehicle object).
* @param location The ID of the location (e.g., an Intersection ID).
*/
public Event(double timestamp, EventType type, Object data, String location) {
this.timestamp = timestamp;
this.type = type;
this.data = data;
this.location = location;
}
/**
* Convenience constructor for an Event without a specific location.
*
* @param timestamp The simulation time when the event occurs.
* @param type The {@link EventType} of the event.
* @param data The associated data (e.g., a Vehicle object).
*/
public Event(double timestamp, EventType type, Object data) {
this(timestamp, type, data, null);
}
/**
* Compares this event to another event for ordering.
* * Events are ordered primarily by {@link #timestamp} (ascending).
* If timestamps are identical, they are ordered by {@link #type} (alphabetical)
* to provide a stable, deterministic tie-breaking mechanism.
*
* @param other The other Event to compare against.
* @return A negative integer if this event comes before {@code other},
* zero if they are "equal" in sorting (though this is rare),
* or a positive integer if this event comes after {@code other}.
*/
@Override
public int compareTo(Event other) {
// Primary sort: timestamp (earlier events come first)
int cmp = Double.compare(this.timestamp, other.timestamp);
if (cmp == 0) {
// Tie-breaker: event type (ensures deterministic order)
return this.type.compareTo(other.type);
}
return cmp;
}
// --- Getters ---
/**
* @return The simulation time when the event occurs.
*/
public double getTimestamp() {
return timestamp;
}
/**
* @return The {@link EventType} of the event.
*/
public EventType getType() {
return type;
}
/**
* @return The data payload (e.g., {@link Vehicle}, {@link TrafficLight}).
* The caller must cast this to the expected type.
*/
public Object getData() {
return data;
}
/**
* @return The location ID (e.g., "Cr1"), or null if not applicable.
*/
public String getLocation() {
return location;
}
/**
* @return A string representation of the event for logging.
*/
@Override
public String toString() {
return String.format("Event{t=%.2f, type=%s, loc=%s}",
timestamp, type, location);
}
}

View File

@@ -1,45 +0,0 @@
package sd.model;
/**
* Enumeration representing all possible event types in the discrete event simulation.
* These types are used by the {@link sd.engine.SimulationEngine} to determine
* how to process a given {@link Event}.
*/
public enum EventType {
/**
* Fired when a {@link Vehicle} arrives at an {@link Intersection}.
* Data: {@link Vehicle}, Location: Intersection ID
*/
VEHICLE_ARRIVAL,
/**
* Fired when a {@link TrafficLight} is scheduled to change its state.
* Data: {@link TrafficLight}, Location: Intersection ID
*/
TRAFFIC_LIGHT_CHANGE,
/**
* Fired when a {@link Vehicle} begins to cross an {@link Intersection}.
* Data: {@link Vehicle}, Location: Intersection ID
*/
CROSSING_START,
/**
* Fired when a {@link Vehicle} finishes crossing an {@link Intersection}.
* Data: {@link Vehicle}, Location: Intersection ID
*/
CROSSING_END,
/**
* Fired when a new {@link Vehicle} should be created and added to the system.
* Data: null, Location: null
*/
VEHICLE_GENERATION,
/**
* Fired periodically to trigger the printing or sending of simulation statistics.
* Data: null, Location: null
*/
STATISTICS_UPDATE
}

View File

@@ -114,8 +114,8 @@ public class Intersection {
public void receiveVehicle(Vehicle vehicle) { public void receiveVehicle(Vehicle vehicle) {
totalVehiclesReceived++; totalVehiclesReceived++;
// Advance route since vehicle just arrived at this intersection // Note: Route advancement is handled by SimulationEngine.handleVehicleArrival()
vehicle.advanceRoute(); // before calling this method, so we don't advance here.
String nextDestination = vehicle.getCurrentDestination(); String nextDestination = vehicle.getCurrentDestination();
@@ -140,6 +140,16 @@ public class Intersection {
} }
} }
/**
* Returns the direction a vehicle should take to reach a given destination.
*
* @param destination The next destination (e.g., "Cr3", "S").
* @return The direction (e.g., "East"), or null if no route is configured.
*/
public String getDirectionForDestination(String destination) {
return routing.get(destination);
}
/** /**
* Returns the traffic light controlling the given direction. * Returns the traffic light controlling the given direction.
* *

View File

@@ -1,14 +1,15 @@
package sd.model; package sd.model;
import java.io.Serializable;
import java.util.UUID; import java.util.UUID;
import sd.protocol.MessageProtocol;
/** /**
* Represents a message exchanged between processes in the distributed simulation. * Represents a message exchanged between processes in the distributed simulation.
* Each message has a unique ID, a type, a sender, a destination, and a payload. * Each message has a unique ID, a type, a sender, a destination, and a payload.
* This class implements {@link Serializable} to allow transmission over the network. * This class implements {@link MessageProtocol} which extends Serializable for network transmission.
*/ */
public class Message implements Serializable { public class Message implements MessageProtocol {
private static final long serialVersionUID = 1L; private static final long serialVersionUID = 1L;
@@ -132,6 +133,17 @@ public class Message implements Serializable {
return (T) payload; return (T) payload;
} }
// Impl MessageProtocol interface
@Override
public String getSourceNode() {
return senderId;
}
@Override
public String getDestinationNode() {
return destinationId;
}
@Override @Override
public String toString() { public String toString() {
return String.format("Message[id=%s, type=%s, from=%s, to=%s, timestamp=%d]", return String.format("Message[id=%s, type=%s, from=%s, to=%s, timestamp=%d]",

View File

@@ -19,6 +19,12 @@ public enum MessageType {
*/ */
STATS_UPDATE, STATS_UPDATE,
/**
* Message to synchronize simulation start time across all processes.
* Payload: Start timestamp (long milliseconds)
*/
SIMULATION_START,
/** /**
* Message to synchronize traffic light states between processes. * Message to synchronize traffic light states between processes.
* Payload: TrafficLight state and timing information * Payload: TrafficLight state and timing information

View File

@@ -1,6 +1,8 @@
package sd.model; package sd.model;
import java.util.HashMap;
import java.util.LinkedList; import java.util.LinkedList;
import java.util.Map;
import java.util.Queue; import java.util.Queue;
import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.Lock;
@@ -94,6 +96,12 @@ public class TrafficLight {
*/ */
private int totalVehiclesProcessed; private int totalVehiclesProcessed;
/**
* Track when vehicles arrive at this light for wait time calculation.
* Maps vehicle ID to arrival timestamp (milliseconds).
*/
private final Map<String, Long> vehicleArrivalTimes;
/** /**
* Constructs a new TrafficLight. * Constructs a new TrafficLight.
* *
@@ -115,6 +123,7 @@ public class TrafficLight {
this.greenTime = greenTime; this.greenTime = greenTime;
this.redTime = redTime; this.redTime = redTime;
this.vehicleArrivalTimes = new HashMap<>();
this.totalVehiclesProcessed = 0; this.totalVehiclesProcessed = 0;
} }
@@ -128,6 +137,7 @@ public class TrafficLight {
lock.lock(); // Acquire the lock lock.lock(); // Acquire the lock
try { try {
queue.offer(vehicle); // Add vehicle to queue queue.offer(vehicle); // Add vehicle to queue
vehicleArrivalTimes.put(vehicle.getId(), System.currentTimeMillis());
vehicleAdded.signalAll(); // Signal (for concurrent models) vehicleAdded.signalAll(); // Signal (for concurrent models)
} finally { } finally {
lock.unlock(); // Always release the lock lock.unlock(); // Always release the lock
@@ -152,6 +162,13 @@ public class TrafficLight {
Vehicle vehicle = queue.poll(); // Remove vehicle from queue Vehicle vehicle = queue.poll(); // Remove vehicle from queue
if (vehicle != null) { if (vehicle != null) {
totalVehiclesProcessed++; totalVehiclesProcessed++;
// Calculate wait time (time spent in queue)
Long arrivalTime = vehicleArrivalTimes.remove(vehicle.getId());
if (arrivalTime != null) {
double waitTimeSeconds = (System.currentTimeMillis() - arrivalTime) / 1000.0;
vehicle.addWaitingTime(waitTimeSeconds);
}
} }
return vehicle; return vehicle;
} }

View File

@@ -12,7 +12,7 @@ import java.util.List;
* - Its complete, pre-determined {@code route} (a list of intersection IDs). * - Its complete, pre-determined {@code route} (a list of intersection IDs).
* - Its current position in the route ({@code currentRouteIndex}). * - Its current position in the route ({@code currentRouteIndex}).
* - Metrics for total time spent waiting at red lights and time spent crossing. * - Metrics for total time spent waiting at red lights and time spent crossing.
* * This object is passed around the simulation, primarily inside {@link Event} * * This object is passed around the simulation, primarily inside message
* payloads and stored in {@link TrafficLight} queues. * payloads and stored in {@link TrafficLight} queues.
* * Implements {@link Serializable} so it can be sent between processes * * Implements {@link Serializable} so it can be sent between processes
* or nodes (e.g., over a socket in a distributed version of the simulation). * or nodes (e.g., over a socket in a distributed version of the simulation).
@@ -70,7 +70,8 @@ public class Vehicle implements Serializable {
* @param id The unique ID for the vehicle. * @param id The unique ID for the vehicle.
* @param type The {@link VehicleType}. * @param type The {@link VehicleType}.
* @param entryTime The simulation time when the vehicle is created. * @param entryTime The simulation time when the vehicle is created.
* @param route The complete list of destination IDs (e.t., ["Cr1", "Cr2", "S"]). * @param route The complete list of destination IDs (e.t., ["Cr1", "Cr2",
* "S"]).
*/ */
public Vehicle(String id, VehicleType type, double entryTime, List<String> route) { public Vehicle(String id, VehicleType type, double entryTime, List<String> route) {
this.id = id; this.id = id;
@@ -151,7 +152,8 @@ public class Vehicle implements Serializable {
} }
/** /**
* @return The current index pointing to the vehicle's destination in its route list. * @return The current index pointing to the vehicle's destination in its route
* list.
*/ */
public int getCurrentRouteIndex() { public int getCurrentRouteIndex() {
return currentRouteIndex; return currentRouteIndex;
@@ -212,7 +214,6 @@ public class Vehicle implements Serializable {
public String toString() { public String toString() {
return String.format( return String.format(
"Vehicle{id='%s', type=%s, next='%s', route=%s}", "Vehicle{id='%s', type=%s, next='%s', route=%s}",
id, type, getCurrentDestination(), route id, type, getCurrentDestination(), route);
);
} }
} }

View File

@@ -4,7 +4,6 @@ import java.io.Closeable;
import java.io.DataInputStream; import java.io.DataInputStream;
import java.io.DataOutputStream; import java.io.DataOutputStream;
import java.io.IOException; import java.io.IOException;
import java.io.InputStream; import java.io.InputStream;
import java.io.OutputStream; import java.io.OutputStream;
import java.net.ConnectException; import java.net.ConnectException;
@@ -127,7 +126,7 @@ public class SocketConnection implements Closeable {
* @param message The "envelope" (which contains the Vehicle) to be sent. * @param message The "envelope" (which contains the Vehicle) to be sent.
* @throws IOException If writing to the stream fails or socket is not connected. * @throws IOException If writing to the stream fails or socket is not connected.
*/ */
public void sendMessage(MessageProtocol message) throws IOException { public synchronized void sendMessage(MessageProtocol message) throws IOException {
if (socket == null || !socket.isConnected()) { if (socket == null || !socket.isConnected()) {
throw new IOException("Socket is not connected"); throw new IOException("Socket is not connected");
} }
@@ -172,8 +171,8 @@ public class SocketConnection implements Closeable {
byte[] data = new byte[length]; byte[] data = new byte[length];
dataIn.readFully(data); dataIn.readFully(data);
// Deserialize do JSON // Deserialize do JSON - use concrete Message class, not interface
return serializer.deserialize(data, MessageProtocol.class); return serializer.deserialize(data, sd.model.Message.class);
} catch (SerializationException e) { } catch (SerializationException e) {
throw new IOException("Failed to deserialize message", e); throw new IOException("Failed to deserialize message", e);

View File

@@ -1,134 +0,0 @@
package sd.serialization;
import sd.model.Message;
import sd.model.MessageType;
import sd.model.Vehicle;
import sd.model.VehicleType;
import java.util.Arrays;
import java.util.List;
/**
* Demonstration of JSON serialization usage in the traffic simulation system.
*
* This class shows practical examples of how to use JSON (Gson) serialization
* for network communication between simulation processes.
*/
public class SerializationExample {
public static void main(String[] args) {
System.out.println("=== JSON Serialization Example ===\n");
// Create a sample vehicle
List<String> route = Arrays.asList("Cr1", "Cr2", "Cr5", "S");
Vehicle vehicle = new Vehicle("V001", VehicleType.LIGHT, 10.5, route);
vehicle.addWaitingTime(2.3);
vehicle.addCrossingTime(1.2);
// Create a message containing the vehicle
Message message = new Message(
MessageType.VEHICLE_TRANSFER,
"Cr1",
"Cr2",
vehicle
);
// ===== JSON Serialization =====
demonstrateJsonSerialization(message);
// ===== Factory Usage =====
demonstrateFactoryUsage(message);
// ===== Performance Test =====
performanceTest(message);
}
private static void demonstrateJsonSerialization(Message message) {
System.out.println("--- JSON Serialization ---");
try {
// Create JSON serializer with pretty printing for readability
MessageSerializer serializer = new JsonMessageSerializer(true);
// Serialize to bytes
byte[] data = serializer.serialize(message);
// Display the JSON
String json = new String(data);
System.out.println("Serialized JSON (" + data.length + " bytes):");
System.out.println(json);
// Deserialize back
Message deserialized = serializer.deserialize(data, Message.class);
System.out.println("\nDeserialized: " + deserialized);
System.out.println("✓ JSON serialization successful\n");
} catch (SerializationException e) {
System.err.println("❌ JSON serialization failed: " + e.getMessage());
}
}
private static void demonstrateFactoryUsage(Message message) {
System.out.println("--- Using SerializerFactory ---");
try {
// Get default serializer (JSON)
MessageSerializer serializer = SerializerFactory.createDefault();
System.out.println("Default serializer: " + serializer.getName());
// Use it
byte[] data = serializer.serialize(message);
Message deserialized = serializer.deserialize(data, Message.class);
System.out.println("Message type: " + deserialized.getType());
System.out.println("From: " + deserialized.getSenderId() +
" → To: " + deserialized.getDestinationId());
System.out.println("✓ Factory usage successful\n");
} catch (SerializationException e) {
System.err.println("❌ Factory usage failed: " + e.getMessage());
}
}
private static void performanceTest(Message message) {
System.out.println("--- Performance Test ---");
int iterations = 1000;
try {
MessageSerializer compactSerializer = new JsonMessageSerializer(false);
MessageSerializer prettySerializer = new JsonMessageSerializer(true);
// Warm up
for (int i = 0; i < 100; i++) {
compactSerializer.serialize(message);
}
// Test compact JSON
long compactStart = System.nanoTime();
byte[] compactData = null;
for (int i = 0; i < iterations; i++) {
compactData = compactSerializer.serialize(message);
}
long compactTime = System.nanoTime() - compactStart;
// Test pretty JSON
byte[] prettyData = prettySerializer.serialize(message);
// Results
System.out.println("Iterations: " + iterations);
System.out.println("\nJSON Compact:");
System.out.println(" Size: " + compactData.length + " bytes");
System.out.println(" Time: " + (compactTime / 1_000_000.0) + " ms total");
System.out.println(" Avg: " + (compactTime / iterations / 1_000.0) + " μs/operation");
System.out.println("\nJSON Pretty-Print:");
System.out.println(" Size: " + prettyData.length + " bytes");
System.out.println(" Size increase: " +
String.format("%.1f%%", ((double)prettyData.length / compactData.length - 1) * 100));
} catch (SerializationException e) {
System.err.println("❌ Performance test failed: " + e.getMessage());
}
}
}

View File

@@ -1,379 +0,0 @@
package sd.util;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import sd.config.SimulationConfig;
import sd.model.Intersection;
import sd.model.Vehicle;
import sd.model.VehicleType;
/**
* Collects, manages, and reports statistics throughout the simulation.
* * This class acts as the central bookkeeper for simulation metrics. It tracks:
* - Overall system statistics (total vehicles, completion time, wait time).
* - Per-vehicle-type statistics (counts, average wait time by type).
* - Per-intersection statistics (arrivals, departures).
* * It also maintains "in-flight" data, such as the arrival time of a
* vehicle at its *current* intersection, which is necessary to
* calculate waiting time when the vehicle later departs.
*/
public class StatisticsCollector {
// --- Vehicle tracking (for in-flight vehicles) ---
/**
* Tracks the simulation time when a vehicle arrives at its *current* intersection.
* This is used later to calculate waiting time (Depart_Time - Arrive_Time).
* Key: Vehicle ID (String)
* Value: Arrival Time (Double)
*/
private final Map<String, Double> vehicleArrivalTimes;
/**
* Tracks the sequence of intersections a vehicle has visited.
* Key: Vehicle ID (String)
* Value: List of Intersection IDs (String)
*/
private final Map<String, List<String>> vehicleIntersectionHistory;
// --- Overall system statistics ---
/** Total number of vehicles created by the {@link VehicleGenerator}. */
private int totalVehiclesGenerated;
/** Total number of vehicles that have reached their final destination ("S"). */
private int totalVehiclesCompleted;
/** The sum of all *completed* vehicles' total travel times. Used for averaging. */
private double totalSystemTime;
/** The sum of all *completed* vehicles' total waiting times. Used for averaging. */
private double totalWaitingTime;
// --- Per-vehicle-type statistics ---
/**
* Tracks the total number of vehicles generated, broken down by type.
* Key: {@link VehicleType}
* Value: Count (Integer)
*/
private final Map<VehicleType, Integer> vehicleTypeCount;
/**
* Tracks the total waiting time, broken down by vehicle type.
* Key: {@link VehicleType}
* Value: Total Wait Time (Double)
*/
private final Map<VehicleType, Double> vehicleTypeWaitTime;
// --- Per-intersection statistics ---
/**
* A map to hold statistics objects for each intersection.
* Key: Intersection ID (String)
* Value: {@link IntersectionStats} object
*/
private final Map<String, IntersectionStats> intersectionStats;
/**
* Constructs a new StatisticsCollector.
* Initializes all maps and counters.
*
* @param config The {@link SimulationConfig} (not currently used, but
* could be for configuration-dependent stats).
*/
public StatisticsCollector(SimulationConfig config) {
this.vehicleArrivalTimes = new HashMap<>();
this.vehicleIntersectionHistory = new HashMap<>();
this.totalVehiclesGenerated = 0;
this.totalVehiclesCompleted = 0;
this.totalSystemTime = 0.0;
this.totalWaitingTime = 0.0;
this.vehicleTypeCount = new HashMap<>();
this.vehicleTypeWaitTime = new HashMap<>();
this.intersectionStats = new HashMap<>();
// Initialize vehicle type counters to 0
for (VehicleType type : VehicleType.values()) {
vehicleTypeCount.put(type, 0);
vehicleTypeWaitTime.put(type, 0.0);
}
}
/**
* Records that a new vehicle has been generated.
* This is called by the {@link sd.engine.SimulationEngine}
* during a {@code VEHICLE_GENERATION} event.
*
* @param vehicle The {@link Vehicle} that was just created.
* @param currentTime The simulation time of the event.
*/
public void recordVehicleGeneration(Vehicle vehicle, double currentTime) {
totalVehiclesGenerated++;
// Track by vehicle type
VehicleType type = vehicle.getType();
vehicleTypeCount.put(type, vehicleTypeCount.get(type) + 1);
// Initialize history tracking for this vehicle
vehicleIntersectionHistory.put(vehicle.getId(), new ArrayList<>());
}
/**
* Records that a vehicle has arrived at an intersection queue.
* This is called by the {@link sd.engine.SimulationEngine}
* during a {@code VEHICLE_ARRIVAL} event.
*
* @param vehicle The {@link Vehicle} that arrived.
* @param intersectionId The ID of the intersection it arrived at.
* @param currentTime The simulation time of the arrival.
*/
public void recordVehicleArrival(Vehicle vehicle, String intersectionId, double currentTime) {
// Store arrival time - this is the "start waiting" time
vehicleArrivalTimes.put(vehicle.getId(), currentTime);
// Track intersection history
List<String> history = vehicleIntersectionHistory.get(vehicle.getId());
if (history != null) {
history.add(intersectionId);
}
// Update per-intersection statistics
getOrCreateIntersectionStats(intersectionId).recordArrival();
}
/**
* Records that a vehicle has completed its route and exited the system.
* This is where final metrics for the vehicle are aggregated.
* This is called by the {@link sd.engine.SimulationEngine}
* when a vehicle reaches destination "S".
*
* @param vehicle The {@link Vehicle} that is exiting.
* @param currentTime The simulation time of the exit.
*/
public void recordVehicleExit(Vehicle vehicle, double currentTime) {
totalVehiclesCompleted++;
// Calculate and aggregate total system time
double systemTime = vehicle.getTotalTravelTime(currentTime);
totalSystemTime += systemTime;
// Aggregate waiting time
double waitTime = vehicle.getTotalWaitingTime();
totalWaitingTime += waitTime;
// Aggregate waiting time by vehicle type
VehicleType type = vehicle.getType();
vehicleTypeWaitTime.put(type, vehicleTypeWaitTime.get(type) + waitTime);
// Clean up tracking maps to save memory
vehicleArrivalTimes.remove(vehicle.getId());
vehicleIntersectionHistory.remove(vehicle.getId());
}
/**
* Gets the time a vehicle arrived at its *current* intersection.
* This is used by the {@link sd.engine.SimulationEngine} to calculate
* wait time just before the vehicle crosses.
*
* @param vehicle The {@link Vehicle} to check.
* @return The arrival time, or 0.0 if not found.
*/
public double getArrivalTime(Vehicle vehicle) {
return vehicleArrivalTimes.getOrDefault(vehicle.getId(), 0.0);
}
/**
* Prints a "snapshot" of the current simulation statistics.
* This is called periodically by the {@link sd.engine.SimulationEngine}
* during a {@code STATISTICS_UPDATE} event.
*
* @param intersections A map of all intersections (to get queue data).
* @param currentTime The current simulation time.
*/
public void printCurrentStatistics(Map<String, Intersection> intersections, double currentTime) {
System.out.printf("--- Statistics at t=%.2f ---%n", currentTime);
System.out.printf("Vehicles: Generated=%d, Completed=%d, In-System=%d%n",
totalVehiclesGenerated,
totalVehiclesCompleted,
totalVehiclesGenerated - totalVehiclesCompleted);
if (totalVehiclesCompleted > 0) {
System.out.printf("Average System Time (so far): %.2fs%n", totalSystemTime / totalVehiclesCompleted);
System.out.printf("Average Waiting Time (so far): %.2fs%n", totalWaitingTime / totalVehiclesCompleted);
}
// Print per-intersection queue sizes
System.out.println("\nIntersection Queues:");
for (Map.Entry<String, Intersection> entry : intersections.entrySet()) {
String id = entry.getKey();
Intersection intersection = entry.getValue();
System.out.printf(" %s: Queue=%d, Received=%d, Sent=%d%n",
id,
intersection.getTotalQueueSize(),
intersection.getTotalVehiclesReceived(),
intersection.getTotalVehiclesSent());
}
}
/**
* Prints the final simulation summary statistics at the end of the run.
*
* @param intersections A map of all intersections.
* @param currentTime The final simulation time.
*/
public void printFinalStatistics(Map<String, Intersection> intersections, double currentTime) {
System.out.println("\n=== SIMULATION SUMMARY ===");
System.out.printf("Duration: %.2f seconds%n", currentTime);
System.out.printf("Total Vehicles Generated: %d%n", totalVehiclesGenerated);
System.out.printf("Total Vehicles Completed: %d%n", totalVehiclesCompleted);
System.out.printf("Vehicles Still in System: %d%n", totalVehiclesGenerated - totalVehiclesCompleted);
// Overall averages
if (totalVehiclesCompleted > 0) {
System.out.printf("%nAVERAGE METRICS (for completed vehicles):%n");
System.out.printf(" System Time: %.2f seconds%n", totalSystemTime / totalVehiclesCompleted);
System.out.printf(" Waiting Time: %.2f seconds%n", totalWaitingTime / totalVehiclesCompleted);
System.out.printf(" Throughput: %.2f vehicles/second%n", totalVehiclesCompleted / currentTime);
}
// Vehicle type breakdown
System.out.println("\nVEHICLE TYPE DISTRIBUTION:");
for (VehicleType type : VehicleType.values()) {
int count = vehicleTypeCount.get(type);
if (count > 0) {
double percentage = (count * 100.0) / totalVehiclesGenerated;
// Calculate avg wait *only* for this type
// This assumes all generated vehicles of this type *completed*
// A more accurate way would be to track completed vehicle types
double avgWait = vehicleTypeWaitTime.get(type) / count;
System.out.printf(" %s: %d (%.1f%%), Avg Wait: %.2fs%n",
type, count, percentage, avgWait);
}
}
// Per-intersection statistics
System.out.println("\nINTERSECTION STATISTICS:");
for (Map.Entry<String, Intersection> entry : intersections.entrySet()) {
String id = entry.getKey();
Intersection intersection = entry.getValue();
System.out.printf(" %s:%n", id);
System.out.printf(" Vehicles Received: %d%n", intersection.getTotalVehiclesReceived());
System.out.printf(" Vehicles Sent: %d%n", intersection.getTotalVehiclesSent());
System.out.printf(" Final Queue Size: %d%n", intersection.getTotalQueueSize());
// Traffic light details
intersection.getTrafficLights().forEach(light -> {
System.out.printf(" Light %s: State=%s, Queue=%d, Processed=%d%n",
light.getDirection(),
light.getState(),
light.getQueueSize(),
light.getTotalVehiclesProcessed());
});
}
// System health indicators
System.out.println("\nSYSTEM HEALTH:");
int totalQueuedVehicles = intersections.values().stream()
.mapToInt(Intersection::getTotalQueueSize)
.sum();
System.out.printf(" Total Queued Vehicles (at end): %d%n", totalQueuedVehicles);
if (totalVehiclesGenerated > 0) {
double completionRate = (totalVehiclesCompleted * 100.0) / totalVehiclesGenerated;
System.out.printf(" Completion Rate: %.1f%%%n", completionRate);
}
}
/**
* Gets or creates the statistics object for a given intersection.
* Uses {@code computeIfAbsent} for efficient, thread-safe-like instantiation.
*
* @param intersectionId The ID of the intersection.
* @return The {@link IntersectionStats} object for that ID.
*/
private IntersectionStats getOrCreateIntersectionStats(String intersectionId) {
// If 'intersectionId' is not in the map, create a new IntersectionStats()
// and put it in the map, then return it.
// Otherwise, just return the one that's already there.
return intersectionStats.computeIfAbsent(intersectionId, k -> new IntersectionStats());
}
/**
* Inner class to track per-intersection statistics.
* This is a simple data holder.
*/
private static class IntersectionStats {
private int totalArrivals;
private int totalDepartures;
public IntersectionStats() {
this.totalArrivals = 0;
this.totalDepartures = 0;
}
public void recordArrival() {
totalArrivals++;
}
public void recordDeparture() {
totalDepartures++;
}
public int getTotalArrivals() {
return totalArrivals;
}
public int getTotalDepartures() {
return totalDepartures;
}
}
// --- Public Getters for Final Statistics ---
/**
* @return Total vehicles generated during the simulation.
*/
public int getTotalVehiclesGenerated() {
return totalVehiclesGenerated;
}
/**
* @return Total vehicles that completed their route.
*/
public int getTotalVehiclesCompleted() {
return totalVehiclesCompleted;
}
/**
* @return The sum of all travel times for *completed* vehicles.
*/
public double getTotalSystemTime() {
return totalSystemTime;
}
/**
* @return The sum of all waiting times for *completed* vehicles.
*/
public double getTotalWaitingTime() {
return totalWaitingTime;
}
/**
* @return The average travel time for *completed* vehicles.
*/
public double getAverageSystemTime() {
return totalVehiclesCompleted > 0 ? totalSystemTime / totalVehiclesCompleted : 0.0;
}
/**
* @return The average waiting time for *completed* vehicles.
*/
public double getAverageWaitingTime() {
return totalVehiclesCompleted > 0 ? totalWaitingTime / totalVehiclesCompleted : 0.0;
}
}

View File

@@ -0,0 +1,142 @@
/* Global Styles */
.root {
-fx-background-color: #f4f7f6;
-fx-font-family: 'Segoe UI', sans-serif;
}
/* Header */
.header {
-fx-background-color: linear-gradient(to right, #2c3e50, #4ca1af);
-fx-padding: 20;
-fx-effect: dropshadow(three-pass-box, rgba(0,0,0,0.2), 10, 0, 0, 5);
}
.header-title {
-fx-font-size: 28px;
-fx-font-weight: bold;
-fx-text-fill: white;
}
.header-subtitle {
-fx-font-size: 16px;
-fx-text-fill: #ecf0f1;
}
/* Buttons */
.button-start {
-fx-background-color: #2ecc71;
-fx-text-fill: white;
-fx-font-weight: bold;
-fx-padding: 10 20;
-fx-background-radius: 5;
-fx-cursor: hand;
-fx-effect: dropshadow(three-pass-box, rgba(0,0,0,0.1), 5, 0, 0, 2);
}
.button-start:hover {
-fx-background-color: #27ae60;
}
.button-start:disabled {
-fx-background-color: #95a5a6;
-fx-opacity: 0.7;
}
.button-stop {
-fx-background-color: #e74c3c;
-fx-text-fill: white;
-fx-font-weight: bold;
-fx-padding: 10 20;
-fx-background-radius: 5;
-fx-cursor: hand;
-fx-effect: dropshadow(three-pass-box, rgba(0,0,0,0.1), 5, 0, 0, 2);
}
.button-stop:hover {
-fx-background-color: #c0392b;
}
.button-stop:disabled {
-fx-background-color: #95a5a6;
-fx-opacity: 0.7;
}
/* Cards / Panels */
.card {
-fx-background-color: white;
-fx-background-radius: 8;
-fx-effect: dropshadow(three-pass-box, rgba(0,0,0,0.05), 10, 0, 0, 2);
-fx-padding: 0;
}
.card-header {
-fx-background-color: #ecf0f1;
-fx-background-radius: 8 8 0 0;
-fx-padding: 10 15;
-fx-border-color: #bdc3c7;
-fx-border-width: 0 0 1 0;
}
.card-title {
-fx-font-size: 16px;
-fx-font-weight: bold;
-fx-text-fill: #2c3e50;
}
.card-content {
-fx-padding: 15;
}
/* Statistics Grid */
.stat-label {
-fx-font-size: 14px;
-fx-text-fill: #7f8c8d;
}
.stat-value {
-fx-font-size: 20px;
-fx-font-weight: bold;
-fx-text-fill: #2980b9;
}
/* Tables */
.table-view {
-fx-background-color: transparent;
-fx-border-color: transparent;
}
.table-view .column-header-background {
-fx-background-color: #ecf0f1;
-fx-border-color: #bdc3c7;
-fx-border-width: 0 0 1 0;
}
.table-view .column-header .label {
-fx-text-fill: #2c3e50;
-fx-font-weight: bold;
}
.table-row-cell {
-fx-background-color: white;
-fx-border-color: transparent;
}
.table-row-cell:odd {
-fx-background-color: #f9f9f9;
}
.table-row-cell:selected {
-fx-background-color: #3498db;
-fx-text-fill: white;
}
/* Footer */
.footer {
-fx-background-color: #34495e;
-fx-padding: 10 20;
}
.footer-text {
-fx-text-fill: #ecf0f1;
-fx-font-size: 12px;
}

View File

@@ -0,0 +1,43 @@
{
"intersections": [
{
"id": "Cr1",
"lights": ["East", "South"],
"routes": {
"Cr2": "East",
"Cr4": "South"
}
},
{
"id": "Cr2",
"lights": ["West", "East", "South"],
"routes": {
"Cr1": "West",
"Cr3": "East",
"Cr5": "South"
}
},
{
"id": "Cr3",
"lights": ["West", "South"],
"routes": {
"Cr2": "West",
"S": "South"
}
},
{
"id": "Cr4",
"lights": ["East"],
"routes": {
"Cr5": "East"
}
},
{
"id": "Cr5",
"lights": ["East"],
"routes": {
"S": "East"
}
}
]
}

View File

@@ -46,54 +46,44 @@ simulation.arrival.fixed.interval=2.0
# === TRAFFIC LIGHT TIMINGS === # === TRAFFIC LIGHT TIMINGS ===
# Format: trafficlight.<intersection>.<direction>.<state>=<seconds> # Format: trafficlight.<intersection>.<direction>.<state>=<seconds>
# Intersection 1 # Intersection 1 (Entry point - balanced)
trafficlight.Cr1.North.green=30.0 trafficlight.Cr1.South.green=20.0
trafficlight.Cr1.North.red=30.0 trafficlight.Cr1.South.red=40.0
trafficlight.Cr1.South.green=30.0 trafficlight.Cr1.East.green=20.0
trafficlight.Cr1.South.red=30.0 trafficlight.Cr1.East.red=40.0
trafficlight.Cr1.East.green=30.0 trafficlight.Cr1.West.green=20.0
trafficlight.Cr1.East.red=30.0 trafficlight.Cr1.West.red=40.0
trafficlight.Cr1.West.green=30.0
trafficlight.Cr1.West.red=30.0
# Intersection 2 # Intersection 2 (Main hub - shorter cycles, favor East-West)
trafficlight.Cr2.North.green=25.0 trafficlight.Cr2.South.green=12.0
trafficlight.Cr2.North.red=35.0 trafficlight.Cr2.South.red=36.0
trafficlight.Cr2.South.green=25.0 trafficlight.Cr2.East.green=18.0
trafficlight.Cr2.South.red=35.0 trafficlight.Cr2.East.red=30.0
trafficlight.Cr2.East.green=35.0 trafficlight.Cr2.West.green=18.0
trafficlight.Cr2.East.red=25.0 trafficlight.Cr2.West.red=30.0
trafficlight.Cr2.West.green=35.0
trafficlight.Cr2.West.red=25.0
# Intersection 3 # Intersection 3 (Path to exit - favor East)
trafficlight.Cr3.North.green=30.0 trafficlight.Cr3.South.green=15.0
trafficlight.Cr3.North.red=30.0
trafficlight.Cr3.South.green=30.0
trafficlight.Cr3.South.red=30.0 trafficlight.Cr3.South.red=30.0
trafficlight.Cr3.East.green=30.0 trafficlight.Cr3.East.green=20.0
trafficlight.Cr3.East.red=30.0 trafficlight.Cr3.East.red=25.0
trafficlight.Cr3.West.green=30.0 trafficlight.Cr3.West.green=15.0
trafficlight.Cr3.West.red=30.0 trafficlight.Cr3.West.red=30.0
# Intersection 4 # Intersection 4 (Favor East toward Cr5)
trafficlight.Cr4.North.green=30.0 trafficlight.Cr4.South.green=15.0
trafficlight.Cr4.North.red=30.0
trafficlight.Cr4.South.green=30.0
trafficlight.Cr4.South.red=30.0 trafficlight.Cr4.South.red=30.0
trafficlight.Cr4.East.green=30.0 trafficlight.Cr4.East.green=20.0
trafficlight.Cr4.East.red=30.0 trafficlight.Cr4.East.red=25.0
trafficlight.Cr4.West.green=30.0 trafficlight.Cr4.West.green=15.0
trafficlight.Cr4.West.red=30.0 trafficlight.Cr4.West.red=30.0
# Intersection 5 # Intersection 5 (Near exit - favor East)
trafficlight.Cr5.North.green=30.0 trafficlight.Cr5.South.green=15.0
trafficlight.Cr5.North.red=30.0
trafficlight.Cr5.South.green=30.0
trafficlight.Cr5.South.red=30.0 trafficlight.Cr5.South.red=30.0
trafficlight.Cr5.East.green=30.0 trafficlight.Cr5.East.green=22.0
trafficlight.Cr5.East.red=30.0 trafficlight.Cr5.East.red=23.0
trafficlight.Cr5.West.green=30.0 trafficlight.Cr5.West.green=15.0
trafficlight.Cr5.West.red=30.0 trafficlight.Cr5.West.red=30.0
# === VEHICLE CONFIGURATION === # === VEHICLE CONFIGURATION ===
@@ -103,11 +93,19 @@ vehicle.probability.light=0.6
vehicle.probability.heavy=0.2 vehicle.probability.heavy=0.2
# Average crossing times (in seconds) # Average crossing times (in seconds)
vehicle.crossing.time.bike=1.5 vehicle.crossing.time.bike=1.0
vehicle.crossing.time.light=2.0 vehicle.crossing.time.light=2.0
vehicle.crossing.time.heavy=4.0 vehicle.crossing.time.heavy=4.0
# Travel times between intersections (in seconds)
# Base time for light vehicles (cars)
vehicle.travel.time.base=8.0
# Bike travel time = 0.5 × car travel time
vehicle.travel.time.bike.multiplier=0.5
# Heavy vehicle travel time = 4 × bike travel time
vehicle.travel.time.heavy.multiplier=2.0
# === STATISTICS === # === STATISTICS ===
# Interval between dashboard updates (seconds) # Interval between dashboard updates (seconds)
statistics.update.interval=10.0 statistics.update.interval=1.0

View File

@@ -1,5 +1,5 @@
import java.io.IOException; import java.io.IOException;
import java.io.ObjectOutputStream; import java.net.InetSocketAddress;
import java.net.Socket; import java.net.Socket;
import java.nio.file.Files; import java.nio.file.Files;
import java.nio.file.Path; import java.nio.file.Path;
@@ -19,6 +19,7 @@ import sd.IntersectionProcess;
import sd.model.MessageType; import sd.model.MessageType;
import sd.model.Vehicle; import sd.model.Vehicle;
import sd.model.VehicleType; import sd.model.VehicleType;
import sd.protocol.SocketConnection;
/** /**
* Tests for IntersectionProcess - covers initialization, traffic lights, * Tests for IntersectionProcess - covers initialization, traffic lights,
@@ -96,11 +97,17 @@ public class IntersectionProcessTest {
Files.writeString(configFile, configContent); Files.writeString(configFile, configContent);
} }
// cleanup after tests
@AfterEach @AfterEach
public void tearDown() { public void tearDown() {
if (intersectionProcess != null) { if (intersectionProcess != null) {
try {
// Only shutdown if still running
intersectionProcess.shutdown(); intersectionProcess.shutdown();
} catch (Exception e) {
System.err.println("Error in tearDown: " + e.getMessage());
} finally {
intersectionProcess = null;
}
} }
} }
@@ -187,7 +194,7 @@ public class IntersectionProcessTest {
intersectionProcess = new IntersectionProcess("Cr1", configFile.toString()); intersectionProcess = new IntersectionProcess("Cr1", configFile.toString());
intersectionProcess.initialize(); intersectionProcess.initialize();
// start server in seperate thread // start server in separate thread
Thread serverThread = new Thread(() -> { Thread serverThread = new Thread(() -> {
try { try {
intersectionProcess.start(); intersectionProcess.start();
@@ -197,13 +204,22 @@ public class IntersectionProcessTest {
}); });
serverThread.start(); serverThread.start();
Thread.sleep(500); // wait for server to start // Wait for server to actually start with retries
boolean serverReady = false;
// try connecting to check if its running for (int i = 0; i < 20; i++) {
try (Socket clientSocket = new Socket("localhost", 18001)) { Thread.sleep(100);
assertTrue(clientSocket.isConnected()); try (Socket testSocket = new Socket()) {
testSocket.connect(new java.net.InetSocketAddress("localhost", 18001), 500);
serverReady = true;
break;
} catch (IOException e) {
// Server not ready yet, continue waiting
}
} }
assertTrue(serverReady, "Server should start and bind to port 18001");
// Shutdown immediately after confirming server is running
intersectionProcess.shutdown(); intersectionProcess.shutdown();
serverThread.join(2000); serverThread.join(2000);
} }
@@ -219,11 +235,17 @@ public class IntersectionProcessTest {
cr2.initialize(); cr2.initialize();
Thread thread1 = new Thread(() -> { Thread thread1 = new Thread(() -> {
try { cr1.start(); } catch (IOException e) { } try {
cr1.start();
} catch (IOException e) {
}
}); });
Thread thread2 = new Thread(() -> { Thread thread2 = new Thread(() -> {
try { cr2.start(); } catch (IOException e) { } try {
cr2.start();
} catch (IOException e) {
}
}); });
thread1.start(); thread1.start();
@@ -256,30 +278,32 @@ public class IntersectionProcessTest {
Thread serverThread = new Thread(() -> { Thread serverThread = new Thread(() -> {
try { try {
intersectionProcess.start(); intersectionProcess.start();
} catch (IOException e) { } } catch (IOException e) {
}
}); });
serverThread.start(); serverThread.start();
Thread.sleep(500); Thread.sleep(500);
// create test vehicle try {
// create test vehicle - FIXED: use 4-parameter constructor
java.util.List<String> route = Arrays.asList("Cr2", "Cr3", "S"); java.util.List<String> route = Arrays.asList("Cr2", "Cr3", "S");
Vehicle vehicle = new Vehicle("V001", VehicleType.LIGHT, 0.0, route); Vehicle vehicle = new Vehicle("V001", VehicleType.LIGHT, 0.0, route);
// send vehicle from Cr1 to Cr2 // send vehicle from Cr1 to Cr2 - FIXED: use SocketConnection
try (Socket socket = new Socket("localhost", 18002)) { try (Socket socket = new Socket("localhost", 18002);
ObjectOutputStream out = new ObjectOutputStream(socket.getOutputStream()); SocketConnection conn = new SocketConnection(socket)) {
TestVehicleMessage message = new TestVehicleMessage("Cr1", "Cr2", vehicle); TestVehicleMessage message = new TestVehicleMessage("Cr1", "Cr2", vehicle);
out.writeObject(message); conn.sendMessage(message);
out.flush();
Thread.sleep(1000); // wait for procesing Thread.sleep(1000); // wait for processing
} }
} finally {
intersectionProcess.shutdown(); intersectionProcess.shutdown();
serverThread.join(2000); serverThread.join(2000);
} }
}
// routing config tests // routing config tests
@@ -312,7 +336,8 @@ public class IntersectionProcessTest {
Thread serverThread = new Thread(() -> { Thread serverThread = new Thread(() -> {
try { try {
intersectionProcess.start(); intersectionProcess.start();
} catch (IOException e) { } } catch (IOException e) {
}
}); });
serverThread.start(); serverThread.start();
@@ -330,30 +355,35 @@ public class IntersectionProcessTest {
intersectionProcess = new IntersectionProcess("Cr1", configFile.toString()); intersectionProcess = new IntersectionProcess("Cr1", configFile.toString());
intersectionProcess.initialize(); intersectionProcess.initialize();
// Start server in separate thread
Thread serverThread = new Thread(() -> { Thread serverThread = new Thread(() -> {
try { try {
intersectionProcess.start(); intersectionProcess.start();
} catch (IOException e) { } } catch (IOException e) {
// Expected on shutdown
}
}); });
serverThread.start(); serverThread.start();
// Wait for server to start
Thread.sleep(500); Thread.sleep(500);
// verify server running // Shutdown
try (Socket socket = new Socket("localhost", 18001)) {
assertTrue(socket.isConnected());
}
intersectionProcess.shutdown(); intersectionProcess.shutdown();
serverThread.join(2000); serverThread.join(2000);
// after shutdown conection should fail // Give shutdown time to complete
Thread.sleep(500); Thread.sleep(200);
Exception exception = assertThrows(IOException.class, () -> {
Socket socket = new Socket("localhost", 18001); // Verify we cannot connect (server socket is closed)
socket.close(); boolean connectionFailed = false;
}); try (Socket testSocket = new Socket()) {
assertNotNull(exception); testSocket.connect(new InetSocketAddress("localhost", 18001), 500);
} catch (IOException e) {
connectionFailed = true; // Expected - server should be closed
}
assertTrue(connectionFailed, "Server socket should be closed after shutdown");
} }
@Test @Test
@@ -365,7 +395,8 @@ public class IntersectionProcessTest {
Thread serverThread = new Thread(() -> { Thread serverThread = new Thread(() -> {
try { try {
intersectionProcess.start(); intersectionProcess.start();
} catch (IOException e) { } } catch (IOException e) {
}
}); });
serverThread.start(); serverThread.start();
@@ -388,20 +419,34 @@ public class IntersectionProcessTest {
@Test @Test
@Timeout(15) @Timeout(15)
public void testIntegration_TwoIntersectionsVehicleTransfer() throws IOException, InterruptedException { public void testIntegration_TwoIntersectionsVehicleTransfer() throws IOException, InterruptedException {
IntersectionProcess cr1 = null;
IntersectionProcess cr2 = null;
Thread thread1 = null;
Thread thread2 = null;
try {
// setup 2 intersections // setup 2 intersections
IntersectionProcess cr1 = new IntersectionProcess("Cr1", configFile.toString()); cr1 = new IntersectionProcess("Cr1", configFile.toString());
IntersectionProcess cr2 = new IntersectionProcess("Cr2", configFile.toString()); cr2 = new IntersectionProcess("Cr2", configFile.toString());
cr1.initialize(); cr1.initialize();
cr2.initialize(); cr2.initialize();
// start both // start both
Thread thread1 = new Thread(() -> { final IntersectionProcess cr1Final = cr1;
try { cr1.start(); } catch (IOException e) { } thread1 = new Thread(() -> {
try {
cr1Final.start();
} catch (IOException e) {
}
}); });
Thread thread2 = new Thread(() -> { final IntersectionProcess cr2Final = cr2;
try { cr2.start(); } catch (IOException e) { } thread2 = new Thread(() -> {
try {
cr2Final.start();
} catch (IOException e) {
}
}); });
thread1.start(); thread1.start();
@@ -409,25 +454,34 @@ public class IntersectionProcessTest {
Thread.sleep(1000); // wait for servers Thread.sleep(1000); // wait for servers
// send vehicle to Cr1 that goes to Cr2 // send vehicle to Cr1 that goes to Cr2 - FIXED: use 4-parameter constructor
java.util.List<String> route = Arrays.asList("Cr1", "Cr2", "S"); java.util.List<String> route = Arrays.asList("Cr1", "Cr2", "S");
Vehicle vehicle = new Vehicle("V001", VehicleType.LIGHT, 0.0, route); Vehicle vehicle = new Vehicle("V001", VehicleType.LIGHT, 0.0, route);
try (Socket socket = new Socket("localhost", 18001)) { // FIXED: use SocketConnection
ObjectOutputStream out = new ObjectOutputStream(socket.getOutputStream()); try (Socket socket = new Socket("localhost", 18001);
SocketConnection conn = new SocketConnection(socket)) {
TestVehicleMessage message = new TestVehicleMessage("Entry", "Cr1", vehicle); TestVehicleMessage message = new TestVehicleMessage("Entry", "Cr1", vehicle);
out.writeObject(message); conn.sendMessage(message);
out.flush();
Thread.sleep(2000); // time for processing Thread.sleep(2000); // time for processing
} }
} finally {
if (cr1 != null) {
cr1.shutdown(); cr1.shutdown();
}
if (cr2 != null) {
cr2.shutdown(); cr2.shutdown();
}
if (thread1 != null) {
thread1.join(2000); thread1.join(2000);
}
if (thread2 != null) {
thread2.join(2000); thread2.join(2000);
} }
}
}
@Test @Test
public void testMain_MissingArguments() { public void testMain_MissingArguments() {

View File

@@ -6,15 +6,11 @@ import static org.junit.jupiter.api.Assertions.assertTrue;
import org.junit.jupiter.api.Test; import org.junit.jupiter.api.Test;
import sd.config.SimulationConfig; import sd.config.SimulationConfig;
import sd.engine.SimulationEngine;
import sd.model.Event;
import sd.model.EventType;
import sd.model.Intersection; import sd.model.Intersection;
import sd.model.TrafficLight; import sd.model.TrafficLight;
import sd.model.TrafficLightState; import sd.model.TrafficLightState;
import sd.model.Vehicle; import sd.model.Vehicle;
import sd.model.VehicleType; import sd.model.VehicleType;
import sd.util.StatisticsCollector;
import sd.util.VehicleGenerator; import sd.util.VehicleGenerator;
/** /**
@@ -29,7 +25,7 @@ class SimulationTest {
assertEquals(60.0, config.getSimulationDuration()); assertEquals(60.0, config.getSimulationDuration());
assertEquals("POISSON", config.getArrivalModel()); assertEquals("POISSON", config.getArrivalModel());
assertEquals(0.5, config.getArrivalRate()); assertEquals(0.5, config.getArrivalRate());
assertEquals(10.0, config.getStatisticsUpdateInterval()); assertEquals(1.0, config.getStatisticsUpdateInterval());
} }
@Test @Test
@@ -46,16 +42,6 @@ class SimulationTest {
assertTrue(!vehicle.getRoute().isEmpty()); assertTrue(!vehicle.getRoute().isEmpty());
} }
@Test
void testEventOrdering() {
Event e1 = new Event(5.0, EventType.VEHICLE_ARRIVAL, null, "Cr1");
Event e2 = new Event(3.0, EventType.VEHICLE_ARRIVAL, null, "Cr2");
Event e3 = new Event(7.0, EventType.TRAFFIC_LIGHT_CHANGE, null, "Cr1");
assertTrue(e2.compareTo(e1) < 0); // e2 should come before e1
assertTrue(e1.compareTo(e3) < 0); // e1 should come before e3
}
@Test @Test
void testIntersectionVehicleQueue() { void testIntersectionVehicleQueue() {
Intersection intersection = new Intersection("TestCr"); Intersection intersection = new Intersection("TestCr");
@@ -90,36 +76,7 @@ class SimulationTest {
assertEquals(TrafficLightState.RED, light.getState()); assertEquals(TrafficLightState.RED, light.getState());
} }
@Test // Removed testSimulationEngineInitialization as SimulationEngine has been
void testSimulationEngineInitialization() throws IOException { // removed.
SimulationConfig config = new SimulationConfig("src/main/resources/simulation.properties");
SimulationEngine engine = new SimulationEngine(config);
engine.initialize();
assertNotNull(engine.getIntersections());
assertEquals(5, engine.getIntersections().size());
// Check that intersections have traffic lights
for (Intersection intersection : engine.getIntersections().values()) {
assertEquals(3, intersection.getTrafficLights().size()); // North, South, East, West
}
}
@Test
void testStatisticsCollector() throws IOException {
SimulationConfig config = new SimulationConfig("src/main/resources/simulation.properties");
StatisticsCollector collector = new StatisticsCollector(config);
Vehicle v1 = new Vehicle("V1", VehicleType.LIGHT, 0.0,
java.util.Arrays.asList("Cr1", "Cr2", "S"));
collector.recordVehicleGeneration(v1, 0.0);
assertEquals(1, collector.getTotalVehiclesGenerated());
collector.recordVehicleArrival(v1, "Cr1", 1.0);
collector.recordVehicleExit(v1, 10.0);
assertEquals(1, collector.getTotalVehiclesCompleted());
}
} }

View File

@@ -0,0 +1,327 @@
package sd;
import java.io.IOException;
import java.net.Socket;
import java.nio.file.Files;
import java.nio.file.Path;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
import org.junit.jupiter.api.AfterEach;
import static org.junit.jupiter.api.Assertions.assertDoesNotThrow;
import static org.junit.jupiter.api.Assertions.assertNotNull;
import static org.junit.jupiter.api.Assertions.assertThrows;
import static org.junit.jupiter.api.Assertions.assertTrue;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.Timeout;
import org.junit.jupiter.api.io.TempDir;
import sd.config.SimulationConfig;
/**
* Testes unitários para a classe ExitNodeProcess.
*
* Esta classe de testes verifica:
* - Construção e inicialização do processo
* - Criação e aceitação de conexões do servidor socket
* - Gestão do ciclo de vida (start/shutdown)
* - Processamento concorrente de múltiplas conexões
* - Impressão de estatísticas finais
*
* Os testes utilizam configurações temporárias e portas dedicadas (19001)
* para evitar conflitos com outros testes ou processos em execução.
*/
public class ExitNodeProcessTest {
@TempDir
Path tempDir;
private Path configFile;
private ExitNodeProcess exitNodeProcess;
private Thread exitNodeThread;
/**
* Configura o ambiente de teste antes de cada teste.
* Cria um ficheiro de configuração temporário com as definições necessárias.
*/
@BeforeEach
public void setUp() throws IOException {
configFile = tempDir.resolve("test-simulation.properties");
String configContent = """
# Test Exit Node Configuration
# Exit Configuration
exit.host=localhost
exit.port=19001
# Dashboard Configuration (will not be running in tests)
dashboard.host=localhost
dashboard.port=19000
# Vehicle Crossing Times
vehicle.bike.crossingTime=2.0
vehicle.light.crossingTime=3.0
vehicle.heavy.crossingTime=5.0
# Simulation Duration
simulation.duration=60.0
""";
Files.writeString(configFile, configContent);
}
/**
* Limpa os recursos após cada teste.
* Garante que o processo e threads são terminados corretamente.
*/
@AfterEach
public void tearDown() {
if (exitNodeProcess != null) {
exitNodeProcess.shutdown();
}
if (exitNodeThread != null && exitNodeThread.isAlive()) {
exitNodeThread.interrupt();
try {
exitNodeThread.join(1000);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
}
/**
* Testa a construção bem-sucedida do ExitNodeProcess com configuração válida.
*/
@Test
public void testConstructor_Success() throws IOException {
SimulationConfig config = new SimulationConfig(configFile.toString());
exitNodeProcess = new ExitNodeProcess(config);
assertNotNull(exitNodeProcess);
}
/**
* Testa que uma exceção é lançada quando a configuração é inválida.
*/
@Test
public void testConstructor_InvalidConfig() {
Exception exception = assertThrows(IOException.class, () -> {
new SimulationConfig("non-existent-config.properties");
});
assertNotNull(exception);
}
/**
* Testa a inicialização sem dashboard disponível.
* Verifica que o processo continua a funcionar mesmo sem conexão ao dashboard.
*/
@Test
public void testInitialize_WithoutDashboard() throws IOException {
SimulationConfig config = new SimulationConfig(configFile.toString());
exitNodeProcess = new ExitNodeProcess(config);
assertDoesNotThrow(() -> exitNodeProcess.initialize());
}
/**
* Testa que o servidor socket é criado corretamente na porta configurada.
* Verifica que é possível estabelecer uma conexão ao socket do servidor.
*/
@Test
@Timeout(value = 3, unit = TimeUnit.SECONDS)
public void testStart_ServerSocketCreated() throws IOException {
SimulationConfig config = new SimulationConfig(configFile.toString());
exitNodeProcess = new ExitNodeProcess(config);
exitNodeProcess.initialize();
CountDownLatch latch = new CountDownLatch(1);
exitNodeThread = new Thread(() -> {
try {
latch.countDown();
exitNodeProcess.start();
} catch (IOException e) {
// expected when shutdown
}
});
exitNodeThread.start();
try {
assertTrue(latch.await(2, TimeUnit.SECONDS), "Exit node should start within timeout");
Thread.sleep(100);
assertDoesNotThrow(() -> {
try (Socket testSocket = new Socket("localhost", 19001)) {
assertTrue(testSocket.isConnected());
}
});
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
/**
* Testa que o servidor aceita conexões de clientes.
*/
@Test
@Timeout(value = 3, unit = TimeUnit.SECONDS)
public void testStart_AcceptsConnection() throws IOException, InterruptedException {
SimulationConfig config = new SimulationConfig(configFile.toString());
exitNodeProcess = new ExitNodeProcess(config);
exitNodeProcess.initialize();
CountDownLatch latch = new CountDownLatch(1);
exitNodeThread = new Thread(() -> {
try {
latch.countDown();
exitNodeProcess.start();
} catch (IOException e) {
// expected
}
});
exitNodeThread.start();
assertTrue(latch.await(2, TimeUnit.SECONDS));
Thread.sleep(200);
assertDoesNotThrow(() -> {
try (Socket socket = new Socket("localhost", 19001)) {
assertTrue(socket.isConnected());
}
});
}
/**
* Testa múltiplas inicializações e encerramentos do processo.
* Verifica que o processo pode ser iniciado e parado múltiplas vezes,
* permitindo reutilização da porta.
*/
@Test
@Timeout(value = 3, unit = TimeUnit.SECONDS)
public void testMultipleStartStop() throws IOException, InterruptedException {
SimulationConfig config = new SimulationConfig(configFile.toString());
exitNodeProcess = new ExitNodeProcess(config);
exitNodeProcess.initialize();
CountDownLatch latch = new CountDownLatch(1);
exitNodeThread = new Thread(() -> {
try {
latch.countDown();
exitNodeProcess.start();
} catch (IOException e) {
// expected
}
});
exitNodeThread.start();
assertTrue(latch.await(2, TimeUnit.SECONDS));
Thread.sleep(100);
exitNodeProcess.shutdown();
Thread.sleep(100);
assertDoesNotThrow(() -> {
SimulationConfig config2 = new SimulationConfig(configFile.toString());
ExitNodeProcess exitNode2 = new ExitNodeProcess(config2);
exitNode2.initialize();
exitNode2.shutdown();
});
}
/**
* Testa que o shutdown fecha corretamente o servidor socket.
* Após o shutdown, novas conexões ao socket devem falhar.
*/
@Test
@Timeout(value = 3, unit = TimeUnit.SECONDS)
public void testShutdown_ClosesServerSocket() throws IOException, InterruptedException {
SimulationConfig config = new SimulationConfig(configFile.toString());
exitNodeProcess = new ExitNodeProcess(config);
exitNodeProcess.initialize();
CountDownLatch startLatch = new CountDownLatch(1);
exitNodeThread = new Thread(() -> {
try {
startLatch.countDown();
exitNodeProcess.start();
} catch (IOException e) {
// expected
}
});
exitNodeThread.start();
assertTrue(startLatch.await(2, TimeUnit.SECONDS));
Thread.sleep(200);
exitNodeProcess.shutdown();
Thread.sleep(200);
assertThrows(IOException.class, () -> {
Socket socket = new Socket("localhost", 19001);
socket.close();
});
}
/**
* Testa que as estatísticas finais são impressas corretamente durante o shutdown.
* Verifica que o método não lança exceções mesmo sem dados processados.
*/
@Test
public void testPrintFinalStatistics() throws IOException {
SimulationConfig config = new SimulationConfig(configFile.toString());
exitNodeProcess = new ExitNodeProcess(config);
exitNodeProcess.initialize();
assertDoesNotThrow(() -> exitNodeProcess.shutdown());
}
/**
* Testa o processamento de múltiplas conexões concorrentes.
* Verifica que o servidor consegue lidar com vários clientes simultaneamente
* usando o pool de threads.
*/
@Test
@Timeout(value = 3, unit = TimeUnit.SECONDS)
public void testMultipleConcurrentConnections() throws IOException, InterruptedException {
SimulationConfig config = new SimulationConfig(configFile.toString());
exitNodeProcess = new ExitNodeProcess(config);
exitNodeProcess.initialize();
CountDownLatch latch = new CountDownLatch(1);
exitNodeThread = new Thread(() -> {
try {
latch.countDown();
exitNodeProcess.start();
} catch (IOException e) {
// expected
}
});
exitNodeThread.start();
assertTrue(latch.await(2, TimeUnit.SECONDS));
Thread.sleep(200);
Thread[] clients = new Thread[3];
for (int i = 0; i < 3; i++) {
clients[i] = new Thread(() -> {
try (Socket socket = new Socket("localhost", 19001)) {
assertTrue(socket.isConnected());
Thread.sleep(100);
} catch (IOException | InterruptedException e) {
// ignore
}
});
clients[i].start();
}
for (Thread client : clients) {
client.join(1000);
}
}
}

View File

@@ -0,0 +1,207 @@
package sd;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;
import org.junit.jupiter.api.AfterEach;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertTrue;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import sd.model.TrafficLight;
import sd.model.TrafficLightState;
/**
* Test class to verify traffic light coordination within an intersection.
* Ensures that only ONE traffic light can be GREEN at any given time.
*/
public class TrafficLightCoordinationTest {
private IntersectionProcess intersectionProcess;
@BeforeEach
public void setUp() throws IOException {
// Create an intersection with multiple traffic lights
intersectionProcess = new IntersectionProcess("Cr2", "src/main/resources/simulation.properties");
intersectionProcess.initialize();
}
@AfterEach
public void tearDown() throws InterruptedException {
if (intersectionProcess != null) {
intersectionProcess.shutdown();
}
}
/**
* Test that verifies mutual exclusion between traffic lights.
* Monitors all traffic lights for 10 seconds and ensures that
* at most ONE light is GREEN at any point in time.
*/
@Test
public void testOnlyOneGreenLightAtATime() throws InterruptedException {
System.out.println("\n=== Testing Traffic Light Mutual Exclusion ===");
// Start the intersection
Thread intersectionThread = new Thread(() -> {
try {
intersectionProcess.start();
} catch (IOException e) {
e.printStackTrace();
}
});
intersectionThread.start();
// Monitor traffic lights for violations
AtomicInteger maxGreenSimultaneously = new AtomicInteger(0);
AtomicInteger violationCount = new AtomicInteger(0);
List<String> violations = new ArrayList<>();
// Monitor for 10 seconds
long endTime = System.currentTimeMillis() + 10000;
while (System.currentTimeMillis() < endTime) {
int greenCount = 0;
StringBuilder currentState = new StringBuilder("States: ");
for (TrafficLight light : intersectionProcess.getIntersection().getTrafficLights()) {
TrafficLightState state = light.getState();
currentState.append(light.getDirection()).append("=").append(state).append(" ");
if (state == TrafficLightState.GREEN) {
greenCount++;
}
}
// Update maximum simultaneous green lights
if (greenCount > maxGreenSimultaneously.get()) {
maxGreenSimultaneously.set(greenCount);
}
// Check for violations (more than one green)
if (greenCount > 1) {
violationCount.incrementAndGet();
String violation = String.format("[VIOLATION] %d lights GREEN simultaneously: %s",
greenCount, currentState.toString());
violations.add(violation);
System.err.println(violation);
}
Thread.sleep(50); // Check every 50ms
}
System.out.println("\n=== Test Results ===");
System.out.println("Maximum simultaneous GREEN lights: " + maxGreenSimultaneously.get());
System.out.println("Total violations detected: " + violationCount.get());
if (!violations.isEmpty()) {
System.err.println("\nViolation details:");
violations.forEach(System.err::println);
}
// Assert that we never had more than one green light
assertEquals(0, violationCount.get(),
"Traffic light coordination violated! Multiple lights were GREEN simultaneously.");
assertTrue(maxGreenSimultaneously.get() <= 1,
"At most ONE light should be GREEN at any time. Found: " + maxGreenSimultaneously.get());
System.out.println("\nTraffic light coordination working correctly!");
}
/**
* Test that verifies all traffic lights get a chance to be GREEN.
* Ensures fairness in the coordination mechanism.
*/
@Test
public void testAllLightsGetGreenTime() throws InterruptedException {
System.out.println("\n=== Testing Traffic Light Fairness ===");
// Start the intersection
Thread intersectionThread = new Thread(() -> {
try {
intersectionProcess.start();
} catch (IOException e) {
e.printStackTrace();
}
});
intersectionThread.start();
// Track which lights have been green
List<TrafficLight> lights = intersectionProcess.getIntersection().getTrafficLights();
boolean[] hasBeenGreen = new boolean[lights.size()];
// Monitor for 10 seconds (enough time for all lights to cycle: 18+18+12 = 48s)
long endTime = System.currentTimeMillis() + 10000;
while (System.currentTimeMillis() < endTime) {
for (int i = 0; i < lights.size(); i++) {
if (lights.get(i).getState() == TrafficLightState.GREEN) {
hasBeenGreen[i] = true;
System.out.println("" + lights.get(i).getDirection() + " has been GREEN");
}
}
Thread.sleep(100);
}
// Check if all lights got green time
int greenCount = 0;
System.out.println("\n=== Fairness Results ===");
for (int i = 0; i < lights.size(); i++) {
String status = hasBeenGreen[i] ? "✓ YES" : "✗ NO";
System.out.println(lights.get(i).getDirection() + " got GREEN time: " + status);
if (hasBeenGreen[i])
greenCount++;
}
assertTrue(greenCount > 0, "At least one light should have been GREEN during the test");
System.out.println("\n" + greenCount + "/" + lights.size() + " lights were GREEN during test period");
}
/**
* Test that verifies the state transitions are consistent.
*/
@Test
public void testStateTransitionsAreConsistent() throws InterruptedException {
System.out.println("\n=== Testing State Transition Consistency ===");
Thread intersectionThread = new Thread(() -> {
try {
intersectionProcess.start();
} catch (IOException e) {
e.printStackTrace();
}
});
intersectionThread.start();
List<TrafficLight> lights = intersectionProcess.getIntersection().getTrafficLights();
TrafficLightState[] previousStates = new TrafficLightState[lights.size()];
// Initialize previous states
for (int i = 0; i < lights.size(); i++) {
previousStates[i] = lights.get(i).getState();
}
int transitionCount = 0;
long endTime = System.currentTimeMillis() + 8000;
while (System.currentTimeMillis() < endTime) {
for (int i = 0; i < lights.size(); i++) {
TrafficLightState currentState = lights.get(i).getState();
if (currentState != previousStates[i]) {
transitionCount++;
System.out.println(lights.get(i).getDirection() + " transitioned: " +
previousStates[i] + "" + currentState);
previousStates[i] = currentState;
}
}
Thread.sleep(100);
}
System.out.println("\nTotal state transitions observed: " + transitionCount);
assertTrue(transitionCount > 0, "There should be state transitions during the test period");
}
}

View File

@@ -0,0 +1,302 @@
package sd.coordinator;
import java.io.DataInputStream;
import java.io.IOException;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ConcurrentLinkedQueue;
import org.junit.jupiter.api.AfterEach;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertFalse;
import static org.junit.jupiter.api.Assertions.assertNotNull;
import static org.junit.jupiter.api.Assertions.assertTrue;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.Timeout;
import sd.model.Message;
import sd.model.MessageType;
import sd.model.Vehicle;
import sd.serialization.MessageSerializer;
import sd.serialization.SerializerFactory;
/**
* Integration tests for the Coordinator-side networking.
*
* What were checking here:
* 1. A SocketClient can actually connect to something listening
* 2. Messages go over the wire and can be deserialized
* 3. Vehicle payloads survive the trip
* 4. Shutdown messages can be broadcast to multiple intersections
*
* We do this by spinning up a tiny mock intersection server in-process.
*/
class CoordinatorIntegrationTest {
private List<MockIntersectionServer> mockServers;
private static final int BASE_PORT = 9001; // keep clear of real ports
@BeforeEach
void setUp() {
mockServers = new ArrayList<>();
}
@AfterEach
void tearDown() {
// Stop all mock servers
for (MockIntersectionServer server : mockServers) {
server.stop();
}
mockServers.clear();
}
/**
* Can the client open a TCP connection to our fake intersection?
*/
@Test
@Timeout(5)
void testSocketClientConnection() throws IOException, InterruptedException {
MockIntersectionServer server = new MockIntersectionServer("Cr1", BASE_PORT);
server.start();
mockServers.add(server);
// tiny pause to let the server bind
Thread.sleep(100);
SocketClient client = new SocketClient("Cr1", "localhost", BASE_PORT);
client.connect();
assertTrue(client.isConnected(), "Client should be connected to mock intersection");
client.close();
}
/**
* End-to-end: send a message, make sure the server actually receives it.
*/
@Test
@Timeout(5)
void testMessageTransmission() throws Exception {
MockIntersectionServer server = new MockIntersectionServer("Cr1", BASE_PORT);
server.start();
mockServers.add(server);
Thread.sleep(100);
SocketClient client = new SocketClient("Cr1", "localhost", BASE_PORT);
client.connect();
Message testMessage = new Message(
MessageType.VEHICLE_SPAWN,
"COORDINATOR",
"Cr1",
"Test payload"
);
client.send(testMessage);
// give the server a moment to read and deserialize
Thread.sleep(200);
assertFalse(
server.getReceivedMessages().isEmpty(),
"Mock server should have received at least one message"
);
Message receivedMsg = server.getReceivedMessages().poll();
assertNotNull(receivedMsg, "Server should have actually received a message");
assertEquals(MessageType.VEHICLE_SPAWN, receivedMsg.getType(), "Message type should match what we sent");
assertEquals("COORDINATOR", receivedMsg.getSenderId(), "Sender ID should be preserved");
assertEquals("Cr1", receivedMsg.getDestinationId(), "Destination ID should be preserved");
client.close();
}
/**
* Make sure vehicle payloads survive the trip and arrive non-null.
*/
@Test
@Timeout(5)
void testVehicleSpawnMessage() throws Exception {
MockIntersectionServer server = new MockIntersectionServer("Cr1", BASE_PORT);
server.start();
mockServers.add(server);
Thread.sleep(100);
SocketClient client = new SocketClient("Cr1", "localhost", BASE_PORT);
client.connect();
// fake a vehicle like the coordinator would send
List<String> route = List.of("Cr1", "Cr4", "Cr5", "S");
Vehicle vehicle = new Vehicle("V1", sd.model.VehicleType.LIGHT, 0.0, route);
Message spawnMessage = new Message(
MessageType.VEHICLE_SPAWN,
"COORDINATOR",
"Cr1",
vehicle
);
client.send(spawnMessage);
Thread.sleep(200);
Message receivedMsg = server.getReceivedMessages().poll();
assertNotNull(receivedMsg, "Mock server should receive the spawn message");
assertEquals(MessageType.VEHICLE_SPAWN, receivedMsg.getType(), "Message should be of type VEHICLE_SPAWN");
assertNotNull(receivedMsg.getPayload(), "Payload should not be null (vehicle must arrive)");
client.close();
}
/**
* Broadcast shutdown to multiple mock intersections and see if all of them get it.
*/
@Test
@Timeout(5)
void testShutdownMessageBroadcast() throws Exception {
// Start a couple of fake intersections
for (int i = 1; i <= 3; i++) {
MockIntersectionServer server = new MockIntersectionServer("Cr" + i, BASE_PORT + i - 1);
server.start();
mockServers.add(server);
}
Thread.sleep(200);
// Connect to all of them
List<SocketClient> clients = new ArrayList<>();
for (int i = 1; i <= 3; i++) {
SocketClient client = new SocketClient("Cr" + i, "localhost", BASE_PORT + i - 1);
client.connect();
clients.add(client);
}
Message shutdownMessage = new Message(
MessageType.SHUTDOWN,
"COORDINATOR",
"ALL",
"Simulation complete"
);
for (SocketClient client : clients) {
client.send(shutdownMessage);
}
Thread.sleep(200);
for (MockIntersectionServer server : mockServers) {
assertFalse(
server.getReceivedMessages().isEmpty(),
"Server " + server.getIntersectionId() + " should have received the shutdown message"
);
Message msg = server.getReceivedMessages().poll();
assertEquals(MessageType.SHUTDOWN, msg.getType(), "Server should receive a SHUTDOWN message");
}
for (SocketClient client : clients) {
client.close();
}
}
/**
* Tiny TCP server that pretends to be an intersection.
* It:
* - listens on a port
* - accepts connections
* - reads length-prefixed messages
* - deserializes them and stores them for the test to inspect
*/
private static class MockIntersectionServer {
private final String intersectionId;
private final int port;
private ServerSocket serverSocket;
private Thread serverThread;
private volatile boolean running;
private final ConcurrentLinkedQueue<Message> receivedMessages;
private final MessageSerializer serializer;
public MockIntersectionServer(String intersectionId, int port) {
this.intersectionId = intersectionId;
this.port = port;
this.receivedMessages = new ConcurrentLinkedQueue<>();
this.serializer = SerializerFactory.createDefault();
this.running = false;
}
public void start() throws IOException {
serverSocket = new ServerSocket(port);
running = true;
System.out.printf("Mock %s listening on port %d%n", intersectionId, port);
serverThread = new Thread(() -> {
try {
while (running) {
Socket clientSocket = serverSocket.accept();
handleClient(clientSocket);
}
} catch (IOException e) {
if (running) {
System.err.println("Mock " + intersectionId + " server error: " + e.getMessage());
}
}
}, "mock-" + intersectionId + "-listener");
serverThread.start();
}
private void handleClient(Socket clientSocket) {
new Thread(() -> {
try (DataInputStream input = new DataInputStream(clientSocket.getInputStream())) {
while (running) {
// Read length prefix (4 bytes, big-endian)
int length = input.readInt();
byte[] data = new byte[length];
input.readFully(data);
Message message = serializer.deserialize(data, Message.class);
receivedMessages.offer(message);
System.out.println("Mock " + intersectionId + " received: " + message.getType());
}
} catch (IOException e) {
if (running) {
System.err.println("Mock " + intersectionId + " client handler error: " + e.getMessage());
}
} catch (Exception e) {
System.err.println("Mock " + intersectionId + " deserialization error: " + e.getMessage());
}
}, "mock-" + intersectionId + "-client").start();
}
public void stop() {
running = false;
try {
if (serverSocket != null && !serverSocket.isClosed()) {
serverSocket.close();
}
if (serverThread != null) {
serverThread.interrupt();
serverThread.join(1000);
}
System.out.printf("Mock %s stopped%n", intersectionId);
} catch (IOException | InterruptedException e) {
System.err.println("Error stopping mock server " + intersectionId + ": " + e.getMessage());
}
}
public ConcurrentLinkedQueue<Message> getReceivedMessages() {
return receivedMessages;
}
public String getIntersectionId() {
return intersectionId;
}
}
}

View File

@@ -0,0 +1,194 @@
package sd.coordinator;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.junit.jupiter.api.AfterEach;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertFalse;
import static org.junit.jupiter.api.Assertions.assertNotNull;
import static org.junit.jupiter.api.Assertions.assertTrue;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import sd.config.SimulationConfig;
import sd.model.Vehicle;
import sd.util.VehicleGenerator;
/**
* Tests for the Coordinator/vehicle-generation layer.
*
* What were checking here:
* 1. Coordinator can be created with a valid config
* 2. Vehicle arrival times are monotonic and sane
* 3. Vehicle IDs are created in the format we expect (V1, V2, ...)
* 4. Generated vehicles have proper routes (start at CrX, end at S)
* 5. Config actually has intersection info
* 6. Duration in config is not something crazy
*/
class CoordinatorProcessTest {
private SimulationConfig config;
private static final String TEST_CONFIG = "src/main/resources/simulation.properties";
@BeforeEach
void setUp() throws IOException {
config = new SimulationConfig(TEST_CONFIG);
}
@AfterEach
void tearDown() {
config = null;
}
/**
* Basic smoke test: can we build a coordinator with this config?
*/
@Test
void testCoordinatorInitialization() {
CoordinatorProcess coordinator = new CoordinatorProcess(config);
assertNotNull(coordinator, "Coordinator should be created with a valid config");
}
/**
* Make sure the VehicleGenerator is giving us increasing arrival times,
* i.e. time doesnt go backwards and intervals look reasonable.
*/
@Test
void testVehicleGenerationTiming() {
VehicleGenerator generator = new VehicleGenerator(config);
double currentTime = 0.0;
List<Double> arrivalTimes = new ArrayList<>();
// generate a small batch to inspect
for (int i = 0; i < 10; i++) {
double nextArrival = generator.getNextArrivalTime(currentTime);
arrivalTimes.add(nextArrival);
currentTime = nextArrival;
}
// times should strictly increase
for (int i = 1; i < arrivalTimes.size(); i++) {
assertTrue(
arrivalTimes.get(i) > arrivalTimes.get(i - 1),
"Arrival times must increase — got " + arrivalTimes.get(i - 1) + " then " + arrivalTimes.get(i)
);
}
// and they shouldn't be nonsense
for (double time : arrivalTimes) {
assertTrue(time >= 0, "Arrival time should not be negative (got " + time + ")");
assertTrue(time < 1000, "Arrival time looks suspiciously large: " + time);
}
}
/**
* We generate V1..V5 manually and make sure the IDs are exactly those.
*/
@Test
void testVehicleIdGeneration() {
VehicleGenerator generator = new VehicleGenerator(config);
List<Vehicle> vehicles = new ArrayList<>();
for (int i = 1; i <= 5; i++) {
Vehicle v = generator.generateVehicle("V" + i, 0.0);
vehicles.add(v);
assertEquals("V" + i, v.getId(), "Vehicle ID should be 'V" + i + "' but got " + v.getId());
}
// just to be safe, no duplicates in that small set
long distinctCount = vehicles.stream().map(Vehicle::getId).distinct().count();
assertEquals(5, distinctCount, "Vehicle IDs in this batch should all be unique");
}
/**
* A generated vehicle should:
* - have a non-empty route
* - start in a known intersection (Cr1..Cr5)
* - end in S (exit)
*/
@Test
void testVehicleRouteValidity() {
VehicleGenerator generator = new VehicleGenerator(config);
for (int i = 0; i < 20; i++) {
Vehicle vehicle = generator.generateVehicle("V" + i, 0.0);
assertNotNull(vehicle.getRoute(), "Vehicle route should not be null");
assertFalse(vehicle.getRoute().isEmpty(), "Vehicle route should not be empty");
String firstHop = vehicle.getRoute().get(0);
assertTrue(
firstHop.matches("Cr[1-5]"),
"First hop should be a valid intersection (Cr1..Cr5), got: " + firstHop
);
String lastHop = vehicle.getRoute().get(vehicle.getRoute().size() - 1);
assertEquals("S", lastHop, "Last hop should be exit 'S' but got: " + lastHop);
}
}
/**
* Whatever is in simulation.properties should give us a sane duration.
*/
@Test
void testSimulationDuration() {
double duration = config.getSimulationDuration();
assertTrue(duration > 0, "Simulation duration must be positive");
assertTrue(duration >= 1.0, "Simulation should run at least 1 second (got " + duration + ")");
assertTrue(duration <= 86400.0, "Simulation should not run more than a day (got " + duration + ")");
}
/**
* Check that the 5 intersections defined in the architecture
* actually exist in the config and have valid network data.
*/
@Test
void testIntersectionConfiguration() {
String[] intersectionIds = {"Cr1", "Cr2", "Cr3", "Cr4", "Cr5"};
for (String id : intersectionIds) {
String host = config.getIntersectionHost(id);
int port = config.getIntersectionPort(id);
assertNotNull(host, "Host should not be null for " + id);
assertFalse(host.isEmpty(), "Host should not be empty for " + id);
assertTrue(port > 0, "Port should be > 0 for " + id + " (got " + port + ")");
assertTrue(port < 65536, "Port should be a valid TCP port for " + id + " (got " + port + ")");
}
}
/**
* Quick sanity check: over a bunch of generated vehicles,
* we should eventually see the different vehicle types appear.
*
* Note: this is probabilistic, so we're not being super strict.
*/
@Test
void testVehicleTypeDistribution() {
VehicleGenerator generator = new VehicleGenerator(config);
boolean hasBike = false;
boolean hasLight = false;
boolean hasHeavy = false;
// 50 is enough for a "we're probably fine" test
for (int i = 0; i < 50; i++) {
Vehicle vehicle = generator.generateVehicle("V" + i, 0.0);
switch (vehicle.getType()) {
case BIKE -> hasBike = true;
case LIGHT -> hasLight = true;
case HEAVY -> hasHeavy = true;
}
}
// at least one of them should have shown up — if not, RNG is cursed
assertTrue(
hasBike || hasLight || hasHeavy,
"Expected to see at least one vehicle type after 50 generations"
);
}
}

View File

@@ -0,0 +1,164 @@
package sd.dashboard;
import org.junit.jupiter.api.AfterEach;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertFalse;
import static org.junit.jupiter.api.Assertions.assertNotNull;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import sd.config.SimulationConfig;
import sd.model.VehicleType;
/**
* Unit tests for Dashboard Server components.
*/
class DashboardTest {
private DashboardStatistics statistics;
@BeforeEach
void setUp() {
statistics = new DashboardStatistics();
}
@AfterEach
void tearDown() {
statistics = null;
}
@Test
void testInitialStatistics() {
assertEquals(0, statistics.getTotalVehiclesGenerated(),
"Initial vehicles generated should be 0");
assertEquals(0, statistics.getTotalVehiclesCompleted(),
"Initial vehicles completed should be 0");
assertEquals(0.0, statistics.getAverageSystemTime(),
"Initial average system time should be 0.0");
assertEquals(0.0, statistics.getAverageWaitingTime(),
"Initial average waiting time should be 0.0");
}
@Test
void testVehicleCounters() {
statistics.incrementVehiclesGenerated();
assertEquals(1, statistics.getTotalVehiclesGenerated());
statistics.updateVehiclesGenerated(10);
assertEquals(10, statistics.getTotalVehiclesGenerated());
statistics.incrementVehiclesCompleted();
assertEquals(1, statistics.getTotalVehiclesCompleted());
}
@Test
void testAverageCalculations() {
// Add 3 completed vehicles with known times
statistics.updateVehiclesCompleted(3);
statistics.addSystemTime(3000); // 3000ms total
statistics.addWaitingTime(1500); // 1500ms total
assertEquals(1000.0, statistics.getAverageSystemTime(), 0.01,
"Average system time should be 1000ms");
assertEquals(500.0, statistics.getAverageWaitingTime(), 0.01,
"Average waiting time should be 500ms");
}
@Test
void testVehicleTypeStatistics() {
statistics.incrementVehicleType(VehicleType.LIGHT);
statistics.incrementVehicleType(VehicleType.LIGHT);
statistics.incrementVehicleType(VehicleType.HEAVY);
assertEquals(2, statistics.getVehicleTypeCount(VehicleType.LIGHT));
assertEquals(1, statistics.getVehicleTypeCount(VehicleType.HEAVY));
assertEquals(0, statistics.getVehicleTypeCount(VehicleType.BIKE));
}
@Test
void testIntersectionStatistics() {
statistics.updateIntersectionStats("Cr1", 10, 8, 2);
DashboardStatistics.IntersectionStats stats =
statistics.getIntersectionStats("Cr1");
assertNotNull(stats, "Intersection stats should not be null");
assertEquals("Cr1", stats.getIntersectionId());
assertEquals(10, stats.getTotalArrivals());
assertEquals(8, stats.getTotalDepartures());
assertEquals(2, stats.getCurrentQueueSize());
}
@Test
void testMultipleIntersections() {
statistics.updateIntersectionStats("Cr1", 10, 8, 2);
statistics.updateIntersectionStats("Cr2", 15, 12, 3);
statistics.updateIntersectionStats("Cr3", 5, 5, 0);
assertEquals(3, statistics.getAllIntersectionStats().size(),
"Should have 3 intersections");
}
@Test
void testStatsUpdatePayload() {
StatsUpdatePayload payload = new StatsUpdatePayload()
.setTotalVehiclesGenerated(50)
.setTotalVehiclesCompleted(20)
.setIntersectionArrivals(30)
.setIntersectionDepartures(25)
.setIntersectionQueueSize(5);
assertEquals(50, payload.getTotalVehiclesGenerated());
assertEquals(20, payload.getTotalVehiclesCompleted());
assertEquals(30, payload.getIntersectionArrivals());
assertEquals(25, payload.getIntersectionDepartures());
assertEquals(5, payload.getIntersectionQueueSize());
}
@Test
void testStatsMessage() {
StatsUpdatePayload payload = new StatsUpdatePayload()
.setIntersectionArrivals(10);
StatsMessage message = new StatsMessage("Cr1", payload);
assertEquals("Cr1", message.getSourceNode());
assertEquals("DashboardServer", message.getDestinationNode());
assertEquals(sd.model.MessageType.STATS_UPDATE, message.getType());
assertNotNull(message.getPayload());
}
@Test
void testThreadSafety() throws InterruptedException {
// Test concurrent updates
Thread t1 = new Thread(() -> {
for (int i = 0; i < 100; i++) {
statistics.incrementVehiclesGenerated();
}
});
Thread t2 = new Thread(() -> {
for (int i = 0; i < 100; i++) {
statistics.incrementVehiclesGenerated();
}
});
t1.start();
t2.start();
t1.join();
t2.join();
assertEquals(200, statistics.getTotalVehiclesGenerated(),
"Concurrent increments should total 200");
}
@Test
void testDashboardServerCreation() throws Exception {
SimulationConfig config = new SimulationConfig("simulation.properties");
DashboardServer server = new DashboardServer(config);
assertNotNull(server, "Server should be created successfully");
assertNotNull(server.getStatistics(), "Statistics should be initialized");
assertFalse(server.isRunning(), "Server should not be running initially");
}
}

60
main/start.sh Executable file
View File

@@ -0,0 +1,60 @@
#!/bin/bash
# Distributed Traffic Simulation Startup Script
# kill java
echo "-> Cleaning up existing processes..."
pkill -9 java 2>/dev/null
sleep 2
# build
echo "-> Building project..."
cd "$(dirname "$0")"
mvn package -DskipTests -q
if [ $? -ne 0 ]; then
echo "XXX Build failed! XXX"
exit 1
fi
echo "-> Build complete"
echo ""
# start gui
echo "-> Starting JavaFX Dashboard..."
mvn javafx:run &
DASHBOARD_PID=$!
sleep 3
# acho que é assim idk
echo "-> Starting 5 Intersection processes..."
for id in Cr1 Cr2 Cr3 Cr4 Cr5; do
java -cp target/classes:target/main-1.0-SNAPSHOT.jar sd.IntersectionProcess $id > /tmp/$(echo $id | tr '[:upper:]' '[:lower:]').log 2>&1 &
echo "[SUCCESS] Started $id"
done
sleep 2
# exit
echo "-> Starting Exit Node..."
java -cp target/classes:target/main-1.0-SNAPSHOT.jar sd.ExitNodeProcess > /tmp/exit.log 2>&1 &
sleep 1
# coordinator
echo "-> Starting Coordinator..."
java -cp target/classes:target/main-1.0-SNAPSHOT.jar sd.coordinator.CoordinatorProcess > /tmp/coordinator.log 2>&1 &
sleep 1
echo ""
echo "-> All processes started!"
echo ""
echo "-> System Status:"
ps aux | grep "java.*sd\." | grep -v grep | wc -l | xargs -I {} echo " {} Java processes running"
echo ""
echo " IMPORTANT: Keep the JavaFX Dashboard window OPEN for 60+ seconds"
echo " to see live updates! The simulation runs for 60 seconds."
echo ""
echo "-> Logs available at:"
echo " Dashboard: Check JavaFX window (live updates)"
echo " Intersections: /tmp/cr*.log"
echo " Exit Node: /tmp/exit.log"
echo " Coordinator: /tmp/coordinator.log"
echo ""
echo "-> To stop all processes: pkill -9 java"
echo ""

1055
main/testing.txt Normal file

File diff suppressed because it is too large Load Diff