1 Commits

Author SHA1 Message Date
128e2e2366 pre-build dash 2025-10-22 22:55:48 +01:00
22 changed files with 39 additions and 2893 deletions

View File

@@ -1,61 +0,0 @@
name: Java CI with Maven
on:
push:
branches: [ "main" ]
tags:
- 'v*.*.*'
pull_request:
branches: [ "main" ]
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Set up JDK 17
uses: actions/setup-java@v4
with:
java-version: '17'
distribution: 'temurin'
cache: maven
- name: Build with Maven
run: mvn -B package
working-directory: main
- name: Upload built JAR
uses: actions/upload-artifact@v4
with:
name: package
path: main/target/*.jar
- name: Generate dependency graph
run: mvn -B -f main/pom.xml com.github.ferstl:depgraph-maven-plugin:4.0.1:graph
- name: Upload dependency graph artifact
uses: actions/upload-artifact@v4
with:
name: dependency-graph
path: main/target/**
publish-release:
runs-on: ubuntu-latest
needs: [build]
if: startsWith(github.ref, 'refs/tags/')
permissions:
contents: write
steps:
- name: Download built JAR
uses: actions/download-artifact@v4
with:
name: package
path: main/target/
- name: Create GitHub Release
uses: softprops/action-gh-release@v2
with:
files: main/target/*.jar

2
.gitignore vendored
View File

@@ -47,4 +47,4 @@ build/
# Other
*.swp
*.pdf
*.pdf

620
README.md
View File

@@ -1,620 +0,0 @@
# Sistema de Simulação de Tráfego Distribuído
Sistema distribuído de simulação de tráfego.
---
## Índice
- [Visão Geral](#visão-geral)
- [Arquitetura](#arquitetura)
- [Protocolo de Comunicação](#protocolo-de-comunicação)
- [Estrutura do Projeto](#estrutura-do-projeto)
- [Instalação e Execução](#instalação-e-execução)
- [Documentação](#documentação)
- [Desenvolvimento](#desenvolvimento)
---
## Visão Geral
Este projeto implementa uma simulação distribuída de tráfego veicular numa rede de cruzamentos. O sistema utiliza:
- **Processos independentes** para cada cruzamento
- **Threads** para controlar os semáforos dentro de cada cruzamento
- **Comunicação via sockets** para transferência de veículos entre cruzamentos
- **Simulação de eventos discretos** (DES) para gerir o tempo de simulação
### Características Principais
- Simulação determinística e reproduzível
- Comunicação assíncrona entre processos
- Protocolo de mensagens baseado em JSON
- Dashboard em tempo real (planeado)
- Estatísticas detalhadas de desempenho
---
## Arquitetura
### Visão Geral do Sistema
```
┌─────────────────────────────────────────────────────────────────┐
│ SISTEMA DISTRIBUÍDO │
├─────────────────────────────────────────────────────────────────┤
│ │
│ ┌──────────────┐ ┌──────────────┐ │
│ │ Coordenador │ ────────────────────────>│ Dashboard │ │
│ │ / Gerador │ │ │
│ └──────┬───────┘ └──────▲───────┘ │
│ │ │ │
│ │ Gera veículos Stats │ │
│ │ │ │
│ ▼ │ │
│ ┌─────────────────────────────────────────────────┴──────┐ │
│ │ Rede de Cruzamentos (Processos) │ │
│ │ │ │
│ │ ┌────┐ ┌────┐ ┌────┐ │ │
│ │ │Cr1 │◄───────►│Cr2 │◄───────►│Cr3 │ │ │
│ │ └─┬──┘ └─┬──┘ └─┬──┘ │ │
│ │ │ │ │ │ │
│ │ │ ┌────▼────┐ │ │ │
│ │ └────────►│ Cr4 │◄────────┘ │ │
│ │ └────┬────┘ │ │
│ │ │ │ │
│ │ ┌────▼────┐ │ │
│ │ │ Cr5 │ │ │
│ │ └────┬────┘ │ │
│ └───────────────────┼─────────────────────────────────────┤ │
│ │ │ │
│ ▼ │ │
│ ┌──────────────┐ │ │
│ │ Nó de Saída │ │ │
│ │ (S) │ │ │
│ └──────────────┘ │ │
│ │ │
└────────────────────────────────────────────────────────────┘ │
```
### Componentes
1. **Coordenador/Gerador**: Gera veículos e injeta no sistema
2. **Cruzamentos (Cr1-Cr5)**: Processos independentes que gerem tráfego local
3. **Nó de Saída (S)**: Recolhe estatísticas de veículos que saem do sistema
4. **Dashboard Server**: Agrega e exibe dados em tempo real
---
## Protocolo de Comunicação
### Formato de Serialização: JSON (Gson)
O sistema utiliza JSON como formato de serialização por ser mais rápido, seguro e legível que a serialização em Java.
### Estrutura de Mensagens
Todas as mensagens seguem o formato base:
```json
{
"messageId": "uuid",
"type": "MESSAGE_TYPE",
"senderId": "sender_id",
"destinationId": "destination_id",
"timestamp": 1729595234567,
"payload": { ... }
}
```
### Tipos de Mensagens
#### 1. VEHICLE_TRANSFER
Transfere um veículo entre cruzamentos.
**Estrutura:**
```json
{
"messageId": "a3c5e7f9-1234-5678-90ab-cdef12345678",
"type": "VEHICLE_TRANSFER",
"senderId": "Cr1",
"destinationId": "Cr2",
"timestamp": 1729595234567,
"payload": {
"id": "V123",
"type": "LIGHT",
"entryTime": 15.7,
"route": ["Cr1", "Cr2", "Cr5", "S"],
"currentRouteIndex": 1,
"totalWaitingTime": 3.2,
"totalCrossingTime": 1.8
}
}
```
**Fluxo:**
1. Veículo completa travessia no Cr1
2. Cr1 serializa mensagem VEHICLE_TRANSFER
3. Envia para Cr2 via socket
4. Cr2 desserializa e adiciona veículo à fila
#### 2. STATS_UPDATE
Envia estatísticas de um cruzamento para o Dashboard.
**Estrutura:**
```json
{
"messageId": "b4d6e8f0-2345-6789-01bc-def123456789",
"type": "STATS_UPDATE",
"senderId": "Cr3",
"destinationId": "Dashboard",
"timestamp": 1729595234789,
"payload": {
"intersectionId": "Cr3",
"queueLengths": {
"North": 5,
"South": 3,
"East": 7,
"West": 2
},
"vehiclesProcessed": 142,
"averageWaitTime": 4.5,
"currentTime": 123.45
}
}
```
**Frequência:** A cada 10 segundos (configurável)
#### 3. VEHICLE_EXIT
Notifica quando um veículo sai do sistema.
**Estrutura:**
```json
{
"messageId": "c5e7f9a1-3456-7890-12bc-def123456789",
"type": "VEHICLE_EXIT",
"senderId": "Cr5",
"destinationId": "ExitNode",
"timestamp": 1729595234890,
"payload": {
"id": "V123",
"type": "LIGHT",
"entryTime": 15.7,
"exitTime": 45.2,
"totalSystemTime": 29.5,
"totalWaitingTime": 8.3,
"totalCrossingTime": 4.8,
"routeTaken": ["Cr1", "Cr2", "Cr5", "S"]
}
}
```
#### 4. HEARTBEAT
Mantém a ligação ativa e monitoriza a saúde dos processos.
**Estrutura:**
```json
{
"messageId": "d6e8f0a2-4567-8901-23cd-ef1234567890",
"type": "HEARTBEAT",
"senderId": "Cr1",
"destinationId": "Coordinator",
"timestamp": 1729595235000,
"payload": {
"status": "RUNNING",
"uptime": 120.5,
"vehiclesInQueue": 12
}
}
```
**Frequência:** A cada 5 segundos
#### 5. LIGHT_CHANGE
Notifica mudança de estado de semáforo (para logging/debugging).
**Estrutura:**
```json
{
"messageId": "e7f9a1b3-5678-9012-34de-f12345678901",
"type": "LIGHT_CHANGE",
"senderId": "Cr1-North",
"destinationId": "Dashboard",
"timestamp": 1729595235100,
"payload": {
"lightId": "Cr1-North",
"previousState": "RED",
"newState": "GREEN",
"queueSize": 5
}
}
```
### Tipos de Veículos
```json
{
"BIKE": {
"probability": 0.20,
"crossingTime": 1.5
},
"LIGHT": {
"probability": 0.60,
"crossingTime": 2.0
},
"HEAVY": {
"probability": 0.20,
"crossingTime": 4.0
}
}
```
### Estados dos Semáforos
```
RED → Veículos aguardam na fila
GREEN → Veículos podem atravessar
```
### Exemplo de Comunicação Completa
```
Tempo Processo Ação Mensagem
------ --------- ------------------------------------- ------------------
15.7s Gerador Gera veículo V123 -
15.7s Gerador → Injeta V123 em Cr1 VEHICLE_TRANSFER
18.2s Cr1 V123 inicia travessia -
20.2s Cr1 V123 completa travessia -
20.2s Cr1 → Cr2 Transfere V123 para Cr2 VEHICLE_TRANSFER
23.5s Cr2 V123 inicia travessia -
25.5s Cr2 V123 completa travessia -
25.5s Cr2 → Cr5 Transfere V123 para Cr5 VEHICLE_TRANSFER
28.0s Cr5 V123 inicia travessia -
30.0s Cr5 V123 completa travessia -
30.0s Cr5 → Exit V123 sai do sistema VEHICLE_EXIT
30.0s Exit → Dash Estatísticas de V123 STATS_UPDATE
```
---
## Estrutura do Projeto
```
Trabalho-Pratico-SD/
├── README.md # Este ficheiro
├── TODO.md # Plano de desenvolvimento
├── main/
│ ├── pom.xml # Configuração do Maven
│ ├── docs/
│ │ ├── README.md # Índice da documentação
│ │ ├── SERIALIZATION_SPECIFICATION.md
│ │ ├── SERIALIZATION_DECISION.md
│ │ ├── SERIALIZATION_SUMMARY.md
│ │ └── SERIALIZATION_ARCHITECTURE.md
│ ├── src/
│ │ ├── main/java/sd/
│ │ │ ├── Entry.java # Ponto de entrada
│ │ │ ├── config/
│ │ │ │ └── SimulationConfig.java
│ │ │ ├── engine/
│ │ │ │ └── SimulationEngine.java
│ │ │ ├── model/
│ │ │ │ ├── Event.java
│ │ │ │ ├── EventType.java
│ │ │ │ ├── Intersection.java
│ │ │ │ ├── Message.java # Estrutura de mensagens
│ │ │ │ ├── MessageType.java # Tipos de mensagens
│ │ │ │ ├── TrafficLight.java
│ │ │ │ ├── Vehicle.java
│ │ │ │ └── VehicleType.java
│ │ │ ├── serialization/ # Sistema de serialização
│ │ │ │ ├── MessageSerializer.java
│ │ │ │ ├── SerializationException.java
│ │ │ │ ├── JsonMessageSerializer.java
│ │ │ │ ├── SerializerFactory.java
│ │ │ │ ├── SerializationExample.java
│ │ │ │ └── README.md
│ │ │ └── util/
│ │ │ ├── RandomGenerator.java
│ │ │ ├── StatisticsCollector.java
│ │ │ └── VehicleGenerator.java
│ │ └── test/java/
│ │ ├── SimulationTest.java
│ │ └── sd/serialization/
│ │ └── SerializationTest.java
│ └── target/ # Ficheiros compilados
└── .vscode/ # Configuração do VS Code
```
---
## Instalação e Execução
### Pré-requisitos
- **Java 17** ou superior
- **Maven 3.8+**
- **Git**
### Instalação
```bash
# Clonar o repositório
git clone https://github.com/davidalves04/Trabalho-Pratico-SD.git
cd Trabalho-Pratico-SD/main
# Compilar o projeto
mvn clean compile
# Executar os testes
mvn test
```
### Execução
#### Simulação Básica (Single Process)
```bash
mvn exec:java -Dexec.mainClass="sd.Entry"
```
#### Exemplo de Serialização
```bash
mvn exec:java -Dexec.mainClass="sd.serialization.SerializationExample"
```
#### Configuração
Editar `src/main/resources/simulation.properties`:
```properties
# Duração da simulação (segundos)
simulation.duration=60.0
# Modelo de chegada: FIXED ou POISSON
arrival.model=POISSON
# Taxa de chegada (veículos/segundo)
arrival.rate=0.5
# Intervalo de atualização de estatísticas (segundos)
stats.update.interval=10.0
# Distribuição de tipos de veículos
vehicle.type.bike.probability=0.20
vehicle.type.light.probability=0.60
vehicle.type.heavy.probability=0.20
# Tempos de travessia por tipo (segundos)
vehicle.type.bike.crossing.time=1.5
vehicle.type.light.crossing.time=2.0
vehicle.type.heavy.crossing.time=4.0
```
---
## Documentação
### Documentação de Serialização
A documentação completa sobre o protocolo de serialização está disponível em:
- **[Índice Completo](./main/docs/README.md)** - Navegação da documentação
- **[Especificação](./main/docs/SERIALIZATION_SPECIFICATION.md)** - Design detalhado
- **[Guia de Decisão](./main/docs/SERIALIZATION_DECISION.md)** - Porquê JSON?
- **[Resumo](./main/docs/SERIALIZATION_SUMMARY.md)** - Estado de implementação
- **[Arquitetura](./main/docs/SERIALIZATION_ARCHITECTURE.md)** - Diagramas visuais
### Guias de Utilização
- **[Serialization README](./main/src/main/java/sd/serialization/README.md)** - Como utilizar os serializers
### Exemplos de Código
```java
// Criar serializer
MessageSerializer serializer = SerializerFactory.createDefault();
// Serializar mensagem
Vehicle vehicle = new Vehicle("V123", VehicleType.LIGHT, 10.5, route);
Message message = new Message(
MessageType.VEHICLE_TRANSFER,
"Cr1",
"Cr2",
vehicle
);
byte[] data = serializer.serialize(message);
// Enviar via socket
outputStream.write(data);
// Receber e desserializar
byte[] received = inputStream.readAllBytes();
Message msg = serializer.deserialize(received, Message.class);
Vehicle v = msg.getPayloadAs(Vehicle.class);
```
---
## Desenvolvimento
### Estado do Projeto
| Componente | Estado | Notas |
|------------|--------|-------|
| Modelo de Dados | Completo | Vehicle, Message, Event, etc. |
| Simulação DES | Completo | Single-process funcional |
| Serialização | Completo | JSON e Java implementados |
| Testes | 14/14 | Suite de serialização |
| Processos Distribuídos | Planeado | Próxima etapa |
| Comunicação Sockets | Planeado | Em design |
| Dashboard | Planeado | UI web |
### Roteiro de Desenvolvimento
#### Fase 1: Fundações (Concluído)
- Modelação de classes
- Simulação DES single-process
- Design de protocolo de serialização
- Implementação JSON/Java serialization
- Testes unitários
#### Fase 2: Distribuição (Em Curso)
- Implementar comunicação via sockets
- Separar cruzamentos em processos
- Implementar threads de semáforos
- Testar comunicação entre processos
#### Fase 3: Dashboard e Monitorização
- Dashboard server
- UI web em tempo real
- Visualização de estatísticas
- Logs estruturados
#### Fase 4: Optimização e Análise
- Testes de carga
- Análise de diferentes políticas
- Recolha de métricas
- Relatório final
### Executar Testes
```bash
# Todos os testes
mvn test
# Apenas testes de serialização
mvn test -Dtest=SerializationTest
# Com relatório de cobertura
mvn test jacoco:report
```
### Contribuir
1. Fork o projeto
2. Criar uma branch para a funcionalidade (`git checkout -b feature/MinhaFuncionalidade`)
3. Commit das alterações (`git commit -m 'Adiciona MinhaFuncionalidade'`)
4. Push para a branch (`git push origin feature/MinhaFuncionalidade`)
5. Abrir um Pull Request
---
## Métricas de Desempenho
### Serialização
| Formato | Tamanho | Latência | Throughput |
|---------|---------|----------|------------|
| JSON | 300 bytes | 40.79 μs | ~24k msgs/s |
| Java | 657 bytes | 33.34 μs | ~30k msgs/s |
**Conclusão**: JSON é 54% menor com overhead desprezível (7 μs)
### Simulação
- **Veículos gerados/s**: ~0.5-1.0 (configurável)
- **Throughput**: ~0.2 veículos/s (saída)
- **Tempo de execução**: 140ms para 60s de simulação
- **Overhead**: < 0.25% do tempo simulado
---
## Protocolo de Mensagens - Resumo
### Formato Base
```
+------------------+
| Message Header |
|------------------|
| messageId | UUID único
| type | Enum MessageType
| senderId | ID do processo remetente
| destinationId | ID do processo destino (null = broadcast)
| timestamp | Tempo de criação (ms)
+------------------+
| Payload |
|------------------|
| Object | Dados específicos do tipo de mensagem
+------------------+
```
### Serialização
- **Formato**: JSON (UTF-8)
- **Biblioteca**: Gson 2.10.1
- **Codificação**: UTF-8
- **Compressão**: Opcional (gzip)
### Transporte
- **Protocolo**: TCP/IP
- **Porta base**: 5000+ (configurável)
- **Timeout**: 30s
- **Keep-alive**: Heartbeat a cada 5s
---
## Segurança
### Considerações
1. **Validação de Mensagens**
- Verificar tipos esperados
- Validar intervalos de valores
- Rejeitar mensagens malformadas
2. **Autenticação** (Planeado)
- Autenticação baseada em token
- Whitelist de processos
3. **Encriptação** (Opcional)
- TLS/SSL para produção
- Não necessário para ambiente de desenvolvimento local
---
## Licença
Este projeto é desenvolvido para fins académicos no âmbito da disciplina de Sistemas Distribuídos (SD) do Instituto Politécnico do Porto.
---
## Equipa
**Instituição**: Instituto Politécnico do Porto
**Curso**: Sistemas Distribuídos
**Ano Letivo**: 2025-2026 ( Semestre)
---
## Suporte
Para questões ou problemas:
1. Consultar a [documentação](./main/docs/README.md)
2. Ver [exemplos de código](./main/src/main/java/sd/serialization/SerializationExample.java)
3. Executar testes: `mvn test`
4. Abrir issue no GitHub
---
## Ligações Úteis
- [Documentação do Projeto](./main/docs/README.md)
- [Plano de Desenvolvimento](./TODO.md)
- [Especificação de Serialização](./main/docs/SERIALIZATION_SPECIFICATION.md)
- [Guia de Serialização](./main/src/main/java/sd/serialization/README.md)
---
**Última actualização**: 23 de outubro de 2025
**Versão**: 1.0.0
**Estado**: Em Desenvolvimento Activo

View File

@@ -1,134 +0,0 @@
# 🏁 Single-Process Prototype — Implementation Summary
**Status:** ✅ Complete
**Date:** October 22, 2025
**Branch:** `8-single-process-prototype`
---
## Overview
The single-process prototype implements a **discrete event simulation (DES)** of a 3×3 urban grid with five intersections, realistic vehicle behavior, and fully synchronized traffic lights. Everything runs under one process, laying the groundwork for the distributed architecture in Phase 3.
---
## Core Architecture
### **SimulationEngine**
Drives the DES loop with a priority queue of timestamped events — vehicles, lights, crossings, and periodic stats updates. Handles five intersections (Cr1Cr5) and six event types.
**Main loop:**
```
while (events && time < duration):
event = nextEvent()
time = event.timestamp
handle(event)
```
### **VehicleGenerator**
Spawns vehicles via:
* **Poisson arrivals** (λ = 0.5 veh/s) or fixed intervals
* **Probabilistic routes** from E1E3
* **Type distribution**: 20% BIKE, 60% LIGHT, 20% HEAVY
### **StatisticsCollector**
Tracks system-wide and per-type metrics: throughput, avg. wait, queue sizes, light cycles — updated every 10 s and at simulation end.
---
## Model Highlights
* **Vehicle** type, route, timings, lifecycle.
* **Intersection** routing tables, traffic lights, queues.
* **TrafficLight** red/green cycles with FIFO queues.
* **Event** timestamped, comparable; 6 types for all DES actions.
---
## Configuration (`simulation.properties`)
```properties
simulation.duration=60.0
simulation.arrival.model=POISSON
simulation.arrival.rate=0.5
vehicle.bike.crossingTime=1.5
vehicle.light.crossingTime=2.0
vehicle.heavy.crossingTime=4.0
statistics.update.interval=10.0
```
**Speed logic:**
`t_bike = 0.5×t_car`, `t_heavy = 2×t_car`.
---
## Topology
```
E1→Cr1→Cr4→Cr5→S
E2→Cr2→Cr5→S
E3→Cr3→S
Bi-dir: Cr1↔Cr2, Cr2↔Cr3
```
---
## Results
**Unit Tests:** 7/7 ✅
**60-Second Simulation:**
* Generated: 22 vehicles
* Completed: 5 (22.7%)
* Avg system time: 15.47 s
* Throughput: 0.08 veh/s
* All lights & intersections operational
**Performance:**
~0.03 s real-time run (≈2000× speed-up), < 50 MB RAM.
---
## Code Structure
```
sd/
├── engine/SimulationEngine.java
├── model/{Vehicle,Intersection,TrafficLight,Event}.java
├── util/{VehicleGenerator,StatisticsCollector}.java
└── config/SimulationConfig.java
```
---
## Key Flow
1. Initialize intersections, lights, first events.
2. Process events chronologically.
3. Vehicles follow routes queue cross exit.
4. Lights toggle, queues drain, stats update.
5. Print summary and performance metrics.
---
## Next Steps — Phase 3
* Split intersections into independent **processes**.
* Add **socket-based communication**.
* Run **traffic lights as threads**.
* Enable **distributed synchronization** and fault handling.
---
## TL;DR
Solid single-process DES
Everythings working traffic lights, routing, vehicles, stats.
Ready to go distributed next.

27
TODO.md
View File

@@ -1,26 +1,3 @@
## ✅ SINGLE-PROCESS PROTOTYPE - COMPLETED
### Phase 2 Status: DONE ✅
All components for the single-process prototype have been successfully implemented and tested:
-**SimulationEngine** - Priority queue-based discrete event simulation
-**VehicleGenerator** - Poisson and Fixed arrival models
-**StatisticsCollector** - Comprehensive metrics tracking
-**Entry point** - Main simulation runner
-**60s test simulation** - Successfully validated event processing and routing
### Test Results:
- All 7 unit tests passing
- 60-second simulation completed successfully
- Generated 22 vehicles with 5 completing their routes
- Traffic light state changes working correctly
- Vehicle routing through intersections validated
---
## NEXT: Distributed Architecture Implementation
### Compreender os Conceitos Fundamentais
Primeiro, as tecnologias e paradigmas chave necessários para este projeto devem ser totalmente compreendidos.
@@ -39,7 +16,7 @@ Primeiro, as tecnologias e paradigmas chave necessários para este projeto devem
- Uma **lista de eventos** central, frequentemente uma fila de prioridades, será necessária para armazenar eventos futuros, ordenados pelo seu timestamp. O ciclo principal da simulação retira o próximo evento da lista, processa-o e adiciona quaisquer novos eventos que resultem dele.
- **Processo de Poisson:** Para o modelo 'mais realista' de chegadas de veículos, é especificado um processo de Poisson. A principal conclusão é que o tempo _entre_ chegadas consecutivas de veículos segue uma **distribuição exponencial**. Em Java, este intervalo pode ser gerado usando `Math.log(1 - Math.random()) / -lambda`, onde `lambda` (λi) é a taxa de chegada especificada.
- **Processo de Poisson:** Para o modelo "mais realista" de chegadas de veículos, é especificado um processo de Poisson. A principal conclusão é que o tempo _entre_ chegadas consecutivas de veículos segue uma **distribuição exponencial**. Em Java, este intervalo pode ser gerado usando `Math.log(1 - Math.random()) / -lambda`, onde `lambda` (λi) é a taxa de chegada especificada.
---
@@ -195,4 +172,4 @@ Assim que o sistema completo estiver a funcionar, as experiências exigidas pela
- **Debugging:** Debugging de sistemas distribuídos podem ser difíceis. Uma framework de logging (como Log4j 2 ou SLF4J) pode ser usada para registar eventos//alterações de estado nos diferentes processos.
- **Configuração:** Valores como endereços IP, números de porta ou parâmetros da simulação não devem ser "hardcoded". Um ficheiro de configuração (ex: um ficheiro `.properties` ou `.json`) torna a aplicação mais fácil de executar e testar.
- **Configuração:** Valores como endereços IP, números de porta ou parâmetros da simulação não devem ser "hardcoded". Um ficheiro de configuração (ex: um ficheiro `.properties` ou `.json`) torna a aplicação mais fácil de executar e testar.

View File

@@ -22,47 +22,6 @@
<version>5.10.0</version>
<scope>test</scope>
</dependency>
<!-- Gson for JSON serialization -->
<dependency>
<groupId>com.google.code.gson</groupId>
<artifactId>gson</artifactId>
<version>2.10.1</version>
</dependency>
</dependencies>
<build>
<plugins>
<!-- Maven Exec Plugin for running examples -->
<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>exec-maven-plugin</artifactId>
<version>3.1.0</version>
<configuration>
<mainClass>sd.Entry</mainClass>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>3.5.2</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass>sd.Entry</mainClass>
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>

View File

@@ -1,501 +0,0 @@
package sd;
import java.io.IOException;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
import sd.config.SimulationConfig;
import sd.model.Intersection;
import sd.model.MessageType;
import sd.model.TrafficLight;
import sd.model.TrafficLightState;
import sd.model.Vehicle;
import sd.protocol.MessageProtocol;
import sd.protocol.SocketConnection;
/**
* Main class for an Intersection Process in the distributed traffic simulation.
* * Each IntersectionProcess runs as an independent Java application (JVM instance)
* representing one of the five intersections (Cr1-Cr5) in the network.
*/
public class IntersectionProcess {
private final String intersectionId;
private final SimulationConfig config;
private final Intersection intersection;
private ServerSocket serverSocket;
private final Map<String, SocketConnection> outgoingConnections;
private final ExecutorService connectionHandlerPool;
private final ExecutorService trafficLightPool;
private volatile boolean running; //Quando uma thread escreve um valor volatile, todas as outras
//threads veem a mudança imediatamente.
/**
* Constructs a new IntersectionProcess.
*
* @param intersectionId The ID of this intersection (e.g., "Cr1").
* @param configFilePath Path to the simulation.properties file.
* @throws IOException If configuration cannot be loaded.
*/
public IntersectionProcess(String intersectionId, String configFilePath) throws IOException {
this.intersectionId = intersectionId;
this.config = new SimulationConfig(configFilePath);
this.intersection = new Intersection(intersectionId);
this.outgoingConnections = new HashMap<>();
this.connectionHandlerPool = Executors.newCachedThreadPool();
this.trafficLightPool = Executors.newFixedThreadPool(4); // Max 4 directions
this.running = false;
System.out.println("=".repeat(60));
System.out.println("INTERSECTION PROCESS: " + intersectionId);
System.out.println("=".repeat(60));
}
public void initialize() {
System.out.println("\n[" + intersectionId + "] Initializing intersection...");
createTrafficLights();
configureRouting();
startTrafficLights();
System.out.println("[" + intersectionId + "] Initialization complete.");
}
/**
* Creates traffic lights for this intersection based on its physical connections.
* Each intersection has different number and directions of traffic lights
* according to the network topology.
*/
private void createTrafficLights() {
System.out.println("\n[" + intersectionId + "] Creating traffic lights...");
String[] directions = new String[0];
switch (intersectionId) {
case "Cr1":
directions = new String[]{"East", "South"};
break;
case "Cr2":
directions = new String[]{"West", "East", "South"};
break;
case "Cr3":
directions = new String[]{"West", "South"};
break;
case "Cr4":
directions = new String[]{"East"};
break;
case "Cr5":
directions = new String[]{"East"};
break;
}
for (String direction : directions) {
double greenTime = config.getTrafficLightGreenTime(intersectionId, direction);
double redTime = config.getTrafficLightRedTime(intersectionId, direction);
TrafficLight light = new TrafficLight(
intersectionId + "-" + direction,
direction,
greenTime,
redTime
);
intersection.addTrafficLight(light);
System.out.println(" Created traffic light: " + direction +
" (Green: " + greenTime + "s, Red: " + redTime + "s)");
}
}
private void configureRouting() {
System.out.println("\n[" + intersectionId + "] Configuring routing...");
switch (intersectionId) {
case "Cr1":
intersection.configureRoute("Cr2", "East");
intersection.configureRoute("Cr4", "South");
break;
case "Cr2":
intersection.configureRoute("Cr1", "West");
intersection.configureRoute("Cr3", "East");
intersection.configureRoute("Cr5", "South");
break;
case "Cr3":
intersection.configureRoute("Cr2", "West");
intersection.configureRoute("S", "South");
break;
case "Cr4":
intersection.configureRoute("Cr5", "East");
break;
case "Cr5":
intersection.configureRoute("S", "East");
break;
default:
System.err.println(" Error: unknown intersection ID: " + intersectionId);
}
System.out.println(" Routing configured.");
}
/**
* Starts all traffic light threads.
*/
private void startTrafficLights() {
System.out.println("\n[" + intersectionId + "] Starting traffic light threads...");
for (TrafficLight light : intersection.getTrafficLights()) {
trafficLightPool.submit(() -> runTrafficLightCycle(light));
System.out.println(" Started thread for: " + light.getDirection());
}
}
/**
* The main loop for a traffic light thread.
* Continuously cycles between GREEN and RED states.
*
* @param light The traffic light to control.
*/
private void runTrafficLightCycle(TrafficLight light) {
System.out.println("[" + light.getId() + "] Traffic light thread started.");
while (running) {
try {
// Green state
light.changeState(TrafficLightState.GREEN);
System.out.println("[" + light.getId() + "] State: GREEN");
// Process vehicles while green
processGreenLight(light);
// Wait for green duration
Thread.sleep((long) (light.getGreenTime() * 1000));
// RED state
light.changeState(TrafficLightState.RED);
System.out.println("[" + light.getId() + "] State: RED");
// Wait for red duration
Thread.sleep((long) (light.getRedTime() * 1000));
} catch (InterruptedException e) {
System.out.println("[" + light.getId() + "] Traffic light thread interrupted.");
break;
}
}
System.out.println("[" + light.getId() + "] Traffic light thread stopped.");
}
/**
* Processes vehicles when a traffic light is GREEN.
* Dequeues vehicles and sends them to their next destination.
*
* @param light The traffic light that is currently green.
*/
private void processGreenLight(TrafficLight light) {
while (light.getState() == TrafficLightState.GREEN && light.getQueueSize() > 0) {
Vehicle vehicle = light.removeVehicle();
if (vehicle != null) {
// Get crossing time based on vehicle type
double crossingTime = getCrossingTimeForVehicle(vehicle);
// Simulate crossing time
try {
Thread.sleep((long) (crossingTime * 1000));
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
break;
}
// Update vehicle statistics
vehicle.addCrossingTime(crossingTime);
// Update intersection statistics
intersection.incrementVehiclesSent();
// Send vehicle to next destination
sendVehicleToNextDestination(vehicle);
}
}
}
/**
* Gets the crossing time for a vehicle based on its type.
*
* @param vehicle The vehicle.
* @return The crossing time in seconds.
*/
private double getCrossingTimeForVehicle(Vehicle vehicle) {
switch (vehicle.getType()) {
case BIKE:
return config.getBikeVehicleCrossingTime();
case LIGHT:
return config.getLightVehicleCrossingTime();
case HEAVY:
return config.getHeavyVehicleCrossingTime();
default:
return config.getLightVehicleCrossingTime();
}
}
/**
* Sends a vehicle to its next destination via socket connection.
*
* @param vehicle The vehicle that has crossed this intersection.
*/
private void sendVehicleToNextDestination(Vehicle vehicle) {
String nextDestination = vehicle.getCurrentDestination();
try {
// Get or create connection to next destination
SocketConnection connection = getOrCreateConnection(nextDestination);
// Create and send message
MessageProtocol message = new VehicleTransferMessage(
intersectionId,
nextDestination,
vehicle
);
connection.sendMessage(message);
System.out.println("[" + intersectionId + "] Sent vehicle " + vehicle.getId() +
" to " + nextDestination);
// Note: vehicle route is advanced when it arrives at the next intersection
} catch (IOException | InterruptedException e) {
System.err.println("[" + intersectionId + "] Failed to send vehicle " +
vehicle.getId() + " to " + nextDestination + ": " + e.getMessage());
}
}
/**
* Gets an existing connection to a destination or creates a new one.
*
* @param destinationId The ID of the destination node.
* @return The SocketConnection to that destination.
* @throws IOException If connection cannot be established.
* @throws InterruptedException If connection attempt is interrupted.
*/
private synchronized SocketConnection getOrCreateConnection(String destinationId)
throws IOException, InterruptedException {
if (!outgoingConnections.containsKey(destinationId)) {
String host = getHostForDestination(destinationId);
int port = getPortForDestination(destinationId);
System.out.println("[" + intersectionId + "] Creating connection to " +
destinationId + " at " + host + ":" + port);
SocketConnection connection = new SocketConnection(host, port);
outgoingConnections.put(destinationId, connection);
}
return outgoingConnections.get(destinationId);
}
/**
* Gets the host address for a destination node from configuration.
*
* @param destinationId The destination node ID.
* @return The host address.
*/
private String getHostForDestination(String destinationId) {
if (destinationId.equals("S")) {
return config.getExitHost();
} else {
return config.getIntersectionHost(destinationId);
}
}
/**
* Gets the port number for a destination node from configuration.
*
* @param destinationId The destination node ID.
* @return The port number.
*/
private int getPortForDestination(String destinationId) {
if (destinationId.equals("S")) {
return config.getExitPort();
} else {
return config.getIntersectionPort(destinationId);
}
}
/**
* Starts the server socket and begins accepting incoming connections.
* This is the main listening loop of the process.
*
* @throws IOException If the server socket cannot be created.
*/
public void start() throws IOException {
int port = config.getIntersectionPort(intersectionId);
serverSocket = new ServerSocket(port);
running = true;
System.out.println("\n[" + intersectionId + "] Server started on port " + port);
System.out.println("[" + intersectionId + "] Waiting for incoming connections...\n");
// Main accept loop
while (running) {
try {
Socket clientSocket = serverSocket.accept();
// Handle each connection in a separate thread
connectionHandlerPool.submit(() -> handleIncomingConnection(clientSocket));
} catch (IOException e) {
if (running) {
System.err.println("[" + intersectionId + "] Error accepting connection: " +
e.getMessage());
}
}
}
}
/**
* Handles an incoming connection from another process.
* Continuously listens for vehicle transfer messages.
*
* @param clientSocket The accepted socket connection.
*/
private void handleIncomingConnection(Socket clientSocket) {
try (SocketConnection connection = new SocketConnection(clientSocket)) {
System.out.println("[" + intersectionId + "] New connection accepted from " +
clientSocket.getInetAddress().getHostAddress());
// Continuously receive messages while connection is active
while (running && connection.isConnected()) {
try {
MessageProtocol message = connection.receiveMessage();
if (message.getType() == MessageType.VEHICLE_TRANSFER) {
Vehicle vehicle = (Vehicle) message.getPayload();
System.out.println("[" + intersectionId + "] Received vehicle: " +
vehicle.getId() + " from " + message.getSourceNode());
// Add vehicle to appropriate queue
intersection.receiveVehicle(vehicle);
}
} catch (ClassNotFoundException e) {
System.err.println("[" + intersectionId + "] Unknown message type received: " +
e.getMessage());
}
}
} catch (IOException e) {
if (running) {
System.err.println("[" + intersectionId + "] Connection error: " + e.getMessage());
}
}
}
/**
* Stops the intersection process gracefully.
* Shuts down all threads and closes all connections.
*/
public void shutdown() {
System.out.println("\n[" + intersectionId + "] Shutting down...");
running = false;
// Close server socket
try {
if (serverSocket != null && !serverSocket.isClosed()) {
serverSocket.close();
}
} catch (IOException e) {
System.err.println("[" + intersectionId + "] Error closing server socket: " +
e.getMessage());
}
// Shutdown thread pools
trafficLightPool.shutdown();
connectionHandlerPool.shutdown();
try {
if (!trafficLightPool.awaitTermination(5, TimeUnit.SECONDS)) {
trafficLightPool.shutdownNow();
}
if (!connectionHandlerPool.awaitTermination(5, TimeUnit.SECONDS)) {
connectionHandlerPool.shutdownNow();
}
} catch (InterruptedException e) {
trafficLightPool.shutdownNow();
connectionHandlerPool.shutdownNow();
}
// Close all outgoing connections
for (Map.Entry<String, SocketConnection> entry : outgoingConnections.entrySet()) {
try {
entry.getValue().close();
} catch (IOException e) {
System.err.println("[" + intersectionId + "] Error closing connection to " +
entry.getKey() + ": " + e.getMessage());
}
}
System.out.println("[" + intersectionId + "] Shutdown complete.");
System.out.println("=".repeat(60));
}
// --- Inner class for Vehicle Transfer Messages ---
/**
* Implementation of MessageProtocol for vehicle transfers between processes.
*/
private static class VehicleTransferMessage implements MessageProtocol {
private static final long serialVersionUID = 1L;
private final String sourceNode;
private final String destinationNode;
private final Vehicle payload;
public VehicleTransferMessage(String sourceNode, String destinationNode, Vehicle vehicle) {
this.sourceNode = sourceNode;
this.destinationNode = destinationNode;
this.payload = vehicle;
}
@Override
public MessageType getType() {
return MessageType.VEHICLE_TRANSFER;
}
@Override
public Object getPayload() {
return payload;
}
@Override
public String getSourceNode() {
return sourceNode;
}
@Override
public String getDestinationNode() {
return destinationNode;
}
}
}

View File

@@ -31,7 +31,7 @@ public class SimulationConfig {
* (por exemplo quando executado a partir do classpath/jar),
* faz fallback para carregar a partir do classpath usando o ClassLoader.
*/
IOException lastException = null; //FIXME: melhorar esta parte para reportar erros de forma mais clara
IOException lastException = null;
try {
try (InputStream input = new FileInputStream(filePath)) {

View File

@@ -264,19 +264,32 @@ public class SimulationEngine {
*/
private void processEvent(Event event) {
switch (event.getType()) {
case VEHICLE_GENERATION -> handleVehicleGeneration();
case VEHICLE_GENERATION:
handleVehicleGeneration();
break;
case VEHICLE_ARRIVAL -> handleVehicleArrival(event);
case VEHICLE_ARRIVAL:
handleVehicleArrival(event);
break;
case TRAFFIC_LIGHT_CHANGE -> handleTrafficLightChange(event);
case TRAFFIC_LIGHT_CHANGE:
handleTrafficLightChange(event);
break;
case CROSSING_START -> handleCrossingStart(event);
case CROSSING_START:
handleCrossingStart(event);
break;
case CROSSING_END -> handleCrossingEnd(event);
case CROSSING_END:
handleCrossingEnd(event);
break;
case STATISTICS_UPDATE -> handleStatisticsUpdate();
case STATISTICS_UPDATE:
handleStatisticsUpdate();
break;
default -> System.err.println("Unknown event type: " + event.getType());
default:
System.err.println("Unknown event type: " + event.getType());
}
}
@@ -373,7 +386,7 @@ public class SimulationEngine {
* @param vehicle The vehicle to process.
* @param intersection The intersection where the vehicle is.
*/
private void tryProcessVehicle(Vehicle vehicle, Intersection intersection) { //FIXME
private void tryProcessVehicle(Vehicle vehicle, Intersection intersection) {
// Find the direction (and light) this vehicle is queued at
// This logic is a bit flawed: it just finds the *first* non-empty queue
// A better approach would be to get the light from the vehicle's route
@@ -578,12 +591,16 @@ public class SimulationEngine {
* @return The crossing time in seconds.
*/
private double getCrossingTime(VehicleType type) {
return switch (type) {
case BIKE -> config.getBikeVehicleCrossingTime();
case LIGHT -> config.getLightVehicleCrossingTime();
case HEAVY -> config.getHeavyVehicleCrossingTime();
default -> 2.0;
}; // Default fallback
switch (type) {
case BIKE:
return config.getBikeVehicleCrossingTime();
case LIGHT:
return config.getLightVehicleCrossingTime();
case HEAVY:
return config.getHeavyVehicleCrossingTime();
default:
return 2.0; // Default fallback
}
}
/**

View File

@@ -104,28 +104,16 @@ public class Intersection {
* Accepts an incoming vehicle and places it in the correct queue.
* * This method:
* 1. Increments the {@link #totalVehiclesReceived} counter.
* 2. Advances the vehicle's route (since it just arrived here)
* 3. Gets the vehicle's *next* destination (from {@link Vehicle#getCurrentDestination()}).
* 4. Uses the {@link #routing} map to find the correct *direction* for that destination.
* 5. Adds the vehicle to the queue of the {@link TrafficLight} for that direction.
* 2. Gets the vehicle's *next* destination (from {@link Vehicle#getCurrentDestination()}).
* 3. Uses the {@link #routing} map to find the correct *direction* for that destination.
* 4. Adds the vehicle to the queue of the {@link TrafficLight} for that direction.
*
* @param vehicle The {@link Vehicle} arriving at the intersection.
*/
public void receiveVehicle(Vehicle vehicle) {
totalVehiclesReceived++;
// Advance route since vehicle just arrived at this intersection
vehicle.advanceRoute();
String nextDestination = vehicle.getCurrentDestination();
// Check if vehicle reached final destination
if (nextDestination == null) {
System.out.printf("[%s] Vehicle %s reached final destination%n",
this.id, vehicle.getId());
return;
}
String direction = routing.get(nextDestination);
if (direction != null && trafficLights.containsKey(direction)) {

View File

@@ -1,142 +0,0 @@
package sd.model;
import java.io.Serializable;
import java.util.UUID;
/**
* Represents a message exchanged between processes in the distributed simulation.
* Each message has a unique ID, a type, a sender, a destination, and a payload.
* This class implements {@link Serializable} to allow transmission over the network.
*/
public class Message implements Serializable {
private static final long serialVersionUID = 1L;
/**
* Unique identifier for this message.
*/
private final String messageId;
/**
* The type of this message (e.g., VEHICLE_TRANSFER, STATS_UPDATE).
*/
private final MessageType type;
/**
* Identifier of the process that sent this message.
*/
private final String senderId;
/**
* Identifier of the destination process. Can be null for broadcast messages.
*/
private final String destinationId;
/**
* The actual data being transmitted. Type depends on the message type.
*/
private final Object payload;
/**
* Timestamp when this message was created (simulation time or real time).
*/
private final long timestamp;
/**
* Creates a new message with all parameters.
*
* @param type The message type
* @param senderId The ID of the sending process
* @param destinationId The ID of the destination process (null for broadcast)
* @param payload The message payload
* @param timestamp The timestamp of message creation
*/
public Message(MessageType type, String senderId, String destinationId,
Object payload, long timestamp) {
this.messageId = UUID.randomUUID().toString();
this.type = type;
this.senderId = senderId;
this.destinationId = destinationId;
this.payload = payload;
this.timestamp = timestamp;
}
/**
* Creates a new message with current system time as timestamp.
*
* @param type The message type
* @param senderId The ID of the sending process
* @param destinationId The ID of the destination process
* @param payload The message payload
*/
public Message(MessageType type, String senderId, String destinationId, Object payload) {
this(type, senderId, destinationId, payload, System.currentTimeMillis());
}
/**
* Creates a broadcast message (no specific destination).
*
* @param type The message type
* @param senderId The ID of the sending process
* @param payload The message payload
*/
public Message(MessageType type, String senderId, Object payload) {
this(type, senderId, null, payload, System.currentTimeMillis());
}
//Getters
public String getMessageId() {
return messageId;
}
public MessageType getType() {
return type;
}
public String getSenderId() {
return senderId;
}
public String getDestinationId() {
return destinationId;
}
public Object getPayload() {
return payload;
}
public long getTimestamp() {
return timestamp;
}
/**
* Checks if this is a broadcast message (no specific destination).
*
* @return true if destinationId is null, false otherwise
*/
public boolean isBroadcast() {
return destinationId == null;
}
/**
* Gets the payload cast to a specific type.
* Use with caution and ensure type safety.
*
* @param <T> The expected payload type
* @return The payload cast to type T
* @throws ClassCastException if the payload is not of type T
*/
@SuppressWarnings("unchecked")
public <T> T getPayloadAs(Class<T> clazz) {
return (T) payload;
}
@Override
public String toString() {
return String.format("Message[id=%s, type=%s, from=%s, to=%s, timestamp=%d]",
messageId, type, senderId,
destinationId != null ? destinationId : "BROADCAST",
timestamp);
}
}

View File

@@ -1,81 +0,0 @@
package sd.model;
/**
* Enumeration representing all possible message types for distributed communication.
* These types are used for inter-process communication between different components
* of the distributed traffic simulation system.
*/
public enum MessageType {
/**
* Message to transfer a vehicle between intersections or processes.
* Payload: Vehicle object with current state
*/
VEHICLE_TRANSFER,
/**
* Message to update statistics across the distributed system.
* Payload: Statistics data (waiting times, queue sizes, etc.)
*/
STATS_UPDATE,
/**
* Message to synchronize traffic light states between processes.
* Payload: TrafficLight state and timing information
*/
TRAFFIC_LIGHT_SYNC,
/**
* Heartbeat message to check if a process is alive.
* Payload: Process ID and timestamp
*/
HEARTBEAT,
/**
* Request to join the distributed simulation.
* Payload: Process information and capabilities
*/
JOIN_REQUEST,
/**
* Response to a join request.
* Payload: Acceptance status and configuration
*/
JOIN_RESPONSE,
/**
* Message to notify about a new vehicle generation.
* Payload: Vehicle generation parameters
*/
VEHICLE_SPAWN,
/**
* Message to request the current state of an intersection.
* Payload: Intersection ID
*/
STATE_REQUEST,
/**
* Response containing the current state of an intersection.
* Payload: Complete intersection state
*/
STATE_RESPONSE,
/**
* Message to signal shutdown of a process.
* Payload: Process ID and reason
*/
SHUTDOWN,
/**
* Acknowledgment message for reliable communication.
* Payload: Message ID being acknowledged
*/
ACK,
/**
* Error message to report problems in the distributed system.
* Payload: Error description and context
*/
ERROR
}

View File

@@ -1,41 +0,0 @@
package sd.protocol;
import java.io.Serializable;
import sd.model.MessageType; // Assuming MessageType is in sd.model or sd.protocol
/**
* Interface defining the contract for all messages exchanged in the simulator.
* Ensures that any message can be identified and routed.
* * This interface extends Serializable to allow objects that implement it
* to be sent over Sockets (ObjectOutputStream).
*
*/
public interface MessageProtocol extends Serializable {
/**
* Returns the type of the message, indicating its purpose.
* @return The MessageType (e.g., VEHICLE_TRANSFER, STATS_UPDATE).
*/
MessageType getType();
/**
* Returns the data object (payload) that this message carries.
* The type of object will depend on the MessageType.
* * - If getType() == VEHICLE_TRANSFER, the payload will be a {@link sd.model.Vehicle} object.
* - If getType() == STATS_UPDATE, the payload will be a statistics object.
* * @return The data object (payload), which must also be Serializable.
*/
Object getPayload();
/**
* Returns the ID of the node (Process) that sent this message.
* @return String (e.g., "Cr1", "Cr5", "S").
*/
String getSourceNode();
/**
* Returns the ID of the destination node (Process) for this message.
* @return String (e.g., "Cr2", "DashboardServer").
*/
String getDestinationNode();
}

View File

@@ -1,199 +0,0 @@
package sd.protocol;
import java.io.Closeable;
import java.io.DataInputStream;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.net.ConnectException;
import java.net.Socket;
import java.net.SocketTimeoutException;
import java.net.UnknownHostException;
import java.util.concurrent.TimeUnit;
import sd.serialization.MessageSerializer;
import sd.serialization.SerializationException;
import sd.serialization.SerializerFactory;
/**
* Wrapper class that simplifies communication via Sockets.
* Includes connection retry logic for robustness.
*/
public class SocketConnection implements Closeable {
private final Socket socket;
private final OutputStream outputStream;
private final InputStream inputStream;
private final MessageSerializer serializer;
// --- Configuration for Retry Logic ---
/** Maximum number of connection attempts. */
private static final int MAX_RETRIES = 5;
/** Delay between retry attempts in milliseconds. */
private static final long RETRY_DELAY_MS = 1000;
/**
* Constructor for the "Client" (who initiates the connection).
* Tries to connect to a process that is already listening (Server).
* Includes retry logic in case of initial connection failure.
*
* @param host The host address (e.g., "localhost" from your simulation.properties)
* @param port The port (e.g., 8001 from your simulation.properties)
* @throws IOException If connection fails after all retries.
* @throws UnknownHostException If the host is not found (this error usually doesn't need retry).
* @throws InterruptedException If the thread is interrupted while waiting between retries.
*/
public SocketConnection(String host, int port) throws IOException, UnknownHostException, InterruptedException {
Socket tempSocket = null;
IOException lastException = null;
System.out.printf("[SocketConnection] Attempting to connect to %s:%d...%n", host, port);
// --- Retry Loop ---
for (int attempt = 1; attempt <= MAX_RETRIES; attempt++) {
try {
// Try to establish the connection
tempSocket = new Socket(host, port);
// If successful, break out of the retry loop
System.out.printf("[SocketConnection] Connected successfully on attempt %d.%n", attempt);
lastException = null; // Clear last error on success
break;
} catch (ConnectException | SocketTimeoutException e) {
// These are common errors indicating the server might not be ready.
lastException = e;
System.out.printf("[SocketConnection] Attempt %d/%d failed: %s. Retrying in %d ms...%n",
attempt, MAX_RETRIES, e.getMessage(), RETRY_DELAY_MS);
if (attempt < MAX_RETRIES) {
// Wait before the next attempt
TimeUnit.MILLISECONDS.sleep(RETRY_DELAY_MS);
}
} catch (IOException e) {
// Other IOExceptions might be more permanent, but we retry anyway.
lastException = e;
System.out.printf("[SocketConnection] Attempt %d/%d failed with IOException: %s. Retrying in %d ms...%n",
attempt, MAX_RETRIES, e.getMessage(), RETRY_DELAY_MS);
if (attempt < MAX_RETRIES) {
TimeUnit.MILLISECONDS.sleep(RETRY_DELAY_MS);
}
}
} // --- End of Retry Loop ---
// If after all retries tempSocket is still null, it means connection failed permanently.
if (tempSocket == null) {
System.err.printf("[SocketConnection] Failed to connect to %s:%d after %d attempts.%n", host, port, MAX_RETRIES);
if (lastException != null) {
throw lastException; // Throw the last exception encountered
} else {
// Should not happen if loop ran, but as a fallback
throw new IOException("Failed to connect after " + MAX_RETRIES + " attempts, reason unknown.");
}
}
// If connection was successful, assign to final variable and create streams
this.socket = tempSocket;
this.outputStream = socket.getOutputStream();
this.inputStream = socket.getInputStream();
this.serializer = SerializerFactory.createDefault();
}
/**
* Constructor for the "Server" (who accepts the connection).
* Receives a Socket that has already been accepted by a ServerSocket.
* No retry logic needed here as the connection is already established.
*
* @param acceptedSocket The Socket returned by serverSocket.accept().
* @throws IOException If stream creation fails.
*/
public SocketConnection(Socket acceptedSocket) throws IOException {
this.socket = acceptedSocket;
this.outputStream = socket.getOutputStream();
this.inputStream = socket.getInputStream();
this.serializer = SerializerFactory.createDefault();
}
/**
* Sends (serializes) a MessageProtocol object over the socket.
*
* @param message The "envelope" (which contains the Vehicle) to be sent.
* @throws IOException If writing to the stream fails or socket is not connected.
*/
public void sendMessage(MessageProtocol message) throws IOException {
if (socket == null || !socket.isConnected()) {
throw new IOException("Socket is not connected");
}
try {
// Serializa para bytes JSON
byte[] data = serializer.serialize(message);
// Write 4-byte length prefix
DataOutputStream dataOut = new DataOutputStream(outputStream);
dataOut.writeInt(data.length);
dataOut.write(data);
dataOut.flush();
} catch (SerializationException e) {
throw new IOException("Failed to serialize message", e);
}
}
/**
* Tries to read (deserialize) a MessageProtocol object from the socket.
*
* @return The "envelope" (MessageProtocol) that was received.
* @throws IOException If the connection is lost, the stream is corrupted, or socket is not connected.
* @throws ClassNotFoundException If the received object is unknown.
*/
public MessageProtocol receiveMessage() throws IOException, ClassNotFoundException {
if (socket == null || !socket.isConnected()) {
throw new IOException("Socket is not connected");
}
try {
// Lê um prefixo de 4 bytes - indicador de tamanho
DataInputStream dataIn = new DataInputStream(inputStream);
int length = dataIn.readInt();
if (length <= 0 || length > 10_000_000) { // Sanity check (10MB max)
throw new IOException("Invalid message length: " + length);
}
// Ler dados da mensagem
byte[] data = new byte[length];
dataIn.readFully(data);
// Deserialize do JSON
return serializer.deserialize(data, MessageProtocol.class);
} catch (SerializationException e) {
throw new IOException("Failed to deserialize message", e);
}
}
/**
* Closes the socket and all streams (Input and Output).
*/
@Override
public void close() throws IOException {
if (inputStream != null) inputStream.close();
if (outputStream != null) outputStream.close();
if (socket != null) socket.close();
}
/**
* @return true if the socket is still connected and not closed.
*/
public boolean isConnected() {
return socket != null && socket.isConnected() && !socket.isClosed();
}
}

View File

@@ -1,114 +0,0 @@
package sd.serialization;
import com.google.gson.Gson;
import com.google.gson.GsonBuilder;
import com.google.gson.JsonSyntaxException;
import java.nio.charset.StandardCharsets;
/**
* JSON-based implementation of {@link MessageSerializer} using Google's Gson library.
*
* This serializer converts objects to JSON format for transmission, providing:
* - Human-readable message format (easy debugging)
* - Cross-platform compatibility
* - Smaller message sizes compared to Java native serialization
* - Better security (no code execution during deserialization)
*
* The serializer is configured with pretty printing disabled by default for
* production use, but can be enabled for debugging purposes.
*
* Thread-safety: This class is thread-safe as Gson instances are thread-safe.
*
* @see MessageSerializer
*/
public class JsonMessageSerializer implements MessageSerializer {
private final Gson gson;
private final boolean prettyPrint;
/**
* Creates a new JSON serializer with default configuration (no pretty printing).
*/
public JsonMessageSerializer() {
this(false);
}
/**
* Creates a new JSON serializer with optional pretty printing.
*
* @param prettyPrint If true, JSON output will be formatted with indentation
*/
public JsonMessageSerializer(boolean prettyPrint) {
this.prettyPrint = prettyPrint;
GsonBuilder builder = new GsonBuilder();
if (prettyPrint) {
builder.setPrettyPrinting();
}
// Register custom type adapters here if needed
// builder.registerTypeAdapter(Vehicle.class, new VehicleAdapter());
this.gson = builder.create();
}
@Override
public byte[] serialize(Object object) throws SerializationException {
if (object == null) {
throw new IllegalArgumentException("Cannot serialize null object");
}
try {
String json = gson.toJson(object);
return json.getBytes(StandardCharsets.UTF_8);
} catch (Exception e) {
throw new SerializationException(
"Failed to serialize object of type " + object.getClass().getName(), e);
}
}
@Override
public <T> T deserialize(byte[] data, Class<T> clazz) throws SerializationException {
if (data == null) {
throw new IllegalArgumentException("Cannot deserialize null data");
}
if (clazz == null) {
throw new IllegalArgumentException("Class type cannot be null");
}
try {
String json = new String(data, StandardCharsets.UTF_8);
return gson.fromJson(json, clazz);
} catch (JsonSyntaxException e) {
throw new SerializationException(
"Failed to parse JSON for type " + clazz.getName(), e);
} catch (Exception e) {
throw new SerializationException(
"Failed to deserialize object of type " + clazz.getName(), e);
}
}
@Override
public String getName() {
return "JSON (Gson)";
}
/**
* Returns the underlying Gson instance for advanced usage.
*
* @return The Gson instance
*/
public Gson getGson() {
return gson;
}
/**
* Checks if pretty printing is enabled.
*
* @return true if pretty printing is enabled
*/
public boolean isPrettyPrint() {
return prettyPrint;
}
}

View File

@@ -1,48 +0,0 @@
package sd.serialization;
/**
* Interface for serializing and deserializing objects for network transmission.
*
* This interface provides a common abstraction for different serialization strategies
* allowing the system to switch between implementations without changing the communication layer.
*
* Implementations must ensure:
* - Thread-safety if used in concurrent contexts
* - Proper exception handling with meaningful error messages
* - Preservation of object state during round-trip serialization
*
* @see JsonMessageSerializer
*/
public interface MessageSerializer {
/**
* Serializes an object into a byte array for transmission.
*
* @param object The object to serialize (must not be null)
* @return A byte array containing the serialized representation
* @throws SerializationException If serialization fails
* @throws IllegalArgumentException If object is null
*/
byte[] serialize(Object object) throws SerializationException;
/**
* Deserializes a byte array back into an object of the specified type.
*
* @param <T> The expected type of the deserialized object
* @param data The byte array containing serialized data (must not be null)
* @param clazz The class of the expected object type (must not be null)
* @return The deserialized object
* @throws SerializationException If deserialization fails
* @throws IllegalArgumentException If data or clazz is null
*/
<T> T deserialize(byte[] data, Class<T> clazz) throws SerializationException;
/**
* Gets the name of this serialization strategy (e.g., "JSON", "Java Native").
* Useful for logging and debugging.
*
* @return The serializer name
*/
String getName();
}

View File

@@ -1,134 +0,0 @@
package sd.serialization;
import sd.model.Message;
import sd.model.MessageType;
import sd.model.Vehicle;
import sd.model.VehicleType;
import java.util.Arrays;
import java.util.List;
/**
* Demonstration of JSON serialization usage in the traffic simulation system.
*
* This class shows practical examples of how to use JSON (Gson) serialization
* for network communication between simulation processes.
*/
public class SerializationExample {
public static void main(String[] args) {
System.out.println("=== JSON Serialization Example ===\n");
// Create a sample vehicle
List<String> route = Arrays.asList("Cr1", "Cr2", "Cr5", "S");
Vehicle vehicle = new Vehicle("V001", VehicleType.LIGHT, 10.5, route);
vehicle.addWaitingTime(2.3);
vehicle.addCrossingTime(1.2);
// Create a message containing the vehicle
Message message = new Message(
MessageType.VEHICLE_TRANSFER,
"Cr1",
"Cr2",
vehicle
);
// ===== JSON Serialization =====
demonstrateJsonSerialization(message);
// ===== Factory Usage =====
demonstrateFactoryUsage(message);
// ===== Performance Test =====
performanceTest(message);
}
private static void demonstrateJsonSerialization(Message message) {
System.out.println("--- JSON Serialization ---");
try {
// Create JSON serializer with pretty printing for readability
MessageSerializer serializer = new JsonMessageSerializer(true);
// Serialize to bytes
byte[] data = serializer.serialize(message);
// Display the JSON
String json = new String(data);
System.out.println("Serialized JSON (" + data.length + " bytes):");
System.out.println(json);
// Deserialize back
Message deserialized = serializer.deserialize(data, Message.class);
System.out.println("\nDeserialized: " + deserialized);
System.out.println("✓ JSON serialization successful\n");
} catch (SerializationException e) {
System.err.println("❌ JSON serialization failed: " + e.getMessage());
}
}
private static void demonstrateFactoryUsage(Message message) {
System.out.println("--- Using SerializerFactory ---");
try {
// Get default serializer (JSON)
MessageSerializer serializer = SerializerFactory.createDefault();
System.out.println("Default serializer: " + serializer.getName());
// Use it
byte[] data = serializer.serialize(message);
Message deserialized = serializer.deserialize(data, Message.class);
System.out.println("Message type: " + deserialized.getType());
System.out.println("From: " + deserialized.getSenderId() +
" → To: " + deserialized.getDestinationId());
System.out.println("✓ Factory usage successful\n");
} catch (SerializationException e) {
System.err.println("❌ Factory usage failed: " + e.getMessage());
}
}
private static void performanceTest(Message message) {
System.out.println("--- Performance Test ---");
int iterations = 1000;
try {
MessageSerializer compactSerializer = new JsonMessageSerializer(false);
MessageSerializer prettySerializer = new JsonMessageSerializer(true);
// Warm up
for (int i = 0; i < 100; i++) {
compactSerializer.serialize(message);
}
// Test compact JSON
long compactStart = System.nanoTime();
byte[] compactData = null;
for (int i = 0; i < iterations; i++) {
compactData = compactSerializer.serialize(message);
}
long compactTime = System.nanoTime() - compactStart;
// Test pretty JSON
byte[] prettyData = prettySerializer.serialize(message);
// Results
System.out.println("Iterations: " + iterations);
System.out.println("\nJSON Compact:");
System.out.println(" Size: " + compactData.length + " bytes");
System.out.println(" Time: " + (compactTime / 1_000_000.0) + " ms total");
System.out.println(" Avg: " + (compactTime / iterations / 1_000.0) + " μs/operation");
System.out.println("\nJSON Pretty-Print:");
System.out.println(" Size: " + prettyData.length + " bytes");
System.out.println(" Size increase: " +
String.format("%.1f%%", ((double)prettyData.length / compactData.length - 1) * 100));
} catch (SerializationException e) {
System.err.println("❌ Performance test failed: " + e.getMessage());
}
}
}

View File

@@ -1,41 +0,0 @@
package sd.serialization;
/**
* Exception thrown when serialization or deserialization operations fail.
*
* This exception wraps underlying errors (I/O exceptions, parsing errors, etc.)
* and provides context about what went wrong during the serialization process.
*/
public class SerializationException extends Exception {
private static final long serialVersionUID = 1L; // Long(64bits) instead of int(32bits)
/**
* Constructs a new serialization exception with the specified detail message.
*
* @param message The detail message
*/
public SerializationException(String message) {
super(message);
}
/**
* Constructs a new serialization exception with the specified detail message
* and cause.
*
* @param message The detail message
* @param cause The cause of this exception
*/
public SerializationException(String message, Throwable cause) {
super(message, cause);
}
/**
* Constructs a new serialization exception with the specified cause.
*
* @param cause The cause of this exception
*/
public SerializationException(Throwable cause) {
super(cause);
}
}

View File

@@ -1,66 +0,0 @@
package sd.serialization;
/**
* Factory for creating {@link MessageSerializer} instances.
*
* This factory provides a centralized way to create and configure JSON serializers
* using Gson, making it easy to configure serialization throughout the application.
*
* The factory can be configured via system properties for easy deployment configuration.
*
* Example usage:
* <pre>
* MessageSerializer serializer = SerializerFactory.createDefault();
* byte[] data = serializer.serialize(myObject);
* </pre>
*/
public class SerializerFactory {
/**
* System property key for enabling pretty-print in JSON serialization.
* Set to "true" for debugging, "false" for production.
*/
public static final String JSON_PRETTY_PRINT_PROPERTY = "sd.serialization.json.prettyPrint";
// Default configuration
private static final boolean DEFAULT_JSON_PRETTY_PRINT = false;
/**
* Private constructor to prevent instantiation.
*/
private SerializerFactory() {
throw new UnsupportedOperationException("Factory class cannot be instantiated");
}
/**
* Creates a JSON serializer based on system configuration.
*
* Pretty-print is determined by checking the system property
* {@value #JSON_PRETTY_PRINT_PROPERTY}. If not set, defaults to false.
*
* @return A configured JsonMessageSerializer instance
*/
public static MessageSerializer createDefault() {
boolean prettyPrint = Boolean.getBoolean(JSON_PRETTY_PRINT_PROPERTY);
return new JsonMessageSerializer(prettyPrint);
}
/**
* Creates a JSON serializer with default configuration (no pretty printing).
*
* @return A JsonMessageSerializer instance
*/
public static MessageSerializer createSerializer() {
return createSerializer(DEFAULT_JSON_PRETTY_PRINT);
}
/**
* Creates a JSON serializer with specified pretty-print setting.
*
* @param prettyPrint Whether to enable pretty printing
* @return A JsonMessageSerializer instance
*/
public static MessageSerializer createSerializer(boolean prettyPrint) {
return new JsonMessageSerializer(prettyPrint);
}
}

View File

@@ -1,473 +0,0 @@
import java.io.IOException;
import java.io.ObjectOutputStream;
import java.net.Socket;
import java.nio.file.Files;
import java.nio.file.Path;
import java.util.Arrays;
import org.junit.jupiter.api.AfterEach;
import static org.junit.jupiter.api.Assertions.assertDoesNotThrow;
import static org.junit.jupiter.api.Assertions.assertNotNull;
import static org.junit.jupiter.api.Assertions.assertThrows;
import static org.junit.jupiter.api.Assertions.assertTrue;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.Timeout;
import org.junit.jupiter.api.io.TempDir;
import sd.IntersectionProcess;
import sd.model.MessageType;
import sd.model.Vehicle;
import sd.model.VehicleType;
/**
* Tests for IntersectionProcess - covers initialization, traffic lights,
* vehicle transfer and network stuff
*/
public class IntersectionProcessTest {
@TempDir
Path tempDir;
private Path configFile;
private IntersectionProcess intersectionProcess;
// setup test config before each test
@BeforeEach
public void setUp() throws IOException {
// create temp config file
configFile = tempDir.resolve("test-simulation.properties");
String configContent = """
# Test Simulation Configuration
# Intersection Network Configuration
intersection.Cr1.host=localhost
intersection.Cr1.port=18001
intersection.Cr2.host=localhost
intersection.Cr2.port=18002
intersection.Cr3.host=localhost
intersection.Cr3.port=18003
intersection.Cr4.host=localhost
intersection.Cr4.port=18004
intersection.Cr5.host=localhost
intersection.Cr5.port=18005
# Exit Configuration
exit.host=localhost
exit.port=18099
# Dashboard Configuration
dashboard.host=localhost
dashboard.port=18100
# Traffic Light Timing (seconds)
trafficLight.Cr1.East.greenTime=5.0
trafficLight.Cr1.East.redTime=5.0
trafficLight.Cr1.South.greenTime=5.0
trafficLight.Cr1.South.redTime=5.0
trafficLight.Cr1.West.greenTime=5.0
trafficLight.Cr1.West.redTime=5.0
trafficLight.Cr2.West.greenTime=4.0
trafficLight.Cr2.West.redTime=6.0
trafficLight.Cr2.East.greenTime=4.0
trafficLight.Cr2.East.redTime=6.0
trafficLight.Cr2.South.greenTime=4.0
trafficLight.Cr2.South.redTime=6.0
trafficLight.Cr3.West.greenTime=3.0
trafficLight.Cr3.West.redTime=7.0
trafficLight.Cr3.East.greenTime=3.0
trafficLight.Cr3.East.redTime=7.0
trafficLight.Cr4.East.greenTime=6.0
trafficLight.Cr4.East.redTime=4.0
trafficLight.Cr5.East.greenTime=5.0
trafficLight.Cr5.East.redTime=5.0
# Vehicle Crossing Times (seconds)
vehicle.bike.crossingTime=2.0
vehicle.light.crossingTime=3.0
vehicle.heavy.crossingTime=5.0
""";
Files.writeString(configFile, configContent);
}
// cleanup after tests
@AfterEach
public void tearDown() {
if (intersectionProcess != null) {
intersectionProcess.shutdown();
}
}
// ==================== Initialization Tests ====================
@Test
public void testConstructor_Success() throws IOException {
intersectionProcess = new IntersectionProcess("Cr1", configFile.toString());
assertNotNull(intersectionProcess);
}
@Test
public void testConstructor_InvalidConfig() {
Exception exception = assertThrows(IOException.class, () -> {
new IntersectionProcess("Cr1", "non-existent-config.properties");
});
assertNotNull(exception);
}
@Test
public void testInitialize_Cr1() throws IOException {
intersectionProcess = new IntersectionProcess("Cr1", configFile.toString());
assertDoesNotThrow(() -> intersectionProcess.initialize());
}
@Test
public void testInitialize_Cr2() throws IOException {
intersectionProcess = new IntersectionProcess("Cr2", configFile.toString());
assertDoesNotThrow(() -> intersectionProcess.initialize());
}
@Test
public void testInitialize_Cr3() throws IOException {
intersectionProcess = new IntersectionProcess("Cr3", configFile.toString());
assertDoesNotThrow(() -> intersectionProcess.initialize());
}
@Test
public void testInitialize_Cr4() throws IOException {
intersectionProcess = new IntersectionProcess("Cr4", configFile.toString());
assertDoesNotThrow(() -> intersectionProcess.initialize());
}
@Test
public void testInitialize_Cr5() throws IOException {
intersectionProcess = new IntersectionProcess("Cr5", configFile.toString());
assertDoesNotThrow(() -> intersectionProcess.initialize());
}
// traffic light creation tests
@Test
public void testTrafficLightCreation_Cr1_HasCorrectDirections() throws IOException {
intersectionProcess = new IntersectionProcess("Cr1", configFile.toString());
intersectionProcess.initialize();
// cant access private fields but initialization succeds
assertNotNull(intersectionProcess);
}
@Test
public void testTrafficLightCreation_Cr3_HasCorrectDirections() throws IOException {
intersectionProcess = new IntersectionProcess("Cr3", configFile.toString());
intersectionProcess.initialize();
// Cr3 has west and south only
assertNotNull(intersectionProcess);
}
@Test
public void testTrafficLightCreation_Cr4_HasSingleDirection() throws IOException {
intersectionProcess = new IntersectionProcess("Cr4", configFile.toString());
intersectionProcess.initialize();
// Cr4 only has east direction
assertNotNull(intersectionProcess);
}
// server startup tests
@Test
@Timeout(5)
public void testServerStart_BindsToCorrectPort() throws IOException, InterruptedException {
intersectionProcess = new IntersectionProcess("Cr1", configFile.toString());
intersectionProcess.initialize();
// start server in seperate thread
Thread serverThread = new Thread(() -> {
try {
intersectionProcess.start();
} catch (IOException e) {
// expected on shutdown
}
});
serverThread.start();
Thread.sleep(500); // wait for server to start
// try connecting to check if its running
try (Socket clientSocket = new Socket("localhost", 18001)) {
assertTrue(clientSocket.isConnected());
}
intersectionProcess.shutdown();
serverThread.join(2000);
}
@Test
@Timeout(5)
public void testServerStart_MultipleIntersections() throws IOException, InterruptedException {
// test 2 intersections on diferent ports
IntersectionProcess cr1 = new IntersectionProcess("Cr1", configFile.toString());
IntersectionProcess cr2 = new IntersectionProcess("Cr2", configFile.toString());
cr1.initialize();
cr2.initialize();
Thread thread1 = new Thread(() -> {
try { cr1.start(); } catch (IOException e) { }
});
Thread thread2 = new Thread(() -> {
try { cr2.start(); } catch (IOException e) { }
});
thread1.start();
thread2.start();
Thread.sleep(500);
// check both are running
try (Socket socket1 = new Socket("localhost", 18001);
Socket socket2 = new Socket("localhost", 18002)) {
assertTrue(socket1.isConnected());
assertTrue(socket2.isConnected());
}
cr1.shutdown();
cr2.shutdown();
thread1.join(2000);
thread2.join(2000);
}
// vehicle transfer tests
@Test
@Timeout(10)
public void testVehicleTransfer_ReceiveVehicle() throws IOException, InterruptedException {
// setup reciever intersection
intersectionProcess = new IntersectionProcess("Cr2", configFile.toString());
intersectionProcess.initialize();
Thread serverThread = new Thread(() -> {
try {
intersectionProcess.start();
} catch (IOException e) { }
});
serverThread.start();
Thread.sleep(500);
// create test vehicle
java.util.List<String> route = Arrays.asList("Cr2", "Cr3", "S");
Vehicle vehicle = new Vehicle("V001", VehicleType.LIGHT, 0.0, route);
// send vehicle from Cr1 to Cr2
try (Socket socket = new Socket("localhost", 18002)) {
ObjectOutputStream out = new ObjectOutputStream(socket.getOutputStream());
TestVehicleMessage message = new TestVehicleMessage("Cr1", "Cr2", vehicle);
out.writeObject(message);
out.flush();
Thread.sleep(1000); // wait for procesing
}
intersectionProcess.shutdown();
serverThread.join(2000);
}
// routing config tests
@Test
public void testRoutingConfiguration_Cr1() throws IOException {
intersectionProcess = new IntersectionProcess("Cr1", configFile.toString());
intersectionProcess.initialize();
// indirect test - if init works routing should be ok
assertNotNull(intersectionProcess);
}
@Test
public void testRoutingConfiguration_Cr5() throws IOException {
intersectionProcess = new IntersectionProcess("Cr5", configFile.toString());
intersectionProcess.initialize();
// Cr5 routes to exit
assertNotNull(intersectionProcess);
}
// shutdown tests
@Test
@Timeout(5)
public void testShutdown_GracefulTermination() throws IOException, InterruptedException {
intersectionProcess = new IntersectionProcess("Cr1", configFile.toString());
intersectionProcess.initialize();
Thread serverThread = new Thread(() -> {
try {
intersectionProcess.start();
} catch (IOException e) { }
});
serverThread.start();
Thread.sleep(500);
// shutdown should be fast
assertDoesNotThrow(() -> intersectionProcess.shutdown());
serverThread.join(2000);
}
@Test
@Timeout(5)
public void testShutdown_ClosesServerSocket() throws IOException, InterruptedException {
intersectionProcess = new IntersectionProcess("Cr1", configFile.toString());
intersectionProcess.initialize();
Thread serverThread = new Thread(() -> {
try {
intersectionProcess.start();
} catch (IOException e) { }
});
serverThread.start();
Thread.sleep(500);
// verify server running
try (Socket socket = new Socket("localhost", 18001)) {
assertTrue(socket.isConnected());
}
intersectionProcess.shutdown();
serverThread.join(2000);
// after shutdown conection should fail
Thread.sleep(500);
Exception exception = assertThrows(IOException.class, () -> {
Socket socket = new Socket("localhost", 18001);
socket.close();
});
assertNotNull(exception);
}
@Test
@Timeout(5)
public void testShutdown_StopsTrafficLightThreads() throws IOException, InterruptedException {
intersectionProcess = new IntersectionProcess("Cr1", configFile.toString());
intersectionProcess.initialize();
Thread serverThread = new Thread(() -> {
try {
intersectionProcess.start();
} catch (IOException e) { }
});
serverThread.start();
Thread.sleep(500);
int threadCountBefore = Thread.activeCount();
intersectionProcess.shutdown();
serverThread.join(2000);
Thread.sleep(500); // wait for threads to die
// thread count should decrese (traffic light threads stop)
int threadCountAfter = Thread.activeCount();
assertTrue(threadCountAfter <= threadCountBefore);
}
// integration tests
@Test
@Timeout(15)
public void testIntegration_TwoIntersectionsVehicleTransfer() throws IOException, InterruptedException {
// setup 2 intersections
IntersectionProcess cr1 = new IntersectionProcess("Cr1", configFile.toString());
IntersectionProcess cr2 = new IntersectionProcess("Cr2", configFile.toString());
cr1.initialize();
cr2.initialize();
// start both
Thread thread1 = new Thread(() -> {
try { cr1.start(); } catch (IOException e) { }
});
Thread thread2 = new Thread(() -> {
try { cr2.start(); } catch (IOException e) { }
});
thread1.start();
thread2.start();
Thread.sleep(1000); // wait for servers
// send vehicle to Cr1 that goes to Cr2
java.util.List<String> route = Arrays.asList("Cr1", "Cr2", "S");
Vehicle vehicle = new Vehicle("V001", VehicleType.LIGHT, 0.0, route);
try (Socket socket = new Socket("localhost", 18001)) {
ObjectOutputStream out = new ObjectOutputStream(socket.getOutputStream());
TestVehicleMessage message = new TestVehicleMessage("Entry", "Cr1", vehicle);
out.writeObject(message);
out.flush();
Thread.sleep(2000); // time for processing
}
cr1.shutdown();
cr2.shutdown();
thread1.join(2000);
thread2.join(2000);
}
@Test
public void testMain_MissingArguments() {
// main needs intersection ID as argument
// cant test System.exit easily in modern java
assertTrue(true, "Main method expects intersection ID as first argument");
}
// helper class for testing vehicle messages
private static class TestVehicleMessage implements sd.protocol.MessageProtocol {
private static final long serialVersionUID = 1L;
private final String sourceNode;
private final String destinationNode;
private final Vehicle payload;
public TestVehicleMessage(String sourceNode, String destinationNode, Vehicle vehicle) {
this.sourceNode = sourceNode;
this.destinationNode = destinationNode;
this.payload = vehicle;
}
@Override
public MessageType getType() {
return MessageType.VEHICLE_TRANSFER;
}
@Override
public Object getPayload() {
return payload;
}
@Override
public String getSourceNode() {
return sourceNode;
}
@Override
public String getDestinationNode() {
return destinationNode;
}
}
}

View File

@@ -43,7 +43,7 @@ class SimulationTest {
assertEquals("TEST1", vehicle.getId());
assertNotNull(vehicle.getType());
assertNotNull(vehicle.getRoute());
assertTrue(!vehicle.getRoute().isEmpty());
assertTrue(vehicle.getRoute().size() > 0);
}
@Test

View File

@@ -1,140 +0,0 @@
package sd.serialization;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.DisplayName;
import sd.model.Message;
import sd.model.Vehicle;
import sd.model.VehicleType;
import java.util.Arrays;
import static org.junit.jupiter.api.Assertions.*;
/**
* Test suite for JSON serialization.
*
* Tests JSON serialization to ensure:
* - Correct serialization and deserialization
* - Data integrity during round-trip conversion
* - Proper error handling
*/
class SerializationTest {
private MessageSerializer jsonSerializer = new JsonMessageSerializer();
private Vehicle testVehicle = new Vehicle("V001", VehicleType.LIGHT, 10.5,
Arrays.asList("Cr1", "Cr2", "Cr5", "S"));
private Message testMessage = new Message(
sd.model.MessageType.VEHICLE_TRANSFER,
"Cr1",
"Cr2",
testVehicle
);
// ===== JSON Serialization Tests =====
@Test
@DisplayName("JSON: Should serialize and deserialize Vehicle correctly")
void testJsonVehicleRoundTrip() throws SerializationException {
// Serialize
byte[] data = jsonSerializer.serialize(testVehicle);
assertNotNull(data);
assertTrue(data.length > 0);
// Print JSON for inspection
System.out.println("JSON Vehicle:");
System.out.println(new String(data));
// Deserialize
Vehicle deserialized = jsonSerializer.deserialize(data, Vehicle.class);
// Verify
assertNotNull(deserialized);
assertEquals(testVehicle.getId(), deserialized.getId());
assertEquals(testVehicle.getType(), deserialized.getType());
assertEquals(testVehicle.getEntryTime(), deserialized.getEntryTime());
assertEquals(testVehicle.getRoute(), deserialized.getRoute());
assertEquals(testVehicle.getTotalWaitingTime(), deserialized.getTotalWaitingTime());
assertEquals(testVehicle.getTotalCrossingTime(), deserialized.getTotalCrossingTime());
}
@Test
@DisplayName("JSON: Should serialize and deserialize Message correctly")
void testJsonMessageRoundTrip() throws SerializationException {
// Serialize
byte[] data = jsonSerializer.serialize(testMessage);
assertNotNull(data);
// Print JSON for inspection
System.out.println("\nJSON Message:");
System.out.println(new String(data));
// Deserialize
Message deserialized = jsonSerializer.deserialize(data, Message.class);
// Verify
assertNotNull(deserialized);
assertEquals(testMessage.getType(), deserialized.getType());
assertEquals(testMessage.getSenderId(), deserialized.getSenderId());
assertEquals(testMessage.getDestinationId(), deserialized.getDestinationId());
}
@Test
@DisplayName("JSON: Should throw exception on null object")
void testJsonSerializeNull() {
assertThrows(IllegalArgumentException.class, () -> {
jsonSerializer.serialize(null);
});
}
@Test
@DisplayName("JSON: Should throw exception on null data")
void testJsonDeserializeNull() {
assertThrows(IllegalArgumentException.class, () -> {
jsonSerializer.deserialize(null, Vehicle.class);
});
}
@Test
@DisplayName("JSON: Should throw exception on invalid JSON")
void testJsonDeserializeInvalid() {
byte[] invalidData = "{ invalid json }".getBytes();
assertThrows(SerializationException.class, () -> {
jsonSerializer.deserialize(invalidData, Vehicle.class);
});
}
@Test
@DisplayName("JSON: Should preserve data integrity for complex objects")
void testDataIntegrity() throws SerializationException {
// Create a more complex vehicle
Vehicle vehicle = new Vehicle("V999", VehicleType.HEAVY, 100.5,
Arrays.asList("Cr1", "Cr2", "Cr3", "Cr4", "Cr5", "S"));
vehicle.addWaitingTime(10.5);
vehicle.addWaitingTime(5.3);
vehicle.addCrossingTime(2.1);
vehicle.advanceRoute();
vehicle.advanceRoute();
// Serialize and deserialize
byte[] jsonData = jsonSerializer.serialize(vehicle);
Vehicle deserialized = jsonSerializer.deserialize(jsonData, Vehicle.class);
// Verify all fields match
assertEquals(vehicle.getId(), deserialized.getId());
assertEquals(vehicle.getType(), deserialized.getType());
assertEquals(vehicle.getTotalWaitingTime(), deserialized.getTotalWaitingTime());
assertEquals(vehicle.getCurrentRouteIndex(), deserialized.getCurrentRouteIndex());
}
// ===== Factory Tests =====
@Test
@DisplayName("Factory: Should create JSON serializer by default")
void testFactoryDefault() {
MessageSerializer serializer = SerializerFactory.createDefault();
assertNotNull(serializer);
assertEquals("JSON (Gson)", serializer.getName());
}
}