19 Commits

Author SHA1 Message Date
David Alves
ecb70fa6a2 Merge pull request #33 from davidalves04/17-create-dashboardserver-process
Dashboard Server Implementation
2025-11-19 19:16:50 +00:00
06f079ce5b fix intersections starting independently with no coordination 2025-11-18 14:29:11 +00:00
72893f87ae added dashboard server and built an example implementation for the message protocol 2025-11-14 02:01:51 +00:00
6b94d727e2 shutdown and teardown fixes + incoming connection handler 2025-11-11 17:28:44 +00:00
84cba39597 bullshit fixes 2025-11-06 20:31:59 +00:00
5dc1b40c88 Merge pull request #32 from davidalves04/14-create-trafficlightthread-class
14 create trafficlightthread class
2025-11-06 13:53:12 +00:00
3117bdf332 Merge branch 'dev' into 14-create-trafficlightthread-class 2025-11-06 13:53:01 +00:00
1140c3ca48 Merge pull request #30 from davidalves04/13-create-exit-node-process
13 create exit node process
2025-11-06 13:49:21 +00:00
Gaa56
484cba1eee Update TrafficLightThread 2025-11-05 13:21:10 +00:00
Gaa56
0e5526c3f6 Merge pull request #31 from davidalves04/dev
Dev
2025-11-05 12:37:48 +00:00
David Alves
cf88db4297 Add traffic light coordination and tests
Sorry to add this on this branch ahah
2025-11-05 12:09:32 +00:00
David Alves
0960a7a141 Add ExitNodeProcess and unit tests 2025-11-05 11:54:34 +00:00
David Alves
3b4f968a59 Merge pull request #29 from davidalves04/12-implement-coordinatorgenerator-process
Coordinator Process Implementation
2025-11-03 00:02:56 +00:00
0c256ad6f5 Fix Intersection Destination - Doubled Advance 2025-11-02 23:56:54 +00:00
340e436063 Merge branch 'dev' into 12-implement-coordinatorgenerator-process 2025-11-02 23:21:36 +00:00
1684a6713e Implementation of the Coordinator Process 2025-11-02 23:17:15 +00:00
22a7081ade Merge pull request #28 from davidalves04/10-create-network-communication-classes
Fix Serialization
2025-11-02 22:39:38 +00:00
Gaa56
4710c96450 Create TrafficLightThread Class 2025-10-30 18:06:02 +00:00
f9644bd18c Merge pull request #26 from davidalves04/dev
#12 Req.
2025-10-30 16:09:04 +00:00
17 changed files with 3084 additions and 358 deletions

View File

@@ -0,0 +1,382 @@
package sd;
import java.io.IOException;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
import sd.config.SimulationConfig;
import sd.coordinator.SocketClient;
import sd.model.Message;
import sd.model.MessageType;
import sd.model.Vehicle;
import sd.model.VehicleType;
import sd.protocol.MessageProtocol;
import sd.protocol.SocketConnection;
import sd.serialization.SerializationException;
/**
* Processo responsável pelo nó de saída do sistema de simulação de tráfego distribuído.
*
* Este processo representa o ponto final ("S") onde os veículos completam as suas rotas.
* As suas principais responsabilidades são:
* - Receber veículos que terminam a sua rota vindos das interseções
* - Calcular e agregar estatísticas finais dos veículos
* - Enviar estatísticas periódicas para o dashboard
* - Gerar relatórios finais ao terminar a simulação
*/
public class ExitNodeProcess {
private final SimulationConfig config;
private ServerSocket serverSocket;
private final ExecutorService connectionHandlerPool;
/** Flag para controlar a execução do processo (volatile para visibilidade entre threads) */
private volatile boolean running;
/** Counter de veículos que completaram a rota */
private int totalVehiclesReceived;
/** Soma dos tempos no sistema de todos os veículos */
private double totalSystemTime;
/** Soma dos tempos de espera de todos os veículos */
private double totalWaitingTime;
/** Soma dos tempos de travessia de todos os veículos */
private double totalCrossingTime;
/** Contagem de veículos por tipo */
private final Map<VehicleType, Integer> vehicleTypeCount;
/** Tempo total de espera acumulado por tipo de veículo */
private final Map<VehicleType, Double> vehicleTypeWaitTime;
/** Socket para comunicação com o dashboard */
private SocketClient dashboardClient;
/**
* Método para iniciar o processo
*
* @param args Argumentos da linha de comandos. Se fornecido, args[0] deve ser
* o caminho para um ficheiro de configuração personalizado.
*/
public static void main(String[] args) {
System.out.println("=".repeat(60));
System.out.println("EXIT NODE PROCESS");
System.out.println("=".repeat(60));
try {
String configFile = args.length > 0 ? args[0] : "src/main/resources/simulation.properties";
System.out.println("Loading configuration from: " + configFile);
SimulationConfig config = new SimulationConfig(configFile);
ExitNodeProcess exitNode = new ExitNodeProcess(config);
System.out.println("\n" + "=".repeat(60));
exitNode.initialize();
System.out.println("\n" + "=".repeat(60));
exitNode.start();
} catch (IOException e) {
System.err.println("Failed to start exit node: " + e.getMessage());
System.exit(1);
} catch (Exception e) {
System.err.println("Exit node error: " + e.getMessage());
System.exit(1);
}
}
/**
* Constrói um novo processo de nó de saída.
*
* Inicializa todas as estruturas de dados necessárias para recolher estatísticas
* e configura o pool de threads para processar as ligações concorrentes.
*
* @param config Configuração da simulação contendo portas e endereços dos serviços
*/
public ExitNodeProcess(SimulationConfig config) {
this.config = config;
this.connectionHandlerPool = Executors.newCachedThreadPool();
this.running = false;
this.totalVehiclesReceived = 0;
this.totalSystemTime = 0.0;
this.totalWaitingTime = 0.0;
this.totalCrossingTime = 0.0;
this.vehicleTypeCount = new HashMap<>();
this.vehicleTypeWaitTime = new HashMap<>();
// Inicializa os counters para cada tipo de veículo
for (VehicleType type : VehicleType.values()) {
vehicleTypeCount.put(type, 0);
vehicleTypeWaitTime.put(type, 0.0);
}
System.out.println("Exit node initialized");
System.out.println(" - Exit port: " + config.getExitPort());
System.out.println(" - Dashboard: " + config.getDashboardHost() + ":" + config.getDashboardPort());
}
/**
* Inicializa o processo de ligação ao dashboard.
*
* Tenta conectar-se ao dashboard. Se a ligação falhar, o processo
* continua a funcionar normalmente, mas sem enviar estatísticas.
*
*/
public void initialize() {
System.out.println("Connecting to dashboard...");
try {
String host = config.getDashboardHost();
int port = config.getDashboardPort();
dashboardClient = new SocketClient("Dashboard", host, port);
dashboardClient.connect();
System.out.println("Successfully connected to dashboard");
} catch (IOException e) {
System.err.println("WARNING: Failed to connect to dashboard: " + e.getMessage());
System.err.println("Exit node will continue without dashboard connection");
}
}
/**
* Inicia o socket e começa a aceitar ligações.
*
* Este é o loop principal do processo que:
* 1. Cria um socket na porta definida
* 2. Aguarda pelas ligações das interseções
* 3. Delega cada ligação a uma thread da pool para processamento assíncrono
*
* @throws IOException Se o socket não puder ser criado ou houver erro na aceitação
*/
public void start() throws IOException {
int port = config.getExitPort();
serverSocket = new ServerSocket(port);
running = true;
System.out.println("Exit node started on port " + port);
System.out.println("Waiting for vehicles...\n");
while (running) {
try {
Socket clientSocket = serverSocket.accept();
connectionHandlerPool.submit(() -> handleIncomingConnection(clientSocket));
} catch (IOException e) {
if (running) {
System.err.println("Error accepting connection: " + e.getMessage());
}
}
}
}
/**
* Processa uma ligação recebida de uma interseção.
*
* Mantém a ligação aberta e processa continuamente mensagens do tipo
* VEHICLE_TRANSFER. Cada mensagem representa um veículo que chegou ao nó de saída.
*
* @param clientSocket Socket da ligação estabelecida com a interseção
*/
private void handleIncomingConnection(Socket clientSocket) {
try (SocketConnection connection = new SocketConnection(clientSocket)) {
System.out.println("New connection accepted from " +
clientSocket.getInetAddress().getHostAddress());
while (running && connection.isConnected()) {
try {
MessageProtocol message = connection.receiveMessage();
if (message.getType() == MessageType.VEHICLE_TRANSFER) {
Vehicle vehicle = (Vehicle) message.getPayload();
processExitingVehicle(vehicle);
}
} catch (ClassNotFoundException e) {
System.err.println("Unknown message type received: " + e.getMessage());
}
}
} catch (IOException e) {
if (running) {
System.err.println("Connection error: " + e.getMessage());
}
}
}
/**
* Processa um veículo que chegou ao nó de saída.
*
* Método sincronizado para garantir thread-safety ao atualizar as estatísticas.
* Calcula as métricas finais do veículo e atualiza:
* - Counters globais;
* - Estatísticas por tipo de veículo;
* - Faz update ao dashboard a cada 10 veículos.
*
* @param vehicle Veículo que completou a sua rota
*/
private synchronized void processExitingVehicle(Vehicle vehicle) {
totalVehiclesReceived++;
double systemTime = vehicle.getTotalTravelTime(getCurrentTime());
double waitTime = vehicle.getTotalWaitingTime();
double crossingTime = vehicle.getTotalCrossingTime();
totalSystemTime += systemTime;
totalWaitingTime += waitTime;
totalCrossingTime += crossingTime;
VehicleType type = vehicle.getType();
vehicleTypeCount.put(type, vehicleTypeCount.get(type) + 1);
vehicleTypeWaitTime.put(type, vehicleTypeWaitTime.get(type) + waitTime);
System.out.printf("[Exit] Vehicle %s completed (type=%s, system_time=%.2fs, wait=%.2fs)%n",
vehicle.getId(), vehicle.getType(), systemTime, waitTime);
if (totalVehiclesReceived % 10 == 0) {
sendStatsToDashboard();
}
}
/**
* Obtém o tempo atual da simulação em segundos.
*
* @return Tempo atual em segundos desde "epoch"
*
* "Epoch" é um ponto de referência temporal Unix (1 de janeiro de 1970).
* Este método retorna os segundos decorridos desde esse momento.
*/
private double getCurrentTime() {
return System.currentTimeMillis() / 1000.0;
}
/**
* Envia as estatísticas para o dashboard.
*
* Prepara e envia uma mensagem STATS_UPDATE com:
* - O total de veículos processados;
* - A média dos tempos (sistema, espera, travessia);
* - As contagens e médias por cada tipo de veículo.
*
*/
private void sendStatsToDashboard() {
if (dashboardClient == null || !dashboardClient.isConnected()) {
return;
}
try {
Map<String, Object> stats = new HashMap<>();
stats.put("totalVehicles", totalVehiclesReceived);
stats.put("avgSystemTime", totalVehiclesReceived > 0 ? totalSystemTime / totalVehiclesReceived : 0.0);
stats.put("avgWaitingTime", totalVehiclesReceived > 0 ? totalWaitingTime / totalVehiclesReceived : 0.0);
stats.put("avgCrossingTime", totalVehiclesReceived > 0 ? totalCrossingTime / totalVehiclesReceived : 0.0);
Map<String, Integer> typeCounts = new HashMap<>();
Map<String, Double> typeAvgWait = new HashMap<>();
for (VehicleType type : VehicleType.values()) {
int count = vehicleTypeCount.get(type);
typeCounts.put(type.name(), count);
if (count > 0) {
typeAvgWait.put(type.name(), vehicleTypeWaitTime.get(type) / count);
}
}
stats.put("vehicleTypeCounts", typeCounts);
stats.put("vehicleTypeAvgWait", typeAvgWait);
Message message = new Message(MessageType.STATS_UPDATE, "ExitNode", "Dashboard", stats);
dashboardClient.send(message);
System.out.printf("[Exit] Sent stats to dashboard (total=%d, avg_wait=%.2fs)%n",
totalVehiclesReceived, totalWaitingTime / totalVehiclesReceived);
} catch (SerializationException | IOException e) {
System.err.println("Failed to send stats to dashboard: " + e.getMessage());
}
}
/**
* Termina o processo
*
* Executa a seguinte sequência:
* Imprime as estatísticas finais no terminal;
* Envia a última atualização de estatísticas ao dashboard;
* Fecha o socket;
* Aguarda pela finalização das threads;
* Fecha a ligação com o dashboard;
*/
public void shutdown() {
System.out.println("\n[Exit] Shutting down...");
running = false;
printFinalStatistics();
sendStatsToDashboard();
try {
if (serverSocket != null && !serverSocket.isClosed()) {
serverSocket.close();
}
} catch (IOException e) {
System.err.println("Error closing server socket: " + e.getMessage());
}
connectionHandlerPool.shutdown();
try {
if (!connectionHandlerPool.awaitTermination(5, TimeUnit.SECONDS)) {
connectionHandlerPool.shutdownNow();
}
} catch (InterruptedException e) {
connectionHandlerPool.shutdownNow();
}
if (dashboardClient != null) {
dashboardClient.close();
}
System.out.println("[Exit] Shutdown complete.");
System.out.println("=".repeat(60));
}
/**
* Imprime as estatísticas finais detalhadas no terminal
*
* Gera um relatório com:
* Total de veículos que completaram a rota;
* Médias de tempo no sistema, espera e travessia;
* Distribuição e médias pelo tipo de veículo (BIKE, LIGHT, HEAVY);
*
* Este método é chamado durante o shutdown para fornecer um resumo
* da simulação antes de terminar o processo.
*/
private void printFinalStatistics() {
System.out.println("\n=== EXIT NODE STATISTICS ===");
System.out.printf("Total Vehicles Completed: %d%n", totalVehiclesReceived);
if (totalVehiclesReceived > 0) {
System.out.printf("%nAVERAGE METRICS:%n");
System.out.printf(" System Time: %.2f seconds%n", totalSystemTime / totalVehiclesReceived);
System.out.printf(" Waiting Time: %.2f seconds%n", totalWaitingTime / totalVehiclesReceived);
System.out.printf(" Crossing Time: %.2f seconds%n", totalCrossingTime / totalVehiclesReceived);
}
System.out.println("\nVEHICLE TYPE DISTRIBUTION:");
for (VehicleType type : VehicleType.values()) {
int count = vehicleTypeCount.get(type);
if (count > 0) {
double percentage = (count * 100.0) / totalVehiclesReceived;
double avgWait = vehicleTypeWaitTime.get(type) / count;
System.out.printf(" %s: %d (%.1f%%), Avg Wait: %.2fs%n",
type, count, percentage, avgWait);
}
}
}
}

View File

@@ -8,40 +8,57 @@ import java.util.Map;
import java.util.concurrent.ExecutorService; import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors; import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit; import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
import sd.config.SimulationConfig; import sd.config.SimulationConfig;
import sd.engine.TrafficLightThread;
import sd.model.Intersection; import sd.model.Intersection;
import sd.model.MessageType; import sd.model.MessageType;
import sd.model.TrafficLight; import sd.model.TrafficLight;
import sd.model.TrafficLightState;
import sd.model.Vehicle; import sd.model.Vehicle;
import sd.protocol.MessageProtocol; import sd.protocol.MessageProtocol;
import sd.protocol.SocketConnection; import sd.protocol.SocketConnection;
/** /**
* Main class for an Intersection Process in the distributed traffic simulation. * Main class for an Intersection Process in the distributed traffic simulation.
* * Each IntersectionProcess runs as an independent Java application (JVM instance) * * Each IntersectionProcess runs as an independent Java application (JVM
* instance)
* representing one of the five intersections (Cr1-Cr5) in the network. * representing one of the five intersections (Cr1-Cr5) in the network.
*/ */
public class IntersectionProcess { public class IntersectionProcess {
private final String intersectionId; private final String intersectionId;
private final SimulationConfig config; private final SimulationConfig config;
private final Intersection intersection; private final Intersection intersection;
private ServerSocket serverSocket; private ServerSocket serverSocket;
private final Map<String, SocketConnection> outgoingConnections; private final Map<String, SocketConnection> outgoingConnections;
private final ExecutorService connectionHandlerPool; private final ExecutorService connectionHandlerPool;
private final ExecutorService trafficLightPool; private final ExecutorService trafficLightPool;
private volatile boolean running; //Quando uma thread escreve um valor volatile, todas as outras private volatile boolean running; // Quando uma thread escreve um valor volatile, todas as outras
//threads veem a mudança imediatamente. // threads veem a mudança imediatamente.
// Traffic Light Coordination
/**
* Lock to ensure mutual exclusion between traffic lights.
* Only one traffic light can be green at any given time within this
* intersection.
*/
private final Lock trafficCoordinationLock;
/**
* Tracks which direction currently has the green light.
* null means no direction is currently green (all are red).
*/
private volatile String currentGreenDirection;
/** /**
* Constructs a new IntersectionProcess. * Constructs a new IntersectionProcess.
* *
@@ -57,262 +74,198 @@ public class IntersectionProcess {
this.connectionHandlerPool = Executors.newCachedThreadPool(); this.connectionHandlerPool = Executors.newCachedThreadPool();
this.trafficLightPool = Executors.newFixedThreadPool(4); // Max 4 directions this.trafficLightPool = Executors.newFixedThreadPool(4); // Max 4 directions
this.running = false; this.running = false;
this.trafficCoordinationLock = new ReentrantLock();
this.currentGreenDirection = null;
System.out.println("=".repeat(60)); System.out.println("=".repeat(60));
System.out.println("INTERSECTION PROCESS: " + intersectionId); System.out.println("INTERSECTION PROCESS: " + intersectionId);
System.out.println("=".repeat(60)); System.out.println("=".repeat(60));
} }
public void initialize() { public void initialize() {
System.out.println("\n[" + intersectionId + "] Initializing intersection..."); System.out.println("\n[" + intersectionId + "] Initializing intersection...");
createTrafficLights(); createTrafficLights();
configureRouting(); configureRouting();
startTrafficLights();
System.out.println("[" + intersectionId + "] Initialization complete."); System.out.println("[" + intersectionId + "] Initialization complete.");
} }
/** /**
* Creates traffic lights for this intersection based on its physical connections. * Creates traffic lights for this intersection based on its physical
* connections.
* Each intersection has different number and directions of traffic lights * Each intersection has different number and directions of traffic lights
* according to the network topology. * according to the network topology.
*/ */
private void createTrafficLights() { private void createTrafficLights() {
System.out.println("\n[" + intersectionId + "] Creating traffic lights..."); System.out.println("\n[" + intersectionId + "] Creating traffic lights...");
String[] directions = new String[0]; String[] directions = new String[0];
switch (intersectionId) { switch (intersectionId) {
case "Cr1": case "Cr1":
directions = new String[]{"East", "South"}; directions = new String[] { "East", "South" };
break; break;
case "Cr2": case "Cr2":
directions = new String[]{"West", "East", "South"}; directions = new String[] { "West", "East", "South" };
break; break;
case "Cr3": case "Cr3":
directions = new String[]{"West", "South"}; directions = new String[] { "West", "South" };
break; break;
case "Cr4": case "Cr4":
directions = new String[]{"East"}; directions = new String[] { "East" };
break; break;
case "Cr5": case "Cr5":
directions = new String[]{"East"}; directions = new String[] { "East" };
break; break;
} }
for (String direction : directions) { for (String direction : directions) {
double greenTime = config.getTrafficLightGreenTime(intersectionId, direction); double greenTime = config.getTrafficLightGreenTime(intersectionId, direction);
double redTime = config.getTrafficLightRedTime(intersectionId, direction); double redTime = config.getTrafficLightRedTime(intersectionId, direction);
TrafficLight light = new TrafficLight( TrafficLight light = new TrafficLight(
intersectionId + "-" + direction, intersectionId + "-" + direction,
direction, direction,
greenTime, greenTime,
redTime redTime);
);
intersection.addTrafficLight(light); intersection.addTrafficLight(light);
System.out.println(" Created traffic light: " + direction + System.out.println(" Created traffic light: " + direction +
" (Green: " + greenTime + "s, Red: " + redTime + "s)"); " (Green: " + greenTime + "s, Red: " + redTime + "s)");
} }
} }
private void configureRouting() { private void configureRouting() {
System.out.println("\n[" + intersectionId + "] Configuring routing..."); System.out.println("\n[" + intersectionId + "] Configuring routing...");
switch (intersectionId) { switch (intersectionId) {
case "Cr1": case "Cr1":
intersection.configureRoute("Cr2", "East"); intersection.configureRoute("Cr2", "East");
intersection.configureRoute("Cr4", "South"); intersection.configureRoute("Cr4", "South");
break; break;
case "Cr2": case "Cr2":
intersection.configureRoute("Cr1", "West"); intersection.configureRoute("Cr1", "West");
intersection.configureRoute("Cr3", "East"); intersection.configureRoute("Cr3", "East");
intersection.configureRoute("Cr5", "South"); intersection.configureRoute("Cr5", "South");
break; break;
case "Cr3": case "Cr3":
intersection.configureRoute("Cr2", "West"); intersection.configureRoute("Cr2", "West");
intersection.configureRoute("S", "South"); intersection.configureRoute("S", "South");
break; break;
case "Cr4": case "Cr4":
intersection.configureRoute("Cr5", "East"); intersection.configureRoute("Cr5", "East");
break; break;
case "Cr5": case "Cr5":
intersection.configureRoute("S", "East"); intersection.configureRoute("S", "East");
break; break;
default: default:
System.err.println(" Error: unknown intersection ID: " + intersectionId); System.err.println(" Error: unknown intersection ID: " + intersectionId);
} }
System.out.println(" Routing configured."); System.out.println(" Routing configured.");
} }
/**
* Requests permission for a traffic light to turn green.
* Blocks until permission is granted (no other light is green).
*
* @param direction The direction requesting green light
*/
public void requestGreenLight(String direction) {
trafficCoordinationLock.lock();
currentGreenDirection = direction;
}
/**
* Releases the green light permission, allowing another light to turn green.
*
* @param direction The direction releasing green light
*/
public void releaseGreenLight(String direction) {
if (direction.equals(currentGreenDirection)) {
currentGreenDirection = null;
trafficCoordinationLock.unlock();
}
}
/** /**
* Starts all traffic light threads. * Starts all traffic light threads.
*/ */
private void startTrafficLights() { private void startTrafficLights() {
System.out.println("\n[" + intersectionId + "] Starting traffic light threads..."); System.out.println("\n[" + intersectionId + "] Starting traffic light threads...");
for (TrafficLight light : intersection.getTrafficLights()) { for (TrafficLight light : intersection.getTrafficLights()) {
trafficLightPool.submit(() -> runTrafficLightCycle(light));
TrafficLightThread lightTask = new TrafficLightThread(light, this, config);
trafficLightPool.submit(lightTask);
System.out.println(" Started thread for: " + light.getDirection()); System.out.println(" Started thread for: " + light.getDirection());
} }
} }
/**
* The main loop for a traffic light thread.
* Continuously cycles between GREEN and RED states.
*
* @param light The traffic light to control.
*/
private void runTrafficLightCycle(TrafficLight light) {
System.out.println("[" + light.getId() + "] Traffic light thread started.");
while (running) {
try {
// Green state
light.changeState(TrafficLightState.GREEN);
System.out.println("[" + light.getId() + "] State: GREEN");
// Process vehicles while green
processGreenLight(light);
// Wait for green duration
Thread.sleep((long) (light.getGreenTime() * 1000));
// RED state
light.changeState(TrafficLightState.RED);
System.out.println("[" + light.getId() + "] State: RED");
// Wait for red duration
Thread.sleep((long) (light.getRedTime() * 1000));
} catch (InterruptedException e) {
System.out.println("[" + light.getId() + "] Traffic light thread interrupted.");
break;
}
}
System.out.println("[" + light.getId() + "] Traffic light thread stopped.");
}
/**
* Processes vehicles when a traffic light is GREEN.
* Dequeues vehicles and sends them to their next destination.
*
* @param light The traffic light that is currently green.
*/
private void processGreenLight(TrafficLight light) {
while (light.getState() == TrafficLightState.GREEN && light.getQueueSize() > 0) {
Vehicle vehicle = light.removeVehicle();
if (vehicle != null) {
// Get crossing time based on vehicle type
double crossingTime = getCrossingTimeForVehicle(vehicle);
// Simulate crossing time
try {
Thread.sleep((long) (crossingTime * 1000));
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
break;
}
// Update vehicle statistics
vehicle.addCrossingTime(crossingTime);
// Update intersection statistics
intersection.incrementVehiclesSent();
// Send vehicle to next destination
sendVehicleToNextDestination(vehicle);
}
}
}
/**
* Gets the crossing time for a vehicle based on its type.
*
* @param vehicle The vehicle.
* @return The crossing time in seconds.
*/
private double getCrossingTimeForVehicle(Vehicle vehicle) {
switch (vehicle.getType()) {
case BIKE:
return config.getBikeVehicleCrossingTime();
case LIGHT:
return config.getLightVehicleCrossingTime();
case HEAVY:
return config.getHeavyVehicleCrossingTime();
default:
return config.getLightVehicleCrossingTime();
}
}
/** /**
* Sends a vehicle to its next destination via socket connection. * Sends a vehicle to its next destination via socket connection.
* *
* @param vehicle The vehicle that has crossed this intersection. * @param vehicle The vehicle that has crossed this intersection.
*/ */
private void sendVehicleToNextDestination(Vehicle vehicle) { public void sendVehicleToNextDestination(Vehicle vehicle) {
String nextDestination = vehicle.getCurrentDestination(); String nextDestination = vehicle.getCurrentDestination();
try { try {
// Get or create connection to next destination // Get or create connection to next destination
SocketConnection connection = getOrCreateConnection(nextDestination); SocketConnection connection = getOrCreateConnection(nextDestination);
// Create and send message // Create and send message
MessageProtocol message = new VehicleTransferMessage( MessageProtocol message = new VehicleTransferMessage(
intersectionId, intersectionId,
nextDestination, nextDestination,
vehicle vehicle);
);
connection.sendMessage(message); connection.sendMessage(message);
System.out.println("[" + intersectionId + "] Sent vehicle " + vehicle.getId() + System.out.println("[" + intersectionId + "] Sent vehicle " + vehicle.getId() +
" to " + nextDestination); " to " + nextDestination);
// Note: vehicle route is advanced when it arrives at the next intersection // Note: vehicle route is advanced when it arrives at the next intersection
} catch (IOException | InterruptedException e) { } catch (IOException | InterruptedException e) {
System.err.println("[" + intersectionId + "] Failed to send vehicle " + System.err.println("[" + intersectionId + "] Failed to send vehicle " +
vehicle.getId() + " to " + nextDestination + ": " + e.getMessage()); vehicle.getId() + " to " + nextDestination + ": " + e.getMessage());
} }
} }
/** /**
* Gets an existing connection to a destination or creates a new one. * Gets an existing connection to a destination or creates a new one.
* *
* @param destinationId The ID of the destination node. * @param destinationId The ID of the destination node.
* @return The SocketConnection to that destination. * @return The SocketConnection to that destination.
* @throws IOException If connection cannot be established. * @throws IOException If connection cannot be established.
* @throws InterruptedException If connection attempt is interrupted. * @throws InterruptedException If connection attempt is interrupted.
*/ */
private synchronized SocketConnection getOrCreateConnection(String destinationId) private synchronized SocketConnection getOrCreateConnection(String destinationId)
throws IOException, InterruptedException { throws IOException, InterruptedException {
if (!outgoingConnections.containsKey(destinationId)) { if (!outgoingConnections.containsKey(destinationId)) {
String host = getHostForDestination(destinationId); String host = getHostForDestination(destinationId);
int port = getPortForDestination(destinationId); int port = getPortForDestination(destinationId);
System.out.println("[" + intersectionId + "] Creating connection to " + System.out.println("[" + intersectionId + "] Creating connection to " +
destinationId + " at " + host + ":" + port); destinationId + " at " + host + ":" + port);
SocketConnection connection = new SocketConnection(host, port); SocketConnection connection = new SocketConnection(host, port);
outgoingConnections.put(destinationId, connection); outgoingConnections.put(destinationId, connection);
} }
return outgoingConnections.get(destinationId); return outgoingConnections.get(destinationId);
} }
/** /**
* Gets the host address for a destination node from configuration. * Gets the host address for a destination node from configuration.
* *
@@ -326,7 +279,7 @@ public class IntersectionProcess {
return config.getIntersectionHost(destinationId); return config.getIntersectionHost(destinationId);
} }
} }
/** /**
* Gets the port number for a destination node from configuration. * Gets the port number for a destination node from configuration.
* *
@@ -340,7 +293,7 @@ public class IntersectionProcess {
return config.getIntersectionPort(destinationId); return config.getIntersectionPort(destinationId);
} }
} }
/** /**
* Starts the server socket and begins accepting incoming connections. * Starts the server socket and begins accepting incoming connections.
* This is the main listening loop of the process. * This is the main listening loop of the process.
@@ -351,27 +304,51 @@ public class IntersectionProcess {
int port = config.getIntersectionPort(intersectionId); int port = config.getIntersectionPort(intersectionId);
serverSocket = new ServerSocket(port); serverSocket = new ServerSocket(port);
running = true; running = true;
System.out.println("\n[" + intersectionId + "] Server started on port " + port); System.out.println("\n[" + intersectionId + "] Server started on port " + port);
// Start traffic light threads when running is true
startTrafficLights();
System.out.println("[" + intersectionId + "] Waiting for incoming connections...\n"); System.out.println("[" + intersectionId + "] Waiting for incoming connections...\n");
// Main accept loop // Main accept loop
while (running) { while (running) {
try { try {
Socket clientSocket = serverSocket.accept(); Socket clientSocket = serverSocket.accept();
System.out.println("[" + intersectionId + "] New connection accepted from " +
clientSocket.getInetAddress().getHostAddress());
// Check running flag again before handling
if (!running) {
clientSocket.close();
break;
}
// **Set timeout before submitting to handler**
try {
clientSocket.setSoTimeout(1000);
} catch (java.net.SocketException e) {
System.err.println("[" + intersectionId + "] Failed to set timeout: " + e.getMessage());
clientSocket.close();
continue;
}
// Handle each connection in a separate thread // Handle each connection in a separate thread
connectionHandlerPool.submit(() -> handleIncomingConnection(clientSocket)); connectionHandlerPool.submit(() -> handleIncomingConnection(clientSocket));
} catch (IOException e) { } catch (IOException e) {
if (running) { // Expected when serverSocket.close() is called during shutdown
System.err.println("[" + intersectionId + "] Error accepting connection: " + if (!running) {
e.getMessage()); break; // Normal shutdown
} }
System.err.println("[" + intersectionId + "] Error accepting connection: " +
e.getMessage());
} }
} }
} }
/** /**
* Handles an incoming connection from another process. * Handles an incoming connection from another process.
* Continuously listens for vehicle transfer messages. * Continuously listens for vehicle transfer messages.
@@ -379,120 +356,156 @@ public class IntersectionProcess {
* @param clientSocket The accepted socket connection. * @param clientSocket The accepted socket connection.
*/ */
private void handleIncomingConnection(Socket clientSocket) { private void handleIncomingConnection(Socket clientSocket) {
try {
clientSocket.setSoTimeout(1000); // 1 second timeout
} catch (java.net.SocketException e) {
System.err.println("[" + intersectionId + "] Failed to set socket timeout: " + e.getMessage());
return;
}
try (SocketConnection connection = new SocketConnection(clientSocket)) { try (SocketConnection connection = new SocketConnection(clientSocket)) {
System.out.println("[" + intersectionId + "] New connection accepted from " + System.out.println("[" + intersectionId + "] New connection accepted from " +
clientSocket.getInetAddress().getHostAddress()); clientSocket.getInetAddress().getHostAddress());
// Continuously receive messages while connection is active // Continuously receive messages while connection is active
while (running && connection.isConnected()) { while (running && connection.isConnected()) {
try { try {
MessageProtocol message = connection.receiveMessage(); MessageProtocol message = connection.receiveMessage();
if (message.getType() == MessageType.VEHICLE_TRANSFER) { if (message.getType() == MessageType.VEHICLE_TRANSFER) {
Vehicle vehicle = (Vehicle) message.getPayload(); Vehicle vehicle = (Vehicle) message.getPayload();
System.out.println("[" + intersectionId + "] Received vehicle: " + System.out.println("[" + intersectionId + "] Received vehicle: " +
vehicle.getId() + " from " + message.getSourceNode()); vehicle.getId() + " from " + message.getSourceNode());
// Add vehicle to appropriate queue // Add vehicle to appropriate queue
intersection.receiveVehicle(vehicle); intersection.receiveVehicle(vehicle);
} }
} catch (java.net.SocketTimeoutException e) {
// Timeout - check running flag and continue
if (!running) {
break;
}
// Continue waiting for next message
} catch (ClassNotFoundException e) { } catch (ClassNotFoundException e) {
System.err.println("[" + intersectionId + "] Unknown message type received: " + System.err.println("[" + intersectionId + "] Unknown message type received: " +
e.getMessage()); e.getMessage());
break; // Invalid message, close connection
} }
} }
} catch (IOException e) { } catch (IOException e) {
if (running) { if (running) {
System.err.println("[" + intersectionId + "] Connection error: " + e.getMessage()); System.err.println("[" + intersectionId + "] Connection error: " + e.getMessage());
} }
// Expected during shutdown
} }
} }
/** /**
* Stops the intersection process gracefully. * Stops the intersection process gracefully.
* Shuts down all threads and closes all connections. * Shuts down all threads and closes all connections.
*/ */
public void shutdown() { public void shutdown() {
// Check if already shutdown
if (!running) {
return; // Already shutdown, do nothing
}
System.out.println("\n[" + intersectionId + "] Shutting down..."); System.out.println("\n[" + intersectionId + "] Shutting down...");
running = false; running = false;
// Close server socket // 1. Close ServerSocket first
try { if (serverSocket != null && !serverSocket.isClosed()) {
if (serverSocket != null && !serverSocket.isClosed()) { try {
serverSocket.close(); serverSocket.close();
} catch (IOException e) {
// Expected
} }
} catch (IOException e) {
System.err.println("[" + intersectionId + "] Error closing server socket: " +
e.getMessage());
} }
// Shutdown thread pools // 2. Shutdown thread pools with force
trafficLightPool.shutdown(); if (trafficLightPool != null && !trafficLightPool.isShutdown()) {
connectionHandlerPool.shutdown();
try {
if (!trafficLightPool.awaitTermination(5, TimeUnit.SECONDS)) {
trafficLightPool.shutdownNow();
}
if (!connectionHandlerPool.awaitTermination(5, TimeUnit.SECONDS)) {
connectionHandlerPool.shutdownNow();
}
} catch (InterruptedException e) {
trafficLightPool.shutdownNow(); trafficLightPool.shutdownNow();
}
if (connectionHandlerPool != null && !connectionHandlerPool.isShutdown()) {
connectionHandlerPool.shutdownNow(); connectionHandlerPool.shutdownNow();
} }
// Close all outgoing connections // 3. Wait briefly for termination (don't block forever)
for (Map.Entry<String, SocketConnection> entry : outgoingConnections.entrySet()) { try {
try { if (trafficLightPool != null) {
entry.getValue().close(); trafficLightPool.awaitTermination(1, TimeUnit.SECONDS);
} catch (IOException e) {
System.err.println("[" + intersectionId + "] Error closing connection to " +
entry.getKey() + ": " + e.getMessage());
} }
if (connectionHandlerPool != null) {
connectionHandlerPool.awaitTermination(1, TimeUnit.SECONDS);
}
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
} }
// 4. Close outgoing connections
synchronized (outgoingConnections) {
for (SocketConnection conn : outgoingConnections.values()) {
try {
conn.close();
} catch (Exception e) {
// Ignore
}
}
outgoingConnections.clear();
}
System.out.println("[" + intersectionId + "] Shutdown complete."); System.out.println("[" + intersectionId + "] Shutdown complete.");
System.out.println("=".repeat(60)); System.out.println("============================================================\n");
} }
/**
* Gets the Intersection object managed by this process.
* Useful for testing and monitoring.
*
* @return The Intersection object.
*/
public Intersection getIntersection() {
return intersection;
}
// --- Inner class for Vehicle Transfer Messages --- // --- Inner class for Vehicle Transfer Messages ---
/** /**
* Implementation of MessageProtocol for vehicle transfers between processes. * Implementation of MessageProtocol for vehicle transfers between processes.
*/ */
private static class VehicleTransferMessage implements MessageProtocol { private static class VehicleTransferMessage implements MessageProtocol {
private static final long serialVersionUID = 1L; private static final long serialVersionUID = 1L;
private final String sourceNode; private final String sourceNode;
private final String destinationNode; private final String destinationNode;
private final Vehicle payload; private final Vehicle payload;
public VehicleTransferMessage(String sourceNode, String destinationNode, Vehicle vehicle) { public VehicleTransferMessage(String sourceNode, String destinationNode, Vehicle vehicle) {
this.sourceNode = sourceNode; this.sourceNode = sourceNode;
this.destinationNode = destinationNode; this.destinationNode = destinationNode;
this.payload = vehicle; this.payload = vehicle;
} }
@Override @Override
public MessageType getType() { public MessageType getType() {
return MessageType.VEHICLE_TRANSFER; return MessageType.VEHICLE_TRANSFER;
} }
@Override @Override
public Object getPayload() { public Object getPayload() {
return payload; return payload;
} }
@Override @Override
public String getSourceNode() { public String getSourceNode() {
return sourceNode; return sourceNode;
} }
@Override @Override
public String getDestinationNode() { public String getDestinationNode() {
return destinationNode; return destinationNode;

View File

@@ -0,0 +1,204 @@
package sd.coordinator;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import sd.config.SimulationConfig;
import sd.model.Message;
import sd.model.MessageType;
import sd.model.Vehicle;
import sd.serialization.SerializationException;
import sd.util.VehicleGenerator;
/**
* Coordinator process responsible for:
* 1. Vehicle generation (using VehicleGenerator)
* 2. Distributing vehicles to intersection processes via sockets
* 3. Managing simulation timing and shutdown
*
* This is the main entry point for the distributed simulation architecture.
*/
public class CoordinatorProcess {
private final SimulationConfig config;
private final VehicleGenerator vehicleGenerator;
private final Map<String, SocketClient> intersectionClients;
private double currentTime;
private int vehicleCounter;
private boolean running;
private double nextGenerationTime;
public static void main(String[] args) {
System.out.println("=".repeat(60));
System.out.println("COORDINATOR PROCESS - DISTRIBUTED TRAFFIC SIMULATION");
System.out.println("=".repeat(60));
try {
// 1. Load configuration
String configFile = args.length > 0 ? args[0] : "src/main/resources/simulation.properties";
System.out.println("Loading configuration from: " + configFile);
SimulationConfig config = new SimulationConfig(configFile);
CoordinatorProcess coordinator = new CoordinatorProcess(config);
// 2. Connect to intersection processes
System.out.println("\n" + "=".repeat(60));
coordinator.initialize();
// 3. Run the sim
System.out.println("\n" + "=".repeat(60));
coordinator.run();
} catch (IOException e) {
System.err.println("Failed to load configuration: " + e.getMessage());
System.exit(1);
} catch (Exception e) {
System.err.println("Coordinator error: " + e.getMessage());
System.exit(1);
}
}
public CoordinatorProcess(SimulationConfig config) {
this.config = config;
this.vehicleGenerator = new VehicleGenerator(config);
this.intersectionClients = new HashMap<>();
this.currentTime = 0.0;
this.vehicleCounter = 0;
this.running = false;
this.nextGenerationTime = 0.0;
System.out.println("Coordinator initialized with configuration:");
System.out.println(" - Simulation duration: " + config.getSimulationDuration() + "s");
System.out.println(" - Arrival model: " + config.getArrivalModel());
System.out.println(" - Arrival rate: " + config.getArrivalRate() + " vehicles/s");
}
public void initialize() {
System.out.println("Connecting to intersection processes...");
String[] intersectionIds = {"Cr1", "Cr2", "Cr3", "Cr4", "Cr5"};
for (String intersectionId : intersectionIds) {
try {
String host = config.getIntersectionHost(intersectionId);
int port = config.getIntersectionPort(intersectionId);
SocketClient client = new SocketClient(intersectionId, host, port);
client.connect();
intersectionClients.put(intersectionId, client);
} catch (IOException e) {
System.err.println("Failed to connect to " + intersectionId + ": " + e.getMessage());
}
}
System.out.println("Successfully connected to " + intersectionClients.size() + " intersection(s)");
if (intersectionClients.isEmpty()) {
System.err.println("WARNING: No intersections connected. Simulation cannot proceed.");
}
}
public void run() {
double duration = config.getSimulationDuration();
running = true;
System.out.println("Starting vehicle generation simulation...");
System.out.println("Duration: " + duration + " seconds");
System.out.println();
nextGenerationTime = vehicleGenerator.getNextArrivalTime(currentTime);
final double TIME_STEP = 0.1;
while (running && currentTime < duration) {
if (currentTime >= nextGenerationTime) {
generateAndSendVehicle();
nextGenerationTime = vehicleGenerator.getNextArrivalTime(currentTime);
}
currentTime += TIME_STEP;
}
System.out.println();
System.out.println("Simulation complete at t=" + String.format("%.2f", currentTime) + "s");
System.out.println("Total vehicles generated: " + vehicleCounter);
shutdown();
}
private void generateAndSendVehicle() {
Vehicle vehicle = vehicleGenerator.generateVehicle("V" + (++vehicleCounter), currentTime);
System.out.printf("[t=%.2f] Vehicle %s generated (type=%s, route=%s)%n",
currentTime, vehicle.getId(), vehicle.getType(), vehicle.getRoute());
if (vehicle.getRoute().isEmpty()) {
System.err.println("ERROR: Vehicle " + vehicle.getId() + " has empty route!");
return;
}
String entryIntersection = vehicle.getRoute().get(0);
sendVehicleToIntersection(vehicle, entryIntersection);
}
private void sendVehicleToIntersection(Vehicle vehicle, String intersectionId) {
SocketClient client = intersectionClients.get(intersectionId);
if (client == null || !client.isConnected()) {
System.err.println("ERROR: No connection to " + intersectionId + " for vehicle " + vehicle.getId());
return;
}
try {
Message message = new Message(
MessageType.VEHICLE_SPAWN,
"COORDINATOR",
intersectionId,
vehicle
);
client.send(message);
System.out.printf("->Sent to %s%n", intersectionId);
} catch (SerializationException | IOException e) {
System.err.println("ERROR: Failed to send vehicle " + vehicle.getId() + " to " + intersectionId);
System.err.println("Reason: " + e.getMessage());
}
}
public void shutdown() {
System.out.println();
System.out.println("=".repeat(60));
System.out.println("Shutting down coordinator...");
for (Map.Entry<String, SocketClient> entry : intersectionClients.entrySet()) {
String intersectionId = entry.getKey();
SocketClient client = entry.getValue();
try {
if (client.isConnected()) {
Message personalizedShutdown = new Message(
MessageType.SHUTDOWN,
"COORDINATOR",
intersectionId,
"Simulation complete"
);
client.send(personalizedShutdown);
System.out.println("Sent shutdown message to " + intersectionId);
}
} catch (SerializationException | IOException e) {
System.err.println("Error sending shutdown to " + intersectionId + ": " + e.getMessage());
} finally {
client.close();
}
}
System.out.println("Coordinator shutdown complete");
System.out.println("=".repeat(60));
}
public void stop() {
System.out.println("\nStop signal received...");
running = false;
}
}

View File

@@ -0,0 +1,124 @@
package sd.coordinator;
import java.io.IOException;
import java.io.OutputStream;
import java.net.Socket;
import sd.model.Message;
import sd.serialization.MessageSerializer;
import sd.serialization.SerializationException;
import sd.serialization.SerializerFactory;
/**
* Socket client for communication with a single intersection process.
*
* Handles a persistent TCP connection to one intersection,
* providing a simple way to send serialized messages.
*/
public class SocketClient {
private final String intersectionId;
private final String host;
private final int port;
private Socket socket;
private OutputStream outputStream;
private MessageSerializer serializer;
/**
* Creates a new SocketClient for a given intersection.
*
* @param intersectionId Intersection ID (ex. "Cr1")
* @param host Host address (ex. "localhost")
* @param port Port number
*/
public SocketClient(String intersectionId, String host, int port) {
this.intersectionId = intersectionId;
this.host = host;
this.port = port;
this.serializer = SerializerFactory.createDefault();
}
/**
* Connects to the intersection process via TCP.
*
* @throws IOException if the connection cannot be established
*/
public void connect() throws IOException {
try {
socket = new Socket(host, port);
outputStream = socket.getOutputStream();
System.out.println("Connected to " + intersectionId + " at " + host + ":" + port);
} catch (IOException e) {
System.err.println("Failed to connect to " + intersectionId + " at " + host + ":" + port);
throw e;
}
}
/**
* Sends a message to the connected intersection.
* The message is serialized and written over the socket.
*
* @param message The message to send
* @throws SerializationException if serialization fails
* @throws IOException if the socket write fails
*/
public void send(Message message) throws SerializationException, IOException {
if (socket == null || socket.isClosed()) {
throw new IOException("Socket is not connected to " + intersectionId);
}
try {
byte[] data = serializer.serialize(message);
// Prefix with message length (so receiver knows how much to read)
int length = data.length;
outputStream.write((length >> 24) & 0xFF);
outputStream.write((length >> 16) & 0xFF);
outputStream.write((length >> 8) & 0xFF);
outputStream.write(length & 0xFF);
outputStream.write(data);
outputStream.flush();
} catch (SerializationException | IOException e) {
System.err.println("Error sending message to " + intersectionId + ": " + e.getMessage());
throw e;
}
}
/**
* Closes the socket connection safely.
* Calling it multiple times wont cause issues.
*/
public void close() {
try {
if (outputStream != null) {
outputStream.close();
}
if (socket != null && !socket.isClosed()) {
socket.close();
System.out.println("Closed connection to " + intersectionId);
}
} catch (IOException e) {
System.err.println("Error closing connection to " + intersectionId + ": " + e.getMessage());
}
}
/**
* @return true if connected and socket is open, false otherwise
*/
public boolean isConnected() {
return socket != null && socket.isConnected() && !socket.isClosed();
}
public String getIntersectionId() {
return intersectionId;
}
@Override
public String toString() {
return String.format("SocketClient[intersection=%s, host=%s, port=%d, connected=%s]",
intersectionId, host, port, isConnected());
}
}

View File

@@ -0,0 +1,110 @@
package sd.dashboard;
import java.io.IOException;
import java.net.Socket;
import sd.model.MessageType;
import sd.protocol.MessageProtocol;
import sd.protocol.SocketConnection;
/**
* Processes statistics messages from a single client connection.
* Runs in a separate thread per client.
*/
public class DashboardClientHandler implements Runnable {
private final Socket clientSocket;
private final DashboardStatistics statistics;
public DashboardClientHandler(Socket clientSocket, DashboardStatistics statistics) {
this.clientSocket = clientSocket;
this.statistics = statistics;
}
@Override
public void run() {
String clientInfo = clientSocket.getInetAddress().getHostAddress() + ":" + clientSocket.getPort();
try (SocketConnection connection = new SocketConnection(clientSocket)) {
System.out.println("[Handler] Started handling client: " + clientInfo);
while (!Thread.currentThread().isInterrupted()) {
try {
MessageProtocol message = connection.receiveMessage();
if (message == null) {
System.out.println("[Handler] Client disconnected: " + clientInfo);
break;
}
processMessage(message);
} catch (ClassNotFoundException e) {
System.err.println("[Handler] Unknown message class from " + clientInfo + ": " + e.getMessage());
} catch (IOException e) {
System.out.println("[Handler] Connection error with " + clientInfo + ": " + e.getMessage());
break;
}
}
} catch (IOException e) {
System.err.println("[Handler] Error initializing connection with " + clientInfo + ": " + e.getMessage());
} finally {
try {
if (!clientSocket.isClosed()) {
clientSocket.close();
}
} catch (IOException e) {
System.err.println("[Handler] Error closing socket for " + clientInfo + ": " + e.getMessage());
}
}
}
private void processMessage(MessageProtocol message) {
if (message.getType() != MessageType.STATS_UPDATE) {
System.out.println("[Handler] Ignoring non-statistics message type: " + message.getType());
return;
}
String senderId = message.getSourceNode();
Object payload = message.getPayload();
System.out.println("[Handler] Received STATS_UPDATE from: " + senderId);
if (payload instanceof StatsUpdatePayload stats) {
updateStatistics(senderId, stats);
} else {
System.err.println("[Handler] Unknown payload type: " +
(payload != null ? payload.getClass().getName() : "null"));
}
}
private void updateStatistics(String senderId, StatsUpdatePayload stats) {
if (stats.getTotalVehiclesGenerated() >= 0) {
statistics.updateVehiclesGenerated(stats.getTotalVehiclesGenerated());
}
if (stats.getTotalVehiclesCompleted() >= 0) {
statistics.updateVehiclesCompleted(stats.getTotalVehiclesCompleted());
}
if (stats.getTotalSystemTime() >= 0) {
statistics.addSystemTime(stats.getTotalSystemTime());
}
if (stats.getTotalWaitingTime() >= 0) {
statistics.addWaitingTime(stats.getTotalWaitingTime());
}
if (senderId.startsWith("Cr") || senderId.startsWith("E")) {
statistics.updateIntersectionStats(
senderId,
stats.getIntersectionArrivals(),
stats.getIntersectionDepartures(),
stats.getIntersectionQueueSize()
);
}
System.out.println("[Handler] Successfully updated statistics from: " + senderId);
}
}

View File

@@ -0,0 +1,148 @@
package sd.dashboard;
import java.io.IOException;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.atomic.AtomicBoolean;
import sd.config.SimulationConfig;
/**
* Aggregates and displays real-time statistics from all simulation processes.
* Uses a thread pool to handle concurrent client connections.
*/
public class DashboardServer {
private final int port;
private final DashboardStatistics statistics;
private final ExecutorService clientHandlerPool;
private final AtomicBoolean running;
private ServerSocket serverSocket;
public static void main(String[] args) {
System.out.println("=".repeat(60));
System.out.println("DASHBOARD SERVER - DISTRIBUTED TRAFFIC SIMULATION");
System.out.println("=".repeat(60));
try {
// Load configuration
String configFile = args.length > 0 ? args[0] : "src/main/resources/simulation.properties";
System.out.println("Loading configuration from: " + configFile);
SimulationConfig config = new SimulationConfig(configFile);
DashboardServer server = new DashboardServer(config);
// Start the server
System.out.println("\n" + "=".repeat(60));
server.start();
// Keep running until interrupted
Runtime.getRuntime().addShutdownHook(new Thread(() -> {
System.out.println("\n\nShutdown signal received...");
server.stop();
}));
// Display statistics periodically
server.displayLoop();
} catch (IOException e) {
System.err.println("Failed to start Dashboard Server: " + e.getMessage());
System.exit(1);
}
}
public DashboardServer(SimulationConfig config) {
this.port = config.getDashboardPort();
this.statistics = new DashboardStatistics();
this.clientHandlerPool = Executors.newFixedThreadPool(10);
this.running = new AtomicBoolean(false);
}
public void start() throws IOException {
if (running.get()) {
System.out.println("Dashboard Server is already running.");
return;
}
serverSocket = new ServerSocket(port);
running.set(true);
System.out.println("Dashboard Server started on port " + port);
System.out.println("Waiting for statistics updates from simulation processes...");
System.out.println("=".repeat(60));
Thread acceptThread = new Thread(this::acceptConnections, "DashboardServer-Accept");
acceptThread.setDaemon(false);
acceptThread.start();
}
private void acceptConnections() {
while (running.get()) {
try {
Socket clientSocket = serverSocket.accept();
System.out.println("[Connection] New client connected: " +
clientSocket.getInetAddress().getHostAddress() + ":" + clientSocket.getPort());
clientHandlerPool.execute(new DashboardClientHandler(clientSocket, statistics));
} catch (IOException e) {
if (running.get()) {
System.err.println("[Error] Failed to accept client connection: " + e.getMessage());
}
}
}
}
@SuppressWarnings("BusyWait")
private void displayLoop() {
final long DISPLAY_INTERVAL_MS = 5000;
while (running.get()) {
try {
Thread.sleep(DISPLAY_INTERVAL_MS);
displayStatistics();
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
break;
}
}
}
public void displayStatistics() {
System.out.println("\n" + "=".repeat(60));
System.out.println("REAL-TIME SIMULATION STATISTICS");
System.out.println("=".repeat(60));
statistics.display();
System.out.println("=".repeat(60));
}
public void stop() {
if (!running.get()) {
return;
}
System.out.println("\nStopping Dashboard Server...");
running.set(false);
try {
if (serverSocket != null && !serverSocket.isClosed()) {
serverSocket.close();
}
} catch (IOException e) {
System.err.println("Error closing server socket: " + e.getMessage());
}
clientHandlerPool.shutdownNow();
System.out.println("Dashboard Server stopped.");
}
public DashboardStatistics getStatistics() {
return statistics;
}
public boolean isRunning() {
return running.get();
}
}

View File

@@ -0,0 +1,214 @@
package sd.dashboard;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;
import sd.model.VehicleType;
/**
* Thread-safe storage for aggregated simulation statistics.
* Uses atomic types and concurrent collections for lock-free updates.
*/
public class DashboardStatistics {
private final AtomicInteger totalVehiclesGenerated;
private final AtomicInteger totalVehiclesCompleted;
private final AtomicLong totalSystemTime;
private final AtomicLong totalWaitingTime;
private final Map<String, IntersectionStats> intersectionStats;
private final Map<VehicleType, AtomicInteger> vehicleTypeCount;
private final Map<VehicleType, AtomicLong> vehicleTypeWaitTime;
private volatile long lastUpdateTime;
public DashboardStatistics() {
this.totalVehiclesGenerated = new AtomicInteger(0);
this.totalVehiclesCompleted = new AtomicInteger(0);
this.totalSystemTime = new AtomicLong(0);
this.totalWaitingTime = new AtomicLong(0);
this.intersectionStats = new ConcurrentHashMap<>();
this.vehicleTypeCount = new ConcurrentHashMap<>();
this.vehicleTypeWaitTime = new ConcurrentHashMap<>();
for (VehicleType type : VehicleType.values()) {
vehicleTypeCount.put(type, new AtomicInteger(0));
vehicleTypeWaitTime.put(type, new AtomicLong(0));
}
this.lastUpdateTime = System.currentTimeMillis();
}
public void updateVehiclesGenerated(int count) {
totalVehiclesGenerated.set(count);
updateTimestamp();
}
public void incrementVehiclesGenerated() {
totalVehiclesGenerated.incrementAndGet();
updateTimestamp();
}
public void updateVehiclesCompleted(int count) {
totalVehiclesCompleted.set(count);
updateTimestamp();
}
public void incrementVehiclesCompleted() {
totalVehiclesCompleted.incrementAndGet();
updateTimestamp();
}
public void addSystemTime(long timeMs) {
totalSystemTime.addAndGet(timeMs);
updateTimestamp();
}
public void addWaitingTime(long timeMs) {
totalWaitingTime.addAndGet(timeMs);
updateTimestamp();
}
public void updateVehicleTypeStats(VehicleType type, int count, long waitTimeMs) {
vehicleTypeCount.get(type).set(count);
vehicleTypeWaitTime.get(type).set(waitTimeMs);
updateTimestamp();
}
public void incrementVehicleType(VehicleType type) {
vehicleTypeCount.get(type).incrementAndGet();
updateTimestamp();
}
public void updateIntersectionStats(String intersectionId, int arrivals,
int departures, int currentQueueSize) {
intersectionStats.compute(intersectionId, (id, stats) -> {
if (stats == null) {
stats = new IntersectionStats(intersectionId);
}
stats.updateStats(arrivals, departures, currentQueueSize);
return stats;
});
updateTimestamp();
}
private void updateTimestamp() {
lastUpdateTime = System.currentTimeMillis();
}
public int getTotalVehiclesGenerated() {
return totalVehiclesGenerated.get();
}
public int getTotalVehiclesCompleted() {
return totalVehiclesCompleted.get();
}
public double getAverageSystemTime() {
int completed = totalVehiclesCompleted.get();
if (completed == 0) return 0.0;
return (double) totalSystemTime.get() / completed;
}
public double getAverageWaitingTime() {
int completed = totalVehiclesCompleted.get();
if (completed == 0) return 0.0;
return (double) totalWaitingTime.get() / completed;
}
public int getVehicleTypeCount(VehicleType type) {
return vehicleTypeCount.get(type).get();
}
public double getAverageWaitingTimeByType(VehicleType type) {
int count = vehicleTypeCount.get(type).get();
if (count == 0) return 0.0;
return (double) vehicleTypeWaitTime.get(type).get() / count;
}
public IntersectionStats getIntersectionStats(String intersectionId) {
return intersectionStats.get(intersectionId);
}
public Map<String, IntersectionStats> getAllIntersectionStats() {
return new HashMap<>(intersectionStats);
}
public long getLastUpdateTime() {
return lastUpdateTime;
}
public void display() {
System.out.println("\n--- GLOBAL STATISTICS ---");
System.out.printf("Total Vehicles Generated: %d%n", getTotalVehiclesGenerated());
System.out.printf("Total Vehicles Completed: %d%n", getTotalVehiclesCompleted());
System.out.printf("Vehicles In Transit: %d%n",
getTotalVehiclesGenerated() - getTotalVehiclesCompleted());
System.out.printf("Average System Time: %.2f ms%n", getAverageSystemTime());
System.out.printf("Average Waiting Time: %.2f ms%n", getAverageWaitingTime());
System.out.println("\n--- VEHICLE TYPE STATISTICS ---");
for (VehicleType type : VehicleType.values()) {
int count = getVehicleTypeCount(type);
double avgWait = getAverageWaitingTimeByType(type);
System.out.printf("%s: %d vehicles, avg wait: %.2f ms%n",
type, count, avgWait);
}
System.out.println("\n--- INTERSECTION STATISTICS ---");
if (intersectionStats.isEmpty()) {
System.out.println("(No data received yet)");
} else {
for (IntersectionStats stats : intersectionStats.values()) {
stats.display();
}
}
System.out.printf("%nLast Update: %tT%n", lastUpdateTime);
}
public static class IntersectionStats {
private final String intersectionId;
private final AtomicInteger totalArrivals;
private final AtomicInteger totalDepartures;
private final AtomicInteger currentQueueSize;
public IntersectionStats(String intersectionId) {
this.intersectionId = intersectionId;
this.totalArrivals = new AtomicInteger(0);
this.totalDepartures = new AtomicInteger(0);
this.currentQueueSize = new AtomicInteger(0);
}
public void updateStats(int arrivals, int departures, int queueSize) {
this.totalArrivals.set(arrivals);
this.totalDepartures.set(departures);
this.currentQueueSize.set(queueSize);
}
public String getIntersectionId() {
return intersectionId;
}
public int getTotalArrivals() {
return totalArrivals.get();
}
public int getTotalDepartures() {
return totalDepartures.get();
}
public int getCurrentQueueSize() {
return currentQueueSize.get();
}
public void display() {
System.out.printf("%s: Arrivals=%d, Departures=%d, Queue=%d%n",
intersectionId, getTotalArrivals(), getTotalDepartures(), getCurrentQueueSize());
}
}
}

View File

@@ -0,0 +1,48 @@
package sd.dashboard;
import sd.model.MessageType;
import sd.protocol.MessageProtocol;
/**
* Message wrapper for sending statistics to the dashboard.
*/
public class StatsMessage implements MessageProtocol {
private static final long serialVersionUID = 1L;
private final String sourceNode;
private final String destinationNode;
private final StatsUpdatePayload payload;
public StatsMessage(String sourceNode, StatsUpdatePayload payload) {
this.sourceNode = sourceNode;
this.destinationNode = "DashboardServer";
this.payload = payload;
}
@Override
public MessageType getType() {
return MessageType.STATS_UPDATE;
}
@Override
public Object getPayload() {
return payload;
}
@Override
public String getSourceNode() {
return sourceNode;
}
@Override
public String getDestinationNode() {
return destinationNode;
}
@Override
public String toString() {
return String.format("StatsMessage[from=%s, to=%s, payload=%s]",
sourceNode, destinationNode, payload);
}
}

View File

@@ -0,0 +1,121 @@
package sd.dashboard;
import java.io.Serializable;
import java.util.HashMap;
import java.util.Map;
import sd.model.VehicleType;
/**
* Data transfer object for statistics updates to the dashboard.
* Use -1 for fields not being updated in this message.
*/
public class StatsUpdatePayload implements Serializable {
private static final long serialVersionUID = 1L;
private int totalVehiclesGenerated = -1;
private int totalVehiclesCompleted = -1;
private long totalSystemTime = -1;
private long totalWaitingTime = -1;
private int intersectionArrivals = 0;
private int intersectionDepartures = 0;
private int intersectionQueueSize = 0;
private Map<VehicleType, Integer> vehicleTypeCounts;
private Map<VehicleType, Long> vehicleTypeWaitTimes;
public StatsUpdatePayload() {
this.vehicleTypeCounts = new HashMap<>();
this.vehicleTypeWaitTimes = new HashMap<>();
}
public int getTotalVehiclesGenerated() {
return totalVehiclesGenerated;
}
public int getTotalVehiclesCompleted() {
return totalVehiclesCompleted;
}
public long getTotalSystemTime() {
return totalSystemTime;
}
public long getTotalWaitingTime() {
return totalWaitingTime;
}
public int getIntersectionArrivals() {
return intersectionArrivals;
}
public int getIntersectionDepartures() {
return intersectionDepartures;
}
public int getIntersectionQueueSize() {
return intersectionQueueSize;
}
public Map<VehicleType, Integer> getVehicleTypeCounts() {
return vehicleTypeCounts;
}
public Map<VehicleType, Long> getVehicleTypeWaitTimes() {
return vehicleTypeWaitTimes;
}
public StatsUpdatePayload setTotalVehiclesGenerated(int totalVehiclesGenerated) {
this.totalVehiclesGenerated = totalVehiclesGenerated;
return this;
}
public StatsUpdatePayload setTotalVehiclesCompleted(int totalVehiclesCompleted) {
this.totalVehiclesCompleted = totalVehiclesCompleted;
return this;
}
public StatsUpdatePayload setTotalSystemTime(long totalSystemTime) {
this.totalSystemTime = totalSystemTime;
return this;
}
public StatsUpdatePayload setTotalWaitingTime(long totalWaitingTime) {
this.totalWaitingTime = totalWaitingTime;
return this;
}
public StatsUpdatePayload setIntersectionArrivals(int intersectionArrivals) {
this.intersectionArrivals = intersectionArrivals;
return this;
}
public StatsUpdatePayload setIntersectionDepartures(int intersectionDepartures) {
this.intersectionDepartures = intersectionDepartures;
return this;
}
public StatsUpdatePayload setIntersectionQueueSize(int intersectionQueueSize) {
this.intersectionQueueSize = intersectionQueueSize;
return this;
}
public StatsUpdatePayload setVehicleTypeCounts(Map<VehicleType, Integer> vehicleTypeCounts) {
this.vehicleTypeCounts = vehicleTypeCounts;
return this;
}
public StatsUpdatePayload setVehicleTypeWaitTimes(Map<VehicleType, Long> vehicleTypeWaitTimes) {
this.vehicleTypeWaitTimes = vehicleTypeWaitTimes;
return this;
}
@Override
public String toString() {
return String.format("StatsUpdatePayload[generated=%d, completed=%d, arrivals=%d, departures=%d, queueSize=%d]",
totalVehiclesGenerated, totalVehiclesCompleted, intersectionArrivals,
intersectionDepartures, intersectionQueueSize);
}
}

View File

@@ -0,0 +1,115 @@
package sd.engine;
import sd.IntersectionProcess;
import sd.config.SimulationConfig;
import sd.model.TrafficLight;
import sd.model.TrafficLightState;
import sd.model.Vehicle;
/**
* Implements the control logic for a single TrafficLight
* as a Runnable task that runs in its own Thread.
*/
public class TrafficLightThread implements Runnable {
private final TrafficLight light;
private final IntersectionProcess process;
private final SimulationConfig config;
private volatile boolean running;
// Store the thread reference for proper interruption
private Thread currentThread;
public TrafficLightThread(TrafficLight light, IntersectionProcess process, SimulationConfig config) {
this.light = light;
this.process = process;
this.config = config;
this.running = false;
}
@Override
public void run() {
this.currentThread = Thread.currentThread();
this.running = true;
System.out.println("[" + light.getId() + "] Traffic light thread started.");
try {
while (running && !Thread.currentThread().isInterrupted()) {
// Request permission to turn green (blocks until granted)
process.requestGreenLight(light.getDirection());
try {
// --- GREEN Phase ---
light.changeState(TrafficLightState.GREEN);
System.out.println("[" + light.getId() + "] State: GREEN");
processGreenLightQueue();
if (!running || Thread.currentThread().isInterrupted()) break;
// Wait for green duration
Thread.sleep((long) (light.getGreenTime() * 1000));
if (!running || Thread.currentThread().isInterrupted()) break;
// --- RED Phase ---
light.changeState(TrafficLightState.RED);
System.out.println("[" + light.getId() + "] State: RED");
} finally {
// Always release the green light permission
process.releaseGreenLight(light.getDirection());
}
// Wait for red duration
Thread.sleep((long) (light.getRedTime() * 1000));
}
} catch (InterruptedException e) {
System.out.println("[" + light.getId() + "] Traffic light thread interrupted.");
Thread.currentThread().interrupt();
} finally {
this.running = false;
System.out.println("[" + light.getId() + "] Traffic light thread stopped.");
}
}
private void processGreenLightQueue() throws InterruptedException {
while (running && !Thread.currentThread().isInterrupted()
&& light.getState() == TrafficLightState.GREEN
&& light.getQueueSize() > 0) {
Vehicle vehicle = light.removeVehicle();
if (vehicle != null) {
double crossingTime = getCrossingTimeForVehicle(vehicle);
Thread.sleep((long) (crossingTime * 1000));
vehicle.addCrossingTime(crossingTime);
process.getIntersection().incrementVehiclesSent();
process.sendVehicleToNextDestination(vehicle);
}
}
}
private double getCrossingTimeForVehicle(Vehicle vehicle) {
return switch (vehicle.getType()) {
case BIKE -> config.getBikeVehicleCrossingTime();
case LIGHT -> config.getLightVehicleCrossingTime();
case HEAVY -> config.getHeavyVehicleCrossingTime();
default -> config.getLightVehicleCrossingTime();
};
}
/**
* Requests the thread to stop gracefully.
* Sets the running flag and interrupts the thread to unblock any sleep() calls.
*/
public void shutdown() {
this.running = false;
if (currentThread != null && currentThread.isAlive()) {
currentThread.interrupt();
}
}
}

View File

@@ -114,8 +114,8 @@ public class Intersection {
public void receiveVehicle(Vehicle vehicle) { public void receiveVehicle(Vehicle vehicle) {
totalVehiclesReceived++; totalVehiclesReceived++;
// Advance route since vehicle just arrived at this intersection // Note: Route advancement is handled by SimulationEngine.handleVehicleArrival()
vehicle.advanceRoute(); // before calling this method, so we don't advance here.
String nextDestination = vehicle.getCurrentDestination(); String nextDestination = vehicle.getCurrentDestination();

View File

@@ -1,5 +1,5 @@
import java.io.IOException; import java.io.IOException;
import java.io.ObjectOutputStream; import java.net.InetSocketAddress;
import java.net.Socket; import java.net.Socket;
import java.nio.file.Files; import java.nio.file.Files;
import java.nio.file.Path; import java.nio.file.Path;
@@ -19,9 +19,10 @@ import sd.IntersectionProcess;
import sd.model.MessageType; import sd.model.MessageType;
import sd.model.Vehicle; import sd.model.Vehicle;
import sd.model.VehicleType; import sd.model.VehicleType;
import sd.protocol.SocketConnection;
/** /**
* Tests for IntersectionProcess - covers initialization, traffic lights, * Tests for IntersectionProcess - covers initialization, traffic lights,
* vehicle transfer and network stuff * vehicle transfer and network stuff
*/ */
public class IntersectionProcessTest { public class IntersectionProcessTest {
@@ -37,10 +38,10 @@ public class IntersectionProcessTest {
public void setUp() throws IOException { public void setUp() throws IOException {
// create temp config file // create temp config file
configFile = tempDir.resolve("test-simulation.properties"); configFile = tempDir.resolve("test-simulation.properties");
String configContent = """ String configContent = """
# Test Simulation Configuration # Test Simulation Configuration
# Intersection Network Configuration # Intersection Network Configuration
intersection.Cr1.host=localhost intersection.Cr1.host=localhost
intersection.Cr1.port=18001 intersection.Cr1.port=18001
@@ -52,15 +53,15 @@ public class IntersectionProcessTest {
intersection.Cr4.port=18004 intersection.Cr4.port=18004
intersection.Cr5.host=localhost intersection.Cr5.host=localhost
intersection.Cr5.port=18005 intersection.Cr5.port=18005
# Exit Configuration # Exit Configuration
exit.host=localhost exit.host=localhost
exit.port=18099 exit.port=18099
# Dashboard Configuration # Dashboard Configuration
dashboard.host=localhost dashboard.host=localhost
dashboard.port=18100 dashboard.port=18100
# Traffic Light Timing (seconds) # Traffic Light Timing (seconds)
trafficLight.Cr1.East.greenTime=5.0 trafficLight.Cr1.East.greenTime=5.0
trafficLight.Cr1.East.redTime=5.0 trafficLight.Cr1.East.redTime=5.0
@@ -68,39 +69,45 @@ public class IntersectionProcessTest {
trafficLight.Cr1.South.redTime=5.0 trafficLight.Cr1.South.redTime=5.0
trafficLight.Cr1.West.greenTime=5.0 trafficLight.Cr1.West.greenTime=5.0
trafficLight.Cr1.West.redTime=5.0 trafficLight.Cr1.West.redTime=5.0
trafficLight.Cr2.West.greenTime=4.0 trafficLight.Cr2.West.greenTime=4.0
trafficLight.Cr2.West.redTime=6.0 trafficLight.Cr2.West.redTime=6.0
trafficLight.Cr2.East.greenTime=4.0 trafficLight.Cr2.East.greenTime=4.0
trafficLight.Cr2.East.redTime=6.0 trafficLight.Cr2.East.redTime=6.0
trafficLight.Cr2.South.greenTime=4.0 trafficLight.Cr2.South.greenTime=4.0
trafficLight.Cr2.South.redTime=6.0 trafficLight.Cr2.South.redTime=6.0
trafficLight.Cr3.West.greenTime=3.0 trafficLight.Cr3.West.greenTime=3.0
trafficLight.Cr3.West.redTime=7.0 trafficLight.Cr3.West.redTime=7.0
trafficLight.Cr3.East.greenTime=3.0 trafficLight.Cr3.East.greenTime=3.0
trafficLight.Cr3.East.redTime=7.0 trafficLight.Cr3.East.redTime=7.0
trafficLight.Cr4.East.greenTime=6.0 trafficLight.Cr4.East.greenTime=6.0
trafficLight.Cr4.East.redTime=4.0 trafficLight.Cr4.East.redTime=4.0
trafficLight.Cr5.East.greenTime=5.0 trafficLight.Cr5.East.greenTime=5.0
trafficLight.Cr5.East.redTime=5.0 trafficLight.Cr5.East.redTime=5.0
# Vehicle Crossing Times (seconds) # Vehicle Crossing Times (seconds)
vehicle.bike.crossingTime=2.0 vehicle.bike.crossingTime=2.0
vehicle.light.crossingTime=3.0 vehicle.light.crossingTime=3.0
vehicle.heavy.crossingTime=5.0 vehicle.heavy.crossingTime=5.0
"""; """;
Files.writeString(configFile, configContent); Files.writeString(configFile, configContent);
} }
// cleanup after tests
@AfterEach @AfterEach
public void tearDown() { public void tearDown() {
if (intersectionProcess != null) { if (intersectionProcess != null) {
intersectionProcess.shutdown(); try {
// Only shutdown if still running
intersectionProcess.shutdown();
} catch (Exception e) {
System.err.println("Error in tearDown: " + e.getMessage());
} finally {
intersectionProcess = null;
}
} }
} }
@@ -156,7 +163,7 @@ public class IntersectionProcessTest {
public void testTrafficLightCreation_Cr1_HasCorrectDirections() throws IOException { public void testTrafficLightCreation_Cr1_HasCorrectDirections() throws IOException {
intersectionProcess = new IntersectionProcess("Cr1", configFile.toString()); intersectionProcess = new IntersectionProcess("Cr1", configFile.toString());
intersectionProcess.initialize(); intersectionProcess.initialize();
// cant access private fields but initialization succeds // cant access private fields but initialization succeds
assertNotNull(intersectionProcess); assertNotNull(intersectionProcess);
} }
@@ -165,7 +172,7 @@ public class IntersectionProcessTest {
public void testTrafficLightCreation_Cr3_HasCorrectDirections() throws IOException { public void testTrafficLightCreation_Cr3_HasCorrectDirections() throws IOException {
intersectionProcess = new IntersectionProcess("Cr3", configFile.toString()); intersectionProcess = new IntersectionProcess("Cr3", configFile.toString());
intersectionProcess.initialize(); intersectionProcess.initialize();
// Cr3 has west and south only // Cr3 has west and south only
assertNotNull(intersectionProcess); assertNotNull(intersectionProcess);
} }
@@ -174,7 +181,7 @@ public class IntersectionProcessTest {
public void testTrafficLightCreation_Cr4_HasSingleDirection() throws IOException { public void testTrafficLightCreation_Cr4_HasSingleDirection() throws IOException {
intersectionProcess = new IntersectionProcess("Cr4", configFile.toString()); intersectionProcess = new IntersectionProcess("Cr4", configFile.toString());
intersectionProcess.initialize(); intersectionProcess.initialize();
// Cr4 only has east direction // Cr4 only has east direction
assertNotNull(intersectionProcess); assertNotNull(intersectionProcess);
} }
@@ -186,8 +193,8 @@ public class IntersectionProcessTest {
public void testServerStart_BindsToCorrectPort() throws IOException, InterruptedException { public void testServerStart_BindsToCorrectPort() throws IOException, InterruptedException {
intersectionProcess = new IntersectionProcess("Cr1", configFile.toString()); intersectionProcess = new IntersectionProcess("Cr1", configFile.toString());
intersectionProcess.initialize(); intersectionProcess.initialize();
// start server in seperate thread // start server in separate thread
Thread serverThread = new Thread(() -> { Thread serverThread = new Thread(() -> {
try { try {
intersectionProcess.start(); intersectionProcess.start();
@@ -196,14 +203,23 @@ public class IntersectionProcessTest {
} }
}); });
serverThread.start(); serverThread.start();
Thread.sleep(500); // wait for server to start // Wait for server to actually start with retries
boolean serverReady = false;
// try connecting to check if its running for (int i = 0; i < 20; i++) {
try (Socket clientSocket = new Socket("localhost", 18001)) { Thread.sleep(100);
assertTrue(clientSocket.isConnected()); try (Socket testSocket = new Socket()) {
testSocket.connect(new java.net.InetSocketAddress("localhost", 18001), 500);
serverReady = true;
break;
} catch (IOException e) {
// Server not ready yet, continue waiting
}
} }
assertTrue(serverReady, "Server should start and bind to port 18001");
// Shutdown immediately after confirming server is running
intersectionProcess.shutdown(); intersectionProcess.shutdown();
serverThread.join(2000); serverThread.join(2000);
} }
@@ -214,30 +230,36 @@ public class IntersectionProcessTest {
// test 2 intersections on diferent ports // test 2 intersections on diferent ports
IntersectionProcess cr1 = new IntersectionProcess("Cr1", configFile.toString()); IntersectionProcess cr1 = new IntersectionProcess("Cr1", configFile.toString());
IntersectionProcess cr2 = new IntersectionProcess("Cr2", configFile.toString()); IntersectionProcess cr2 = new IntersectionProcess("Cr2", configFile.toString());
cr1.initialize(); cr1.initialize();
cr2.initialize(); cr2.initialize();
Thread thread1 = new Thread(() -> { Thread thread1 = new Thread(() -> {
try { cr1.start(); } catch (IOException e) { } try {
cr1.start();
} catch (IOException e) {
}
}); });
Thread thread2 = new Thread(() -> { Thread thread2 = new Thread(() -> {
try { cr2.start(); } catch (IOException e) { } try {
cr2.start();
} catch (IOException e) {
}
}); });
thread1.start(); thread1.start();
thread2.start(); thread2.start();
Thread.sleep(500); Thread.sleep(500);
// check both are running // check both are running
try (Socket socket1 = new Socket("localhost", 18001); try (Socket socket1 = new Socket("localhost", 18001);
Socket socket2 = new Socket("localhost", 18002)) { Socket socket2 = new Socket("localhost", 18002)) {
assertTrue(socket1.isConnected()); assertTrue(socket1.isConnected());
assertTrue(socket2.isConnected()); assertTrue(socket2.isConnected());
} }
cr1.shutdown(); cr1.shutdown();
cr2.shutdown(); cr2.shutdown();
thread1.join(2000); thread1.join(2000);
@@ -252,33 +274,35 @@ public class IntersectionProcessTest {
// setup reciever intersection // setup reciever intersection
intersectionProcess = new IntersectionProcess("Cr2", configFile.toString()); intersectionProcess = new IntersectionProcess("Cr2", configFile.toString());
intersectionProcess.initialize(); intersectionProcess.initialize();
Thread serverThread = new Thread(() -> { Thread serverThread = new Thread(() -> {
try { try {
intersectionProcess.start(); intersectionProcess.start();
} catch (IOException e) { } } catch (IOException e) {
}
}); });
serverThread.start(); serverThread.start();
Thread.sleep(500); Thread.sleep(500);
// create test vehicle try {
java.util.List<String> route = Arrays.asList("Cr2", "Cr3", "S"); // create test vehicle - FIXED: use 4-parameter constructor
Vehicle vehicle = new Vehicle("V001", VehicleType.LIGHT, 0.0, route); java.util.List<String> route = Arrays.asList("Cr2", "Cr3", "S");
Vehicle vehicle = new Vehicle("V001", VehicleType.LIGHT, 0.0, route);
// send vehicle from Cr1 to Cr2
try (Socket socket = new Socket("localhost", 18002)) { // send vehicle from Cr1 to Cr2 - FIXED: use SocketConnection
ObjectOutputStream out = new ObjectOutputStream(socket.getOutputStream()); try (Socket socket = new Socket("localhost", 18002);
SocketConnection conn = new SocketConnection(socket)) {
TestVehicleMessage message = new TestVehicleMessage("Cr1", "Cr2", vehicle);
out.writeObject(message); TestVehicleMessage message = new TestVehicleMessage("Cr1", "Cr2", vehicle);
out.flush(); conn.sendMessage(message);
Thread.sleep(1000); // wait for procesing Thread.sleep(1000); // wait for processing
}
} finally {
intersectionProcess.shutdown();
serverThread.join(2000);
} }
intersectionProcess.shutdown();
serverThread.join(2000);
} }
// routing config tests // routing config tests
@@ -287,7 +311,7 @@ public class IntersectionProcessTest {
public void testRoutingConfiguration_Cr1() throws IOException { public void testRoutingConfiguration_Cr1() throws IOException {
intersectionProcess = new IntersectionProcess("Cr1", configFile.toString()); intersectionProcess = new IntersectionProcess("Cr1", configFile.toString());
intersectionProcess.initialize(); intersectionProcess.initialize();
// indirect test - if init works routing should be ok // indirect test - if init works routing should be ok
assertNotNull(intersectionProcess); assertNotNull(intersectionProcess);
} }
@@ -296,7 +320,7 @@ public class IntersectionProcessTest {
public void testRoutingConfiguration_Cr5() throws IOException { public void testRoutingConfiguration_Cr5() throws IOException {
intersectionProcess = new IntersectionProcess("Cr5", configFile.toString()); intersectionProcess = new IntersectionProcess("Cr5", configFile.toString());
intersectionProcess.initialize(); intersectionProcess.initialize();
// Cr5 routes to exit // Cr5 routes to exit
assertNotNull(intersectionProcess); assertNotNull(intersectionProcess);
} }
@@ -308,19 +332,20 @@ public class IntersectionProcessTest {
public void testShutdown_GracefulTermination() throws IOException, InterruptedException { public void testShutdown_GracefulTermination() throws IOException, InterruptedException {
intersectionProcess = new IntersectionProcess("Cr1", configFile.toString()); intersectionProcess = new IntersectionProcess("Cr1", configFile.toString());
intersectionProcess.initialize(); intersectionProcess.initialize();
Thread serverThread = new Thread(() -> { Thread serverThread = new Thread(() -> {
try { try {
intersectionProcess.start(); intersectionProcess.start();
} catch (IOException e) { } } catch (IOException e) {
}
}); });
serverThread.start(); serverThread.start();
Thread.sleep(500); Thread.sleep(500);
// shutdown should be fast // shutdown should be fast
assertDoesNotThrow(() -> intersectionProcess.shutdown()); assertDoesNotThrow(() -> intersectionProcess.shutdown());
serverThread.join(2000); serverThread.join(2000);
} }
@@ -329,31 +354,36 @@ public class IntersectionProcessTest {
public void testShutdown_ClosesServerSocket() throws IOException, InterruptedException { public void testShutdown_ClosesServerSocket() throws IOException, InterruptedException {
intersectionProcess = new IntersectionProcess("Cr1", configFile.toString()); intersectionProcess = new IntersectionProcess("Cr1", configFile.toString());
intersectionProcess.initialize(); intersectionProcess.initialize();
// Start server in separate thread
Thread serverThread = new Thread(() -> { Thread serverThread = new Thread(() -> {
try { try {
intersectionProcess.start(); intersectionProcess.start();
} catch (IOException e) { } } catch (IOException e) {
// Expected on shutdown
}
}); });
serverThread.start(); serverThread.start();
// Wait for server to start
Thread.sleep(500); Thread.sleep(500);
// verify server running // Shutdown
try (Socket socket = new Socket("localhost", 18001)) {
assertTrue(socket.isConnected());
}
intersectionProcess.shutdown(); intersectionProcess.shutdown();
serverThread.join(2000); serverThread.join(2000);
// after shutdown conection should fail // Give shutdown time to complete
Thread.sleep(500); Thread.sleep(200);
Exception exception = assertThrows(IOException.class, () -> {
Socket socket = new Socket("localhost", 18001); // Verify we cannot connect (server socket is closed)
socket.close(); boolean connectionFailed = false;
}); try (Socket testSocket = new Socket()) {
assertNotNull(exception); testSocket.connect(new InetSocketAddress("localhost", 18001), 500);
} catch (IOException e) {
connectionFailed = true; // Expected - server should be closed
}
assertTrue(connectionFailed, "Server socket should be closed after shutdown");
} }
@Test @Test
@@ -361,23 +391,24 @@ public class IntersectionProcessTest {
public void testShutdown_StopsTrafficLightThreads() throws IOException, InterruptedException { public void testShutdown_StopsTrafficLightThreads() throws IOException, InterruptedException {
intersectionProcess = new IntersectionProcess("Cr1", configFile.toString()); intersectionProcess = new IntersectionProcess("Cr1", configFile.toString());
intersectionProcess.initialize(); intersectionProcess.initialize();
Thread serverThread = new Thread(() -> { Thread serverThread = new Thread(() -> {
try { try {
intersectionProcess.start(); intersectionProcess.start();
} catch (IOException e) { } } catch (IOException e) {
}
}); });
serverThread.start(); serverThread.start();
Thread.sleep(500); Thread.sleep(500);
int threadCountBefore = Thread.activeCount(); int threadCountBefore = Thread.activeCount();
intersectionProcess.shutdown(); intersectionProcess.shutdown();
serverThread.join(2000); serverThread.join(2000);
Thread.sleep(500); // wait for threads to die Thread.sleep(500); // wait for threads to die
// thread count should decrese (traffic light threads stop) // thread count should decrese (traffic light threads stop)
int threadCountAfter = Thread.activeCount(); int threadCountAfter = Thread.activeCount();
assertTrue(threadCountAfter <= threadCountBefore); assertTrue(threadCountAfter <= threadCountBefore);
@@ -388,45 +419,68 @@ public class IntersectionProcessTest {
@Test @Test
@Timeout(15) @Timeout(15)
public void testIntegration_TwoIntersectionsVehicleTransfer() throws IOException, InterruptedException { public void testIntegration_TwoIntersectionsVehicleTransfer() throws IOException, InterruptedException {
// setup 2 intersections IntersectionProcess cr1 = null;
IntersectionProcess cr1 = new IntersectionProcess("Cr1", configFile.toString()); IntersectionProcess cr2 = null;
IntersectionProcess cr2 = new IntersectionProcess("Cr2", configFile.toString()); Thread thread1 = null;
Thread thread2 = null;
cr1.initialize();
cr2.initialize(); try {
// setup 2 intersections
// start both cr1 = new IntersectionProcess("Cr1", configFile.toString());
Thread thread1 = new Thread(() -> { cr2 = new IntersectionProcess("Cr2", configFile.toString());
try { cr1.start(); } catch (IOException e) { }
}); cr1.initialize();
cr2.initialize();
Thread thread2 = new Thread(() -> {
try { cr2.start(); } catch (IOException e) { } // start both
}); final IntersectionProcess cr1Final = cr1;
thread1 = new Thread(() -> {
thread1.start(); try {
thread2.start(); cr1Final.start();
} catch (IOException e) {
Thread.sleep(1000); // wait for servers }
});
// send vehicle to Cr1 that goes to Cr2
java.util.List<String> route = Arrays.asList("Cr1", "Cr2", "S"); final IntersectionProcess cr2Final = cr2;
Vehicle vehicle = new Vehicle("V001", VehicleType.LIGHT, 0.0, route); thread2 = new Thread(() -> {
try {
try (Socket socket = new Socket("localhost", 18001)) { cr2Final.start();
ObjectOutputStream out = new ObjectOutputStream(socket.getOutputStream()); } catch (IOException e) {
}
TestVehicleMessage message = new TestVehicleMessage("Entry", "Cr1", vehicle); });
out.writeObject(message);
out.flush(); thread1.start();
thread2.start();
Thread.sleep(2000); // time for processing
Thread.sleep(1000); // wait for servers
// send vehicle to Cr1 that goes to Cr2 - FIXED: use 4-parameter constructor
java.util.List<String> route = Arrays.asList("Cr1", "Cr2", "S");
Vehicle vehicle = new Vehicle("V001", VehicleType.LIGHT, 0.0, route);
// FIXED: use SocketConnection
try (Socket socket = new Socket("localhost", 18001);
SocketConnection conn = new SocketConnection(socket)) {
TestVehicleMessage message = new TestVehicleMessage("Entry", "Cr1", vehicle);
conn.sendMessage(message);
Thread.sleep(2000); // time for processing
}
} finally {
if (cr1 != null) {
cr1.shutdown();
}
if (cr2 != null) {
cr2.shutdown();
}
if (thread1 != null) {
thread1.join(2000);
}
if (thread2 != null) {
thread2.join(2000);
}
} }
cr1.shutdown();
cr2.shutdown();
thread1.join(2000);
thread2.join(2000);
} }
@Test @Test
@@ -439,32 +493,32 @@ public class IntersectionProcessTest {
// helper class for testing vehicle messages // helper class for testing vehicle messages
private static class TestVehicleMessage implements sd.protocol.MessageProtocol { private static class TestVehicleMessage implements sd.protocol.MessageProtocol {
private static final long serialVersionUID = 1L; private static final long serialVersionUID = 1L;
private final String sourceNode; private final String sourceNode;
private final String destinationNode; private final String destinationNode;
private final Vehicle payload; private final Vehicle payload;
public TestVehicleMessage(String sourceNode, String destinationNode, Vehicle vehicle) { public TestVehicleMessage(String sourceNode, String destinationNode, Vehicle vehicle) {
this.sourceNode = sourceNode; this.sourceNode = sourceNode;
this.destinationNode = destinationNode; this.destinationNode = destinationNode;
this.payload = vehicle; this.payload = vehicle;
} }
@Override @Override
public MessageType getType() { public MessageType getType() {
return MessageType.VEHICLE_TRANSFER; return MessageType.VEHICLE_TRANSFER;
} }
@Override @Override
public Object getPayload() { public Object getPayload() {
return payload; return payload;
} }
@Override @Override
public String getSourceNode() { public String getSourceNode() {
return sourceNode; return sourceNode;
} }
@Override @Override
public String getDestinationNode() { public String getDestinationNode() {
return destinationNode; return destinationNode;

View File

@@ -0,0 +1,327 @@
package sd;
import java.io.IOException;
import java.net.Socket;
import java.nio.file.Files;
import java.nio.file.Path;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
import org.junit.jupiter.api.AfterEach;
import static org.junit.jupiter.api.Assertions.assertDoesNotThrow;
import static org.junit.jupiter.api.Assertions.assertNotNull;
import static org.junit.jupiter.api.Assertions.assertThrows;
import static org.junit.jupiter.api.Assertions.assertTrue;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.Timeout;
import org.junit.jupiter.api.io.TempDir;
import sd.config.SimulationConfig;
/**
* Testes unitários para a classe ExitNodeProcess.
*
* Esta classe de testes verifica:
* - Construção e inicialização do processo
* - Criação e aceitação de conexões do servidor socket
* - Gestão do ciclo de vida (start/shutdown)
* - Processamento concorrente de múltiplas conexões
* - Impressão de estatísticas finais
*
* Os testes utilizam configurações temporárias e portas dedicadas (19001)
* para evitar conflitos com outros testes ou processos em execução.
*/
public class ExitNodeProcessTest {
@TempDir
Path tempDir;
private Path configFile;
private ExitNodeProcess exitNodeProcess;
private Thread exitNodeThread;
/**
* Configura o ambiente de teste antes de cada teste.
* Cria um ficheiro de configuração temporário com as definições necessárias.
*/
@BeforeEach
public void setUp() throws IOException {
configFile = tempDir.resolve("test-simulation.properties");
String configContent = """
# Test Exit Node Configuration
# Exit Configuration
exit.host=localhost
exit.port=19001
# Dashboard Configuration (will not be running in tests)
dashboard.host=localhost
dashboard.port=19000
# Vehicle Crossing Times
vehicle.bike.crossingTime=2.0
vehicle.light.crossingTime=3.0
vehicle.heavy.crossingTime=5.0
# Simulation Duration
simulation.duration=60.0
""";
Files.writeString(configFile, configContent);
}
/**
* Limpa os recursos após cada teste.
* Garante que o processo e threads são terminados corretamente.
*/
@AfterEach
public void tearDown() {
if (exitNodeProcess != null) {
exitNodeProcess.shutdown();
}
if (exitNodeThread != null && exitNodeThread.isAlive()) {
exitNodeThread.interrupt();
try {
exitNodeThread.join(1000);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
}
/**
* Testa a construção bem-sucedida do ExitNodeProcess com configuração válida.
*/
@Test
public void testConstructor_Success() throws IOException {
SimulationConfig config = new SimulationConfig(configFile.toString());
exitNodeProcess = new ExitNodeProcess(config);
assertNotNull(exitNodeProcess);
}
/**
* Testa que uma exceção é lançada quando a configuração é inválida.
*/
@Test
public void testConstructor_InvalidConfig() {
Exception exception = assertThrows(IOException.class, () -> {
new SimulationConfig("non-existent-config.properties");
});
assertNotNull(exception);
}
/**
* Testa a inicialização sem dashboard disponível.
* Verifica que o processo continua a funcionar mesmo sem conexão ao dashboard.
*/
@Test
public void testInitialize_WithoutDashboard() throws IOException {
SimulationConfig config = new SimulationConfig(configFile.toString());
exitNodeProcess = new ExitNodeProcess(config);
assertDoesNotThrow(() -> exitNodeProcess.initialize());
}
/**
* Testa que o servidor socket é criado corretamente na porta configurada.
* Verifica que é possível estabelecer uma conexão ao socket do servidor.
*/
@Test
@Timeout(value = 3, unit = TimeUnit.SECONDS)
public void testStart_ServerSocketCreated() throws IOException {
SimulationConfig config = new SimulationConfig(configFile.toString());
exitNodeProcess = new ExitNodeProcess(config);
exitNodeProcess.initialize();
CountDownLatch latch = new CountDownLatch(1);
exitNodeThread = new Thread(() -> {
try {
latch.countDown();
exitNodeProcess.start();
} catch (IOException e) {
// expected when shutdown
}
});
exitNodeThread.start();
try {
assertTrue(latch.await(2, TimeUnit.SECONDS), "Exit node should start within timeout");
Thread.sleep(100);
assertDoesNotThrow(() -> {
try (Socket testSocket = new Socket("localhost", 19001)) {
assertTrue(testSocket.isConnected());
}
});
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
/**
* Testa que o servidor aceita conexões de clientes.
*/
@Test
@Timeout(value = 3, unit = TimeUnit.SECONDS)
public void testStart_AcceptsConnection() throws IOException, InterruptedException {
SimulationConfig config = new SimulationConfig(configFile.toString());
exitNodeProcess = new ExitNodeProcess(config);
exitNodeProcess.initialize();
CountDownLatch latch = new CountDownLatch(1);
exitNodeThread = new Thread(() -> {
try {
latch.countDown();
exitNodeProcess.start();
} catch (IOException e) {
// expected
}
});
exitNodeThread.start();
assertTrue(latch.await(2, TimeUnit.SECONDS));
Thread.sleep(200);
assertDoesNotThrow(() -> {
try (Socket socket = new Socket("localhost", 19001)) {
assertTrue(socket.isConnected());
}
});
}
/**
* Testa múltiplas inicializações e encerramentos do processo.
* Verifica que o processo pode ser iniciado e parado múltiplas vezes,
* permitindo reutilização da porta.
*/
@Test
@Timeout(value = 3, unit = TimeUnit.SECONDS)
public void testMultipleStartStop() throws IOException, InterruptedException {
SimulationConfig config = new SimulationConfig(configFile.toString());
exitNodeProcess = new ExitNodeProcess(config);
exitNodeProcess.initialize();
CountDownLatch latch = new CountDownLatch(1);
exitNodeThread = new Thread(() -> {
try {
latch.countDown();
exitNodeProcess.start();
} catch (IOException e) {
// expected
}
});
exitNodeThread.start();
assertTrue(latch.await(2, TimeUnit.SECONDS));
Thread.sleep(100);
exitNodeProcess.shutdown();
Thread.sleep(100);
assertDoesNotThrow(() -> {
SimulationConfig config2 = new SimulationConfig(configFile.toString());
ExitNodeProcess exitNode2 = new ExitNodeProcess(config2);
exitNode2.initialize();
exitNode2.shutdown();
});
}
/**
* Testa que o shutdown fecha corretamente o servidor socket.
* Após o shutdown, novas conexões ao socket devem falhar.
*/
@Test
@Timeout(value = 3, unit = TimeUnit.SECONDS)
public void testShutdown_ClosesServerSocket() throws IOException, InterruptedException {
SimulationConfig config = new SimulationConfig(configFile.toString());
exitNodeProcess = new ExitNodeProcess(config);
exitNodeProcess.initialize();
CountDownLatch startLatch = new CountDownLatch(1);
exitNodeThread = new Thread(() -> {
try {
startLatch.countDown();
exitNodeProcess.start();
} catch (IOException e) {
// expected
}
});
exitNodeThread.start();
assertTrue(startLatch.await(2, TimeUnit.SECONDS));
Thread.sleep(200);
exitNodeProcess.shutdown();
Thread.sleep(200);
assertThrows(IOException.class, () -> {
Socket socket = new Socket("localhost", 19001);
socket.close();
});
}
/**
* Testa que as estatísticas finais são impressas corretamente durante o shutdown.
* Verifica que o método não lança exceções mesmo sem dados processados.
*/
@Test
public void testPrintFinalStatistics() throws IOException {
SimulationConfig config = new SimulationConfig(configFile.toString());
exitNodeProcess = new ExitNodeProcess(config);
exitNodeProcess.initialize();
assertDoesNotThrow(() -> exitNodeProcess.shutdown());
}
/**
* Testa o processamento de múltiplas conexões concorrentes.
* Verifica que o servidor consegue lidar com vários clientes simultaneamente
* usando o pool de threads.
*/
@Test
@Timeout(value = 3, unit = TimeUnit.SECONDS)
public void testMultipleConcurrentConnections() throws IOException, InterruptedException {
SimulationConfig config = new SimulationConfig(configFile.toString());
exitNodeProcess = new ExitNodeProcess(config);
exitNodeProcess.initialize();
CountDownLatch latch = new CountDownLatch(1);
exitNodeThread = new Thread(() -> {
try {
latch.countDown();
exitNodeProcess.start();
} catch (IOException e) {
// expected
}
});
exitNodeThread.start();
assertTrue(latch.await(2, TimeUnit.SECONDS));
Thread.sleep(200);
Thread[] clients = new Thread[3];
for (int i = 0; i < 3; i++) {
clients[i] = new Thread(() -> {
try (Socket socket = new Socket("localhost", 19001)) {
assertTrue(socket.isConnected());
Thread.sleep(100);
} catch (IOException | InterruptedException e) {
// ignore
}
});
clients[i].start();
}
for (Thread client : clients) {
client.join(1000);
}
}
}

View File

@@ -0,0 +1,206 @@
package sd;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;
import org.junit.jupiter.api.AfterEach;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertTrue;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import sd.model.TrafficLight;
import sd.model.TrafficLightState;
/**
* Test class to verify traffic light coordination within an intersection.
* Ensures that only ONE traffic light can be GREEN at any given time.
*/
public class TrafficLightCoordinationTest {
private IntersectionProcess intersectionProcess;
@BeforeEach
public void setUp() throws IOException {
// Create an intersection with multiple traffic lights
intersectionProcess = new IntersectionProcess("Cr2", "src/main/resources/simulation.properties");
intersectionProcess.initialize();
}
@AfterEach
public void tearDown() throws InterruptedException {
if (intersectionProcess != null) {
intersectionProcess.shutdown();
}
}
/**
* Test that verifies mutual exclusion between traffic lights.
* Monitors all traffic lights for 10 seconds and ensures that
* at most ONE light is GREEN at any point in time.
*/
@Test
public void testOnlyOneGreenLightAtATime() throws InterruptedException {
System.out.println("\n=== Testing Traffic Light Mutual Exclusion ===");
// Start the intersection
Thread intersectionThread = new Thread(() -> {
try {
intersectionProcess.start();
} catch (IOException e) {
e.printStackTrace();
}
});
intersectionThread.start();
// Monitor traffic lights for violations
AtomicInteger maxGreenSimultaneously = new AtomicInteger(0);
AtomicInteger violationCount = new AtomicInteger(0);
List<String> violations = new ArrayList<>();
// Monitor for 10 seconds
long endTime = System.currentTimeMillis() + 10000;
while (System.currentTimeMillis() < endTime) {
int greenCount = 0;
StringBuilder currentState = new StringBuilder("States: ");
for (TrafficLight light : intersectionProcess.getIntersection().getTrafficLights()) {
TrafficLightState state = light.getState();
currentState.append(light.getDirection()).append("=").append(state).append(" ");
if (state == TrafficLightState.GREEN) {
greenCount++;
}
}
// Update maximum simultaneous green lights
if (greenCount > maxGreenSimultaneously.get()) {
maxGreenSimultaneously.set(greenCount);
}
// Check for violations (more than one green)
if (greenCount > 1) {
violationCount.incrementAndGet();
String violation = String.format("[VIOLATION] %d lights GREEN simultaneously: %s",
greenCount, currentState.toString());
violations.add(violation);
System.err.println(violation);
}
Thread.sleep(50); // Check every 50ms
}
System.out.println("\n=== Test Results ===");
System.out.println("Maximum simultaneous GREEN lights: " + maxGreenSimultaneously.get());
System.out.println("Total violations detected: " + violationCount.get());
if (!violations.isEmpty()) {
System.err.println("\nViolation details:");
violations.forEach(System.err::println);
}
// Assert that we never had more than one green light
assertEquals(0, violationCount.get(),
"Traffic light coordination violated! Multiple lights were GREEN simultaneously.");
assertTrue(maxGreenSimultaneously.get() <= 1,
"At most ONE light should be GREEN at any time. Found: " + maxGreenSimultaneously.get());
System.out.println("\nTraffic light coordination working correctly!");
}
/**
* Test that verifies all traffic lights get a chance to be GREEN.
* Ensures fairness in the coordination mechanism.
*/
@Test
public void testAllLightsGetGreenTime() throws InterruptedException {
System.out.println("\n=== Testing Traffic Light Fairness ===");
// Start the intersection
Thread intersectionThread = new Thread(() -> {
try {
intersectionProcess.start();
} catch (IOException e) {
e.printStackTrace();
}
});
intersectionThread.start();
// Track which lights have been green
List<TrafficLight> lights = intersectionProcess.getIntersection().getTrafficLights();
boolean[] hasBeenGreen = new boolean[lights.size()];
// Monitor for 15 seconds (enough time for all lights to cycle)
long endTime = System.currentTimeMillis() + 15000;
while (System.currentTimeMillis() < endTime) {
for (int i = 0; i < lights.size(); i++) {
if (lights.get(i).getState() == TrafficLightState.GREEN) {
hasBeenGreen[i] = true;
System.out.println("" + lights.get(i).getDirection() + " has been GREEN");
}
}
Thread.sleep(100);
}
// Check if all lights got green time
int greenCount = 0;
System.out.println("\n=== Fairness Results ===");
for (int i = 0; i < lights.size(); i++) {
String status = hasBeenGreen[i] ? "✓ YES" : "✗ NO";
System.out.println(lights.get(i).getDirection() + " got GREEN time: " + status);
if (hasBeenGreen[i]) greenCount++;
}
assertTrue(greenCount > 0, "At least one light should have been GREEN during the test");
System.out.println("\n" + greenCount + "/" + lights.size() + " lights were GREEN during test period");
}
/**
* Test that verifies the state transitions are consistent.
*/
@Test
public void testStateTransitionsAreConsistent() throws InterruptedException {
System.out.println("\n=== Testing State Transition Consistency ===");
Thread intersectionThread = new Thread(() -> {
try {
intersectionProcess.start();
} catch (IOException e) {
e.printStackTrace();
}
});
intersectionThread.start();
List<TrafficLight> lights = intersectionProcess.getIntersection().getTrafficLights();
TrafficLightState[] previousStates = new TrafficLightState[lights.size()];
// Initialize previous states
for (int i = 0; i < lights.size(); i++) {
previousStates[i] = lights.get(i).getState();
}
int transitionCount = 0;
long endTime = System.currentTimeMillis() + 8000;
while (System.currentTimeMillis() < endTime) {
for (int i = 0; i < lights.size(); i++) {
TrafficLightState currentState = lights.get(i).getState();
if (currentState != previousStates[i]) {
transitionCount++;
System.out.println(lights.get(i).getDirection() + " transitioned: " +
previousStates[i] + "" + currentState);
previousStates[i] = currentState;
}
}
Thread.sleep(100);
}
System.out.println("\nTotal state transitions observed: " + transitionCount);
assertTrue(transitionCount > 0, "There should be state transitions during the test period");
}
}

View File

@@ -0,0 +1,302 @@
package sd.coordinator;
import java.io.DataInputStream;
import java.io.IOException;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ConcurrentLinkedQueue;
import org.junit.jupiter.api.AfterEach;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertFalse;
import static org.junit.jupiter.api.Assertions.assertNotNull;
import static org.junit.jupiter.api.Assertions.assertTrue;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.Timeout;
import sd.model.Message;
import sd.model.MessageType;
import sd.model.Vehicle;
import sd.serialization.MessageSerializer;
import sd.serialization.SerializerFactory;
/**
* Integration tests for the Coordinator-side networking.
*
* What were checking here:
* 1. A SocketClient can actually connect to something listening
* 2. Messages go over the wire and can be deserialized
* 3. Vehicle payloads survive the trip
* 4. Shutdown messages can be broadcast to multiple intersections
*
* We do this by spinning up a tiny mock intersection server in-process.
*/
class CoordinatorIntegrationTest {
private List<MockIntersectionServer> mockServers;
private static final int BASE_PORT = 9001; // keep clear of real ports
@BeforeEach
void setUp() {
mockServers = new ArrayList<>();
}
@AfterEach
void tearDown() {
// Stop all mock servers
for (MockIntersectionServer server : mockServers) {
server.stop();
}
mockServers.clear();
}
/**
* Can the client open a TCP connection to our fake intersection?
*/
@Test
@Timeout(5)
void testSocketClientConnection() throws IOException, InterruptedException {
MockIntersectionServer server = new MockIntersectionServer("Cr1", BASE_PORT);
server.start();
mockServers.add(server);
// tiny pause to let the server bind
Thread.sleep(100);
SocketClient client = new SocketClient("Cr1", "localhost", BASE_PORT);
client.connect();
assertTrue(client.isConnected(), "Client should be connected to mock intersection");
client.close();
}
/**
* End-to-end: send a message, make sure the server actually receives it.
*/
@Test
@Timeout(5)
void testMessageTransmission() throws Exception {
MockIntersectionServer server = new MockIntersectionServer("Cr1", BASE_PORT);
server.start();
mockServers.add(server);
Thread.sleep(100);
SocketClient client = new SocketClient("Cr1", "localhost", BASE_PORT);
client.connect();
Message testMessage = new Message(
MessageType.VEHICLE_SPAWN,
"COORDINATOR",
"Cr1",
"Test payload"
);
client.send(testMessage);
// give the server a moment to read and deserialize
Thread.sleep(200);
assertFalse(
server.getReceivedMessages().isEmpty(),
"Mock server should have received at least one message"
);
Message receivedMsg = server.getReceivedMessages().poll();
assertNotNull(receivedMsg, "Server should have actually received a message");
assertEquals(MessageType.VEHICLE_SPAWN, receivedMsg.getType(), "Message type should match what we sent");
assertEquals("COORDINATOR", receivedMsg.getSenderId(), "Sender ID should be preserved");
assertEquals("Cr1", receivedMsg.getDestinationId(), "Destination ID should be preserved");
client.close();
}
/**
* Make sure vehicle payloads survive the trip and arrive non-null.
*/
@Test
@Timeout(5)
void testVehicleSpawnMessage() throws Exception {
MockIntersectionServer server = new MockIntersectionServer("Cr1", BASE_PORT);
server.start();
mockServers.add(server);
Thread.sleep(100);
SocketClient client = new SocketClient("Cr1", "localhost", BASE_PORT);
client.connect();
// fake a vehicle like the coordinator would send
List<String> route = List.of("Cr1", "Cr4", "Cr5", "S");
Vehicle vehicle = new Vehicle("V1", sd.model.VehicleType.LIGHT, 0.0, route);
Message spawnMessage = new Message(
MessageType.VEHICLE_SPAWN,
"COORDINATOR",
"Cr1",
vehicle
);
client.send(spawnMessage);
Thread.sleep(200);
Message receivedMsg = server.getReceivedMessages().poll();
assertNotNull(receivedMsg, "Mock server should receive the spawn message");
assertEquals(MessageType.VEHICLE_SPAWN, receivedMsg.getType(), "Message should be of type VEHICLE_SPAWN");
assertNotNull(receivedMsg.getPayload(), "Payload should not be null (vehicle must arrive)");
client.close();
}
/**
* Broadcast shutdown to multiple mock intersections and see if all of them get it.
*/
@Test
@Timeout(5)
void testShutdownMessageBroadcast() throws Exception {
// Start a couple of fake intersections
for (int i = 1; i <= 3; i++) {
MockIntersectionServer server = new MockIntersectionServer("Cr" + i, BASE_PORT + i - 1);
server.start();
mockServers.add(server);
}
Thread.sleep(200);
// Connect to all of them
List<SocketClient> clients = new ArrayList<>();
for (int i = 1; i <= 3; i++) {
SocketClient client = new SocketClient("Cr" + i, "localhost", BASE_PORT + i - 1);
client.connect();
clients.add(client);
}
Message shutdownMessage = new Message(
MessageType.SHUTDOWN,
"COORDINATOR",
"ALL",
"Simulation complete"
);
for (SocketClient client : clients) {
client.send(shutdownMessage);
}
Thread.sleep(200);
for (MockIntersectionServer server : mockServers) {
assertFalse(
server.getReceivedMessages().isEmpty(),
"Server " + server.getIntersectionId() + " should have received the shutdown message"
);
Message msg = server.getReceivedMessages().poll();
assertEquals(MessageType.SHUTDOWN, msg.getType(), "Server should receive a SHUTDOWN message");
}
for (SocketClient client : clients) {
client.close();
}
}
/**
* Tiny TCP server that pretends to be an intersection.
* It:
* - listens on a port
* - accepts connections
* - reads length-prefixed messages
* - deserializes them and stores them for the test to inspect
*/
private static class MockIntersectionServer {
private final String intersectionId;
private final int port;
private ServerSocket serverSocket;
private Thread serverThread;
private volatile boolean running;
private final ConcurrentLinkedQueue<Message> receivedMessages;
private final MessageSerializer serializer;
public MockIntersectionServer(String intersectionId, int port) {
this.intersectionId = intersectionId;
this.port = port;
this.receivedMessages = new ConcurrentLinkedQueue<>();
this.serializer = SerializerFactory.createDefault();
this.running = false;
}
public void start() throws IOException {
serverSocket = new ServerSocket(port);
running = true;
System.out.printf("Mock %s listening on port %d%n", intersectionId, port);
serverThread = new Thread(() -> {
try {
while (running) {
Socket clientSocket = serverSocket.accept();
handleClient(clientSocket);
}
} catch (IOException e) {
if (running) {
System.err.println("Mock " + intersectionId + " server error: " + e.getMessage());
}
}
}, "mock-" + intersectionId + "-listener");
serverThread.start();
}
private void handleClient(Socket clientSocket) {
new Thread(() -> {
try (DataInputStream input = new DataInputStream(clientSocket.getInputStream())) {
while (running) {
// Read length prefix (4 bytes, big-endian)
int length = input.readInt();
byte[] data = new byte[length];
input.readFully(data);
Message message = serializer.deserialize(data, Message.class);
receivedMessages.offer(message);
System.out.println("Mock " + intersectionId + " received: " + message.getType());
}
} catch (IOException e) {
if (running) {
System.err.println("Mock " + intersectionId + " client handler error: " + e.getMessage());
}
} catch (Exception e) {
System.err.println("Mock " + intersectionId + " deserialization error: " + e.getMessage());
}
}, "mock-" + intersectionId + "-client").start();
}
public void stop() {
running = false;
try {
if (serverSocket != null && !serverSocket.isClosed()) {
serverSocket.close();
}
if (serverThread != null) {
serverThread.interrupt();
serverThread.join(1000);
}
System.out.printf("Mock %s stopped%n", intersectionId);
} catch (IOException | InterruptedException e) {
System.err.println("Error stopping mock server " + intersectionId + ": " + e.getMessage());
}
}
public ConcurrentLinkedQueue<Message> getReceivedMessages() {
return receivedMessages;
}
public String getIntersectionId() {
return intersectionId;
}
}
}

View File

@@ -0,0 +1,194 @@
package sd.coordinator;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.junit.jupiter.api.AfterEach;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertFalse;
import static org.junit.jupiter.api.Assertions.assertNotNull;
import static org.junit.jupiter.api.Assertions.assertTrue;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import sd.config.SimulationConfig;
import sd.model.Vehicle;
import sd.util.VehicleGenerator;
/**
* Tests for the Coordinator/vehicle-generation layer.
*
* What were checking here:
* 1. Coordinator can be created with a valid config
* 2. Vehicle arrival times are monotonic and sane
* 3. Vehicle IDs are created in the format we expect (V1, V2, ...)
* 4. Generated vehicles have proper routes (start at CrX, end at S)
* 5. Config actually has intersection info
* 6. Duration in config is not something crazy
*/
class CoordinatorProcessTest {
private SimulationConfig config;
private static final String TEST_CONFIG = "src/main/resources/simulation.properties";
@BeforeEach
void setUp() throws IOException {
config = new SimulationConfig(TEST_CONFIG);
}
@AfterEach
void tearDown() {
config = null;
}
/**
* Basic smoke test: can we build a coordinator with this config?
*/
@Test
void testCoordinatorInitialization() {
CoordinatorProcess coordinator = new CoordinatorProcess(config);
assertNotNull(coordinator, "Coordinator should be created with a valid config");
}
/**
* Make sure the VehicleGenerator is giving us increasing arrival times,
* i.e. time doesnt go backwards and intervals look reasonable.
*/
@Test
void testVehicleGenerationTiming() {
VehicleGenerator generator = new VehicleGenerator(config);
double currentTime = 0.0;
List<Double> arrivalTimes = new ArrayList<>();
// generate a small batch to inspect
for (int i = 0; i < 10; i++) {
double nextArrival = generator.getNextArrivalTime(currentTime);
arrivalTimes.add(nextArrival);
currentTime = nextArrival;
}
// times should strictly increase
for (int i = 1; i < arrivalTimes.size(); i++) {
assertTrue(
arrivalTimes.get(i) > arrivalTimes.get(i - 1),
"Arrival times must increase — got " + arrivalTimes.get(i - 1) + " then " + arrivalTimes.get(i)
);
}
// and they shouldn't be nonsense
for (double time : arrivalTimes) {
assertTrue(time >= 0, "Arrival time should not be negative (got " + time + ")");
assertTrue(time < 1000, "Arrival time looks suspiciously large: " + time);
}
}
/**
* We generate V1..V5 manually and make sure the IDs are exactly those.
*/
@Test
void testVehicleIdGeneration() {
VehicleGenerator generator = new VehicleGenerator(config);
List<Vehicle> vehicles = new ArrayList<>();
for (int i = 1; i <= 5; i++) {
Vehicle v = generator.generateVehicle("V" + i, 0.0);
vehicles.add(v);
assertEquals("V" + i, v.getId(), "Vehicle ID should be 'V" + i + "' but got " + v.getId());
}
// just to be safe, no duplicates in that small set
long distinctCount = vehicles.stream().map(Vehicle::getId).distinct().count();
assertEquals(5, distinctCount, "Vehicle IDs in this batch should all be unique");
}
/**
* A generated vehicle should:
* - have a non-empty route
* - start in a known intersection (Cr1..Cr5)
* - end in S (exit)
*/
@Test
void testVehicleRouteValidity() {
VehicleGenerator generator = new VehicleGenerator(config);
for (int i = 0; i < 20; i++) {
Vehicle vehicle = generator.generateVehicle("V" + i, 0.0);
assertNotNull(vehicle.getRoute(), "Vehicle route should not be null");
assertFalse(vehicle.getRoute().isEmpty(), "Vehicle route should not be empty");
String firstHop = vehicle.getRoute().get(0);
assertTrue(
firstHop.matches("Cr[1-5]"),
"First hop should be a valid intersection (Cr1..Cr5), got: " + firstHop
);
String lastHop = vehicle.getRoute().get(vehicle.getRoute().size() - 1);
assertEquals("S", lastHop, "Last hop should be exit 'S' but got: " + lastHop);
}
}
/**
* Whatever is in simulation.properties should give us a sane duration.
*/
@Test
void testSimulationDuration() {
double duration = config.getSimulationDuration();
assertTrue(duration > 0, "Simulation duration must be positive");
assertTrue(duration >= 1.0, "Simulation should run at least 1 second (got " + duration + ")");
assertTrue(duration <= 86400.0, "Simulation should not run more than a day (got " + duration + ")");
}
/**
* Check that the 5 intersections defined in the architecture
* actually exist in the config and have valid network data.
*/
@Test
void testIntersectionConfiguration() {
String[] intersectionIds = {"Cr1", "Cr2", "Cr3", "Cr4", "Cr5"};
for (String id : intersectionIds) {
String host = config.getIntersectionHost(id);
int port = config.getIntersectionPort(id);
assertNotNull(host, "Host should not be null for " + id);
assertFalse(host.isEmpty(), "Host should not be empty for " + id);
assertTrue(port > 0, "Port should be > 0 for " + id + " (got " + port + ")");
assertTrue(port < 65536, "Port should be a valid TCP port for " + id + " (got " + port + ")");
}
}
/**
* Quick sanity check: over a bunch of generated vehicles,
* we should eventually see the different vehicle types appear.
*
* Note: this is probabilistic, so we're not being super strict.
*/
@Test
void testVehicleTypeDistribution() {
VehicleGenerator generator = new VehicleGenerator(config);
boolean hasBike = false;
boolean hasLight = false;
boolean hasHeavy = false;
// 50 is enough for a "we're probably fine" test
for (int i = 0; i < 50; i++) {
Vehicle vehicle = generator.generateVehicle("V" + i, 0.0);
switch (vehicle.getType()) {
case BIKE -> hasBike = true;
case LIGHT -> hasLight = true;
case HEAVY -> hasHeavy = true;
}
}
// at least one of them should have shown up — if not, RNG is cursed
assertTrue(
hasBike || hasLight || hasHeavy,
"Expected to see at least one vehicle type after 50 generations"
);
}
}

View File

@@ -0,0 +1,164 @@
package sd.dashboard;
import org.junit.jupiter.api.AfterEach;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertFalse;
import static org.junit.jupiter.api.Assertions.assertNotNull;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import sd.config.SimulationConfig;
import sd.model.VehicleType;
/**
* Unit tests for Dashboard Server components.
*/
class DashboardTest {
private DashboardStatistics statistics;
@BeforeEach
void setUp() {
statistics = new DashboardStatistics();
}
@AfterEach
void tearDown() {
statistics = null;
}
@Test
void testInitialStatistics() {
assertEquals(0, statistics.getTotalVehiclesGenerated(),
"Initial vehicles generated should be 0");
assertEquals(0, statistics.getTotalVehiclesCompleted(),
"Initial vehicles completed should be 0");
assertEquals(0.0, statistics.getAverageSystemTime(),
"Initial average system time should be 0.0");
assertEquals(0.0, statistics.getAverageWaitingTime(),
"Initial average waiting time should be 0.0");
}
@Test
void testVehicleCounters() {
statistics.incrementVehiclesGenerated();
assertEquals(1, statistics.getTotalVehiclesGenerated());
statistics.updateVehiclesGenerated(10);
assertEquals(10, statistics.getTotalVehiclesGenerated());
statistics.incrementVehiclesCompleted();
assertEquals(1, statistics.getTotalVehiclesCompleted());
}
@Test
void testAverageCalculations() {
// Add 3 completed vehicles with known times
statistics.updateVehiclesCompleted(3);
statistics.addSystemTime(3000); // 3000ms total
statistics.addWaitingTime(1500); // 1500ms total
assertEquals(1000.0, statistics.getAverageSystemTime(), 0.01,
"Average system time should be 1000ms");
assertEquals(500.0, statistics.getAverageWaitingTime(), 0.01,
"Average waiting time should be 500ms");
}
@Test
void testVehicleTypeStatistics() {
statistics.incrementVehicleType(VehicleType.LIGHT);
statistics.incrementVehicleType(VehicleType.LIGHT);
statistics.incrementVehicleType(VehicleType.HEAVY);
assertEquals(2, statistics.getVehicleTypeCount(VehicleType.LIGHT));
assertEquals(1, statistics.getVehicleTypeCount(VehicleType.HEAVY));
assertEquals(0, statistics.getVehicleTypeCount(VehicleType.BIKE));
}
@Test
void testIntersectionStatistics() {
statistics.updateIntersectionStats("Cr1", 10, 8, 2);
DashboardStatistics.IntersectionStats stats =
statistics.getIntersectionStats("Cr1");
assertNotNull(stats, "Intersection stats should not be null");
assertEquals("Cr1", stats.getIntersectionId());
assertEquals(10, stats.getTotalArrivals());
assertEquals(8, stats.getTotalDepartures());
assertEquals(2, stats.getCurrentQueueSize());
}
@Test
void testMultipleIntersections() {
statistics.updateIntersectionStats("Cr1", 10, 8, 2);
statistics.updateIntersectionStats("Cr2", 15, 12, 3);
statistics.updateIntersectionStats("Cr3", 5, 5, 0);
assertEquals(3, statistics.getAllIntersectionStats().size(),
"Should have 3 intersections");
}
@Test
void testStatsUpdatePayload() {
StatsUpdatePayload payload = new StatsUpdatePayload()
.setTotalVehiclesGenerated(50)
.setTotalVehiclesCompleted(20)
.setIntersectionArrivals(30)
.setIntersectionDepartures(25)
.setIntersectionQueueSize(5);
assertEquals(50, payload.getTotalVehiclesGenerated());
assertEquals(20, payload.getTotalVehiclesCompleted());
assertEquals(30, payload.getIntersectionArrivals());
assertEquals(25, payload.getIntersectionDepartures());
assertEquals(5, payload.getIntersectionQueueSize());
}
@Test
void testStatsMessage() {
StatsUpdatePayload payload = new StatsUpdatePayload()
.setIntersectionArrivals(10);
StatsMessage message = new StatsMessage("Cr1", payload);
assertEquals("Cr1", message.getSourceNode());
assertEquals("DashboardServer", message.getDestinationNode());
assertEquals(sd.model.MessageType.STATS_UPDATE, message.getType());
assertNotNull(message.getPayload());
}
@Test
void testThreadSafety() throws InterruptedException {
// Test concurrent updates
Thread t1 = new Thread(() -> {
for (int i = 0; i < 100; i++) {
statistics.incrementVehiclesGenerated();
}
});
Thread t2 = new Thread(() -> {
for (int i = 0; i < 100; i++) {
statistics.incrementVehiclesGenerated();
}
});
t1.start();
t2.start();
t1.join();
t2.join();
assertEquals(200, statistics.getTotalVehiclesGenerated(),
"Concurrent increments should total 200");
}
@Test
void testDashboardServerCreation() throws Exception {
SimulationConfig config = new SimulationConfig("simulation.properties");
DashboardServer server = new DashboardServer(config);
assertNotNull(server, "Server should be created successfully");
assertNotNull(server.getStatistics(), "Statistics should be initialized");
assertFalse(server.isRunning(), "Server should not be running initially");
}
}