7 Commits

23 changed files with 2227 additions and 2124 deletions

View File

@@ -51,7 +51,7 @@
<artifactId>exec-maven-plugin</artifactId> <artifactId>exec-maven-plugin</artifactId>
<version>3.1.0</version> <version>3.1.0</version>
<configuration> <configuration>
<mainClass>sd.Entry</mainClass> <mainClass>sd.dashboard.DashboardUI</mainClass>
</configuration> </configuration>
</plugin> </plugin>
<!-- JavaFX Maven Plugin --> <!-- JavaFX Maven Plugin -->
@@ -76,7 +76,7 @@
<configuration> <configuration>
<transformers> <transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer"> <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass>sd.Entry</mainClass> <mainClass>sd.dashboard.DashboardUI</mainClass>
</transformer> </transformer>
</transformers> </transformers>
</configuration> </configuration>

View File

@@ -1,94 +0,0 @@
package sd;
import java.io.IOException;
import sd.config.SimulationConfig;
import sd.engine.SimulationEngine;
/**
* Main entry point for the traffic simulation.
* * This class is responsible for loading the simulation configuration,
* initializing the {@link SimulationEngine}, and starting the simulation run.
* It also prints initial configuration details and final execution time.
*/
public class Entry {
/**
* The default path to the simulation configuration file.
* This is used if no command-line arguments are provided.
*/
private static final String DEFAULT_CONFIG_FILE = "src/main/resources/simulation.properties";
/**
* The main method to start the simulation.
* * @param args Command-line arguments. If provided, args[0] is expected
* to be the path to a custom configuration file.
*/
public static void main(String[] args) {
System.out.println("=".repeat(60));
System.out.println("TRAFFIC SIMULATION - DISCRETE EVENT SIMULATOR");
System.out.println("=".repeat(60));
try {
// 1. Load configuration
String configFile = args.length > 0 ? args[0] : DEFAULT_CONFIG_FILE;
System.out.println("Loading configuration from: " + configFile);
SimulationConfig config = new SimulationConfig(configFile);
// 2. Display configuration
displayConfiguration(config);
// 3. Create and initialize simulation engine
SimulationEngine engine = new SimulationEngine(config);
engine.initialize();
System.out.println("\n" + "=".repeat(60));
// 4. Run simulation
long startTime = System.currentTimeMillis();
engine.run();
long endTime = System.currentTimeMillis();
// 5. Display execution time
double executionTime = (endTime - startTime) / 1000.0;
System.out.println("\nExecution time: " + String.format("%.2f", executionTime) + " seconds");
System.out.println("=".repeat(60));
} catch (IOException e) {
System.err.println("Error loading configuration: " + e.getMessage());
e.printStackTrace();
} catch (Exception e) {
System.err.println("Error during simulation: " + e.getMessage());
e.printStackTrace();
}
}
/**
* Displays the main configuration parameters to the console.
* This provides a summary of the simulation settings before it starts.
*
* @param config The {@link SimulationConfig} object containing the loaded settings.
*/
private static void displayConfiguration(SimulationConfig config) {
System.out.println("\nSIMULATION CONFIGURATION:");
System.out.println(" Duration: " + config.getSimulationDuration() + " seconds");
System.out.println(" Arrival Model: " + config.getArrivalModel());
if ("POISSON".equalsIgnoreCase(config.getArrivalModel())) {
System.out.println(" Arrival Rate (λ): " + config.getArrivalRate() + " vehicles/second");
} else {
System.out.println(" Fixed Interval: " + config.getFixedArrivalInterval() + " seconds");
}
System.out.println(" Statistics Update Interval: " + config.getStatisticsUpdateInterval() + " seconds");
System.out.println("\nVEHICLE TYPES:");
System.out.println(" Bike: " + (config.getBikeVehicleProbability() * 100) + "% " +
"(crossing time: " + config.getBikeVehicleCrossingTime() + "s)");
System.out.println(" Light: " + (config.getLightVehicleProbability() * 100) + "% " +
"(crossing time: " + config.getLightVehicleCrossingTime() + "s)");
System.out.println(" Heavy: " + (config.getHeavyVehicleProbability() * 100) + "% " +
"(crossing time: " + config.getHeavyVehicleCrossingTime() + "s)");
}
}

View File

@@ -18,12 +18,13 @@ import sd.model.Vehicle;
import sd.model.VehicleType; import sd.model.VehicleType;
import sd.protocol.MessageProtocol; import sd.protocol.MessageProtocol;
import sd.protocol.SocketConnection; import sd.protocol.SocketConnection;
import sd.serialization.SerializationException;
/** /**
* Processo responsável pelo nó de saída do sistema de simulação de tráfego distribuído. * Processo responsável pelo nó de saída do sistema de simulação de tráfego
* distribuído.
* *
* Este processo representa o ponto final ("S") onde os veículos completam as suas rotas. * Este processo representa o ponto final ("S") onde os veículos completam as
* suas rotas.
* As suas principais responsabilidades são: * As suas principais responsabilidades são:
* - Receber veículos que terminam a sua rota vindos das interseções * - Receber veículos que terminam a sua rota vindos das interseções
* - Calcular e agregar estatísticas finais dos veículos * - Calcular e agregar estatísticas finais dos veículos
@@ -36,7 +37,10 @@ public class ExitNodeProcess {
private ServerSocket serverSocket; private ServerSocket serverSocket;
private final ExecutorService connectionHandlerPool; private final ExecutorService connectionHandlerPool;
/** Flag para controlar a execução do processo (volatile para visibilidade entre threads) */ /**
* Flag para controlar a execução do processo (volatile para visibilidade entre
* threads)
*/
private volatile boolean running; private volatile boolean running;
/** Simulation start time (milliseconds) to calculate relative times */ /** Simulation start time (milliseconds) to calculate relative times */
@@ -99,10 +103,12 @@ public class ExitNodeProcess {
/** /**
* Constrói um novo processo de nó de saída. * Constrói um novo processo de nó de saída.
* *
* Inicializa todas as estruturas de dados necessárias para recolher estatísticas * Inicializa todas as estruturas de dados necessárias para recolher
* estatísticas
* e configura o pool de threads para processar as ligações concorrentes. * e configura o pool de threads para processar as ligações concorrentes.
* *
* @param config Configuração da simulação contendo portas e endereços dos serviços * @param config Configuração da simulação contendo portas e endereços dos
* serviços
*/ */
public ExitNodeProcess(SimulationConfig config) { public ExitNodeProcess(SimulationConfig config) {
this.config = config; this.config = config;
@@ -159,7 +165,8 @@ public class ExitNodeProcess {
* 2. Aguarda pelas ligações das interseções * 2. Aguarda pelas ligações das interseções
* 3. Delega cada ligação a uma thread da pool para processamento assíncrono * 3. Delega cada ligação a uma thread da pool para processamento assíncrono
* *
* @throws IOException Se o socket não puder ser criado ou houver erro na aceitação * @throws IOException Se o socket não puder ser criado ou houver erro na
* aceitação
*/ */
public void start() throws IOException { public void start() throws IOException {
int port = config.getExitPort(); int port = config.getExitPort();
@@ -186,7 +193,8 @@ public class ExitNodeProcess {
* Processa uma ligação recebida de uma interseção. * Processa uma ligação recebida de uma interseção.
* *
* Mantém a ligação aberta e processa continuamente mensagens do tipo * Mantém a ligação aberta e processa continuamente mensagens do tipo
* VEHICLE_TRANSFER. Cada mensagem representa um veículo que chegou ao nó de saída. * VEHICLE_TRANSFER. Cada mensagem representa um veículo que chegou ao nó de
* saída.
* *
* @param clientSocket Socket da ligação estabelecida com a interseção * @param clientSocket Socket da ligação estabelecida com a interseção
*/ */
@@ -280,18 +288,6 @@ public class ExitNodeProcess {
sendStatsToDashboard(); sendStatsToDashboard();
} }
/**
* Obtém o tempo atual da simulação em segundos.
*
* @return Tempo atual em segundos desde "epoch"
*
* "Epoch" é um ponto de referência temporal Unix (1 de janeiro de 1970).
* Este método retorna os segundos decorridos desde esse momento.
*/
private double getCurrentTime() {
return System.currentTimeMillis() / 1000.0;
}
/** /**
* Envia as estatísticas para o dashboard. * Envia as estatísticas para o dashboard.
* *
@@ -315,6 +311,11 @@ public class ExitNodeProcess {
payload.setTotalSystemTime((long) (totalSystemTime * 1000.0)); // s -> ms payload.setTotalSystemTime((long) (totalSystemTime * 1000.0)); // s -> ms
payload.setTotalWaitingTime((long) (totalWaitingTime * 1000.0)); // s -> ms payload.setTotalWaitingTime((long) (totalWaitingTime * 1000.0)); // s -> ms
// Set intersection-like stats so it shows up correctly in the dashboard table
payload.setIntersectionArrivals(totalVehiclesReceived);
payload.setIntersectionDepartures(totalVehiclesReceived);
payload.setIntersectionQueueSize(0);
// Set vehicle type stats // Set vehicle type stats
Map<VehicleType, Integer> typeCounts = new HashMap<>(); Map<VehicleType, Integer> typeCounts = new HashMap<>();
Map<VehicleType, Long> typeWaitTimes = new HashMap<>(); Map<VehicleType, Long> typeWaitTimes = new HashMap<>();
@@ -332,8 +333,7 @@ public class ExitNodeProcess {
MessageType.STATS_UPDATE, MessageType.STATS_UPDATE,
"ExitNode", "ExitNode",
"Dashboard", "Dashboard",
payload payload);
);
dashboardClient.send(message); dashboardClient.send(message);

View File

@@ -4,9 +4,11 @@ import java.io.IOException;
import java.net.ServerSocket; import java.net.ServerSocket;
import java.net.Socket; import java.net.Socket;
import java.util.HashMap; import java.util.HashMap;
import java.util.List;
import java.util.Map; import java.util.Map;
import java.util.concurrent.ExecutorService; import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors; import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit; import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock; import java.util.concurrent.locks.ReentrantLock;
@@ -46,6 +48,8 @@ public class IntersectionProcess {
private final ExecutorService trafficLightPool; private final ExecutorService trafficLightPool;
private ScheduledExecutorService statsExecutor;
private volatile boolean running; // Quando uma thread escreve um valor volatile, todas as outras private volatile boolean running; // Quando uma thread escreve um valor volatile, todas as outras
// threads veem a mudança imediatamente. // threads veem a mudança imediatamente.
@@ -64,10 +68,8 @@ public class IntersectionProcess {
private volatile String currentGreenDirection; private volatile String currentGreenDirection;
private SocketClient dashboardClient; private SocketClient dashboardClient;
private long simulationStartMillis;
private volatile int totalArrivals = 0; private volatile int totalArrivals = 0;
private volatile int totalDepartures = 0; private volatile int totalDepartures = 0;
private long lastStatsUpdateTime;
/** /**
* Constructs a new IntersectionProcess. * Constructs a new IntersectionProcess.
@@ -83,8 +85,9 @@ public class IntersectionProcess {
this.outgoingConnections = new HashMap<>(); this.outgoingConnections = new HashMap<>();
this.connectionHandlerPool = Executors.newCachedThreadPool(); this.connectionHandlerPool = Executors.newCachedThreadPool();
this.trafficLightPool = Executors.newFixedThreadPool(4); // Max 4 directions this.trafficLightPool = Executors.newFixedThreadPool(4); // Max 4 directions
this.statsExecutor = Executors.newSingleThreadScheduledExecutor();
this.running = false; this.running = false;
this.trafficCoordinationLock = new ReentrantLock(); this.trafficCoordinationLock = new ReentrantLock(true); // Fair lock to prevent starvation
this.currentGreenDirection = null; this.currentGreenDirection = null;
System.out.println("=".repeat(60)); System.out.println("=".repeat(60));
@@ -148,7 +151,6 @@ public class IntersectionProcess {
dashboardClient.connect(); dashboardClient.connect();
System.out.println("[" + intersectionId + "] Connected to dashboard."); System.out.println("[" + intersectionId + "] Connected to dashboard.");
lastStatsUpdateTime = System.currentTimeMillis();
} catch (IOException e) { } catch (IOException e) {
System.err.println("[" + intersectionId + "] Failed to connect to dashboard: " + System.err.println("[" + intersectionId + "] Failed to connect to dashboard: " +
@@ -167,23 +169,12 @@ public class IntersectionProcess {
private void createTrafficLights() { private void createTrafficLights() {
System.out.println("\n[" + intersectionId + "] Creating traffic lights..."); System.out.println("\n[" + intersectionId + "] Creating traffic lights...");
String[] directions = new String[0]; SimulationConfig.IntersectionConfig intersectionConfig = getIntersectionConfig();
switch (intersectionId) { List<String> directions = intersectionConfig.getLights();
case "Cr1":
directions = new String[] { "East", "South" }; if (directions == null || directions.isEmpty()) {
break; System.err.println(" Warning: No traffic lights configured for " + intersectionId);
case "Cr2": return;
directions = new String[] { "West", "East", "South" };
break;
case "Cr3":
directions = new String[] { "West", "South" };
break;
case "Cr4":
directions = new String[] { "East" };
break;
case "Cr5":
directions = new String[] { "East" };
break;
} }
for (String direction : directions) { for (String direction : directions) {
@@ -202,36 +193,31 @@ public class IntersectionProcess {
} }
} }
private SimulationConfig.IntersectionConfig getIntersectionConfig() {
if (config.getNetworkConfig() == null || config.getNetworkConfig().getIntersections() == null) {
throw new RuntimeException("Network configuration not loaded or empty.");
}
return config.getNetworkConfig().getIntersections().stream()
.filter(i -> i.getId().equals(intersectionId))
.findFirst()
.orElseThrow(() -> new RuntimeException("Intersection config not found for " + intersectionId));
}
private void configureRouting() { private void configureRouting() {
System.out.println("\n[" + intersectionId + "] Configuring routing..."); System.out.println("\n[" + intersectionId + "] Configuring routing...");
switch (intersectionId) { SimulationConfig.IntersectionConfig intersectionConfig = getIntersectionConfig();
case "Cr1": Map<String, String> routes = intersectionConfig.getRoutes();
intersection.configureRoute("Cr2", "East");
intersection.configureRoute("Cr4", "South");
break;
case "Cr2": if (routes != null) {
intersection.configureRoute("Cr1", "West"); for (Map.Entry<String, String> entry : routes.entrySet()) {
intersection.configureRoute("Cr3", "East"); String destination = entry.getKey();
intersection.configureRoute("Cr5", "South"); String direction = entry.getValue();
break; intersection.configureRoute(destination, direction);
System.out.println(" Route configured: To " + destination + " -> Use " + direction);
case "Cr3": }
intersection.configureRoute("Cr2", "West"); } else {
intersection.configureRoute("S", "South"); System.out.println(" No routes configured.");
break;
case "Cr4":
intersection.configureRoute("Cr5", "East");
break;
case "Cr5":
intersection.configureRoute("S", "East");
break;
default:
System.err.println(" Error: unknown intersection ID: " + intersectionId);
} }
System.out.println(" Routing configured."); System.out.println(" Routing configured.");
@@ -381,6 +367,9 @@ public class IntersectionProcess {
// Start traffic light threads when running is true // Start traffic light threads when running is true
startTrafficLights(); startTrafficLights();
// Start stats updater
statsExecutor.scheduleAtFixedRate(this::sendStatsToDashboard, 1, 1, TimeUnit.SECONDS);
System.out.println("[" + intersectionId + "] Waiting for incoming connections...\n"); System.out.println("[" + intersectionId + "] Waiting for incoming connections...\n");
// Main accept loop // Main accept loop
@@ -447,7 +436,6 @@ public class IntersectionProcess {
// Handle simulation start time synchronization // Handle simulation start time synchronization
if (message.getType() == MessageType.SIMULATION_START) { if (message.getType() == MessageType.SIMULATION_START) {
simulationStartMillis = ((Number) message.getPayload()).longValue();
System.out.println("[" + intersectionId + "] Simulation start time synchronized"); System.out.println("[" + intersectionId + "] Simulation start time synchronized");
continue; continue;
} }
@@ -481,6 +469,12 @@ public class IntersectionProcess {
// Record arrival for statistics // Record arrival for statistics
recordVehicleArrival(); recordVehicleArrival();
} else if (message.getType() == MessageType.SHUTDOWN) {
System.out.println(
"[" + intersectionId + "] Received SHUTDOWN command from " + message.getSourceNode());
running = false;
// Close this specific connection
break;
} }
} catch (java.net.SocketTimeoutException e) { } catch (java.net.SocketTimeoutException e) {
@@ -524,6 +518,9 @@ public class IntersectionProcess {
System.out.println("\n[" + intersectionId + "] Shutting down..."); System.out.println("\n[" + intersectionId + "] Shutting down...");
running = false; running = false;
// Send final stats before closing connections
sendStatsToDashboard();
// 1. Close ServerSocket first // 1. Close ServerSocket first
if (serverSocket != null && !serverSocket.isClosed()) { if (serverSocket != null && !serverSocket.isClosed()) {
try { try {
@@ -540,6 +537,9 @@ public class IntersectionProcess {
if (connectionHandlerPool != null && !connectionHandlerPool.isShutdown()) { if (connectionHandlerPool != null && !connectionHandlerPool.isShutdown()) {
connectionHandlerPool.shutdownNow(); connectionHandlerPool.shutdownNow();
} }
if (statsExecutor != null && !statsExecutor.isShutdown()) {
statsExecutor.shutdownNow();
}
// 3. Wait briefly for termination (don't block forever) // 3. Wait briefly for termination (don't block forever)
try { try {
@@ -549,6 +549,9 @@ public class IntersectionProcess {
if (connectionHandlerPool != null) { if (connectionHandlerPool != null) {
connectionHandlerPool.awaitTermination(1, TimeUnit.SECONDS); connectionHandlerPool.awaitTermination(1, TimeUnit.SECONDS);
} }
if (statsExecutor != null) {
statsExecutor.awaitTermination(1, TimeUnit.SECONDS);
}
} catch (InterruptedException e) { } catch (InterruptedException e) {
Thread.currentThread().interrupt(); Thread.currentThread().interrupt();
} }
@@ -589,7 +592,6 @@ public class IntersectionProcess {
*/ */
public void recordVehicleArrival() { public void recordVehicleArrival() {
totalArrivals++; totalArrivals++;
checkAndSendStats();
} }
/** /**
@@ -597,21 +599,6 @@ public class IntersectionProcess {
*/ */
public void recordVehicleDeparture() { public void recordVehicleDeparture() {
totalDepartures++; totalDepartures++;
checkAndSendStats();
}
/**
* Checks if it's time to send statistics to the dashboard and sends them if needed.
*/
private void checkAndSendStats() {
long now = System.currentTimeMillis();
long elapsed = now - lastStatsUpdateTime;
// Send stats every 5 seconds
if (elapsed >= 5000) {
sendStatsToDashboard();
lastStatsUpdateTime = now;
}
} }
/** /**
@@ -638,8 +625,7 @@ public class IntersectionProcess {
MessageType.STATS_UPDATE, MessageType.STATS_UPDATE,
intersectionId, intersectionId,
"Dashboard", "Dashboard",
payload payload);
);
dashboardClient.send(message); dashboardClient.send(message);
@@ -650,43 +636,4 @@ public class IntersectionProcess {
System.err.println("[" + intersectionId + "] Failed to send stats to dashboard: " + e.getMessage()); System.err.println("[" + intersectionId + "] Failed to send stats to dashboard: " + e.getMessage());
} }
} }
// --- Inner class for Vehicle Transfer Messages ---
/**
* Implementation of MessageProtocol for vehicle transfers between processes.
*/
private static class VehicleTransferMessage implements MessageProtocol {
private static final long serialVersionUID = 1L;
private final String sourceNode;
private final String destinationNode;
private final Vehicle payload;
public VehicleTransferMessage(String sourceNode, String destinationNode, Vehicle vehicle) {
this.sourceNode = sourceNode;
this.destinationNode = destinationNode;
this.payload = vehicle;
}
@Override
public MessageType getType() {
return MessageType.VEHICLE_TRANSFER;
}
@Override
public Object getPayload() {
return payload;
}
@Override
public String getSourceNode() {
return sourceNode;
}
@Override
public String getDestinationNode() {
return destinationNode;
}
}
} }

View File

@@ -3,8 +3,16 @@ package sd.config;
import java.io.FileInputStream; import java.io.FileInputStream;
import java.io.IOException; import java.io.IOException;
import java.io.InputStream; import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.Reader;
import java.nio.charset.StandardCharsets;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.Properties; import java.util.Properties;
import com.google.gson.Gson;
/** /**
* Class to load and manage simulation configurations. * Class to load and manage simulation configurations.
* Configurations are read from a .properties file. This class provides * Configurations are read from a .properties file. This class provides
@@ -17,59 +25,144 @@ public class SimulationConfig {
* Holds all properties loaded from the file. * Holds all properties loaded from the file.
*/ */
private final Properties properties; private final Properties properties;
private NetworkConfig networkConfig;
public static class NetworkConfig {
private List<IntersectionConfig> intersections;
public List<IntersectionConfig> getIntersections() {
return intersections;
}
}
public static class IntersectionConfig {
private String id;
private List<String> lights;
private Map<String, String> routes;
public String getId() {
return id;
}
public List<String> getLights() {
return lights;
}
public Map<String, String> getRoutes() {
return routes;
}
}
/** /**
* Constructs a new SimulationConfig object by loading properties * Constructs a new SimulationConfig object by loading properties
* from the specified file path. * from the specified file path.
* *
* @param filePath The path to the .properties file (e.g., "src/main/resources/simulation.properties"). * This constructor attempts to load the configuration file using multiple
* @throws IOException If the file cannot be found or read. * strategies:
* 1. Direct file system path
* 2. Classpath resource (with automatic path normalization)
* 3. Classpath resource with leading slash
*
* @param filePath The path to the .properties file (e.g.,
* "src/main/resources/simulation.properties").
* @throws IOException If the file cannot be found or read from any location.
*/ */
public SimulationConfig(String filePath) throws IOException { public SimulationConfig(String filePath) throws IOException {
properties = new Properties(); properties = new Properties();
/**Tenta carregar diretamente a partir do sistema de ficheiros, se o ficheiro não existir
* (por exemplo quando executado a partir do classpath/jar),
* faz fallback para carregar a partir do classpath usando o ClassLoader.
*/
IOException lastException = null; //FIXME: melhorar esta parte para reportar erros de forma mais clara
try { // List to track all attempted paths for better error reporting
List<String> attemptedPaths = new ArrayList<>();
IOException fileSystemException = null;
// Strategy 1: Try to load directly from file system
try (InputStream input = new FileInputStream(filePath)) { try (InputStream input = new FileInputStream(filePath)) {
properties.load(input); properties.load(input);
return; // carregado com sucesso a partir do caminho fornecido loadNetworkConfig();
} return; // Successfully loaded from file system
} catch (IOException e) { } catch (IOException e) {
lastException = e; fileSystemException = e;
//tenta carregar a partir do classpath sem prefixos comuns attemptedPaths.add("File system: " + filePath);
String resourcePath = filePath;
//Remove prefixos que apontam para src/main/resources quando presentes
resourcePath = resourcePath.replace("src/main/resources/", "").replace("src\\main\\resources\\", "");
//Remove prefixo classpath: se fornecido
if (resourcePath.startsWith("classpath:")) {
resourcePath = resourcePath.substring("classpath:".length());
if (resourcePath.startsWith("/")) resourcePath = resourcePath.substring(1);
} }
// Strategy 2: Try to load from classpath with path normalization
String resourcePath = filePath;
// Remove common src/main/resources prefixes
resourcePath = resourcePath.replace("src/main/resources/", "").replace("src\\main\\resources\\", "");
// Remove classpath: prefix if provided
if (resourcePath.startsWith("classpath:")) {
resourcePath = resourcePath.substring("classpath:".length());
if (resourcePath.startsWith("/")) {
resourcePath = resourcePath.substring(1);
}
}
// Try loading from classpath using thread context class loader
InputStream resourceStream = Thread.currentThread().getContextClassLoader().getResourceAsStream(resourcePath); InputStream resourceStream = Thread.currentThread().getContextClassLoader().getResourceAsStream(resourcePath);
attemptedPaths.add("Classpath (context): " + resourcePath);
if (resourceStream == null) { if (resourceStream == null) {
//como último recurso, tentar com um leading slash // Strategy 3: Try with leading slash
resourceStream = SimulationConfig.class.getResourceAsStream('/' + resourcePath); String slashPath = "/" + resourcePath;
resourceStream = SimulationConfig.class.getResourceAsStream(slashPath);
attemptedPaths.add("Classpath (class): " + slashPath);
} }
if (resourceStream != null) { if (resourceStream != null) {
try (InputStream input = resourceStream) { try (InputStream input = resourceStream) {
properties.load(input); properties.load(input);
loadNetworkConfig();
return; // Successfully loaded from classpath
} catch (IOException e) {
// Failed to read from classpath resource
throw new IOException(
String.format("Failed to read properties from classpath resource '%s': %s",
resourcePath, e.getMessage()),
e);
}
}
// All strategies failed - provide comprehensive error message
StringBuilder errorMsg = new StringBuilder();
errorMsg.append("Configuration file '").append(filePath).append("' could not be found.\n");
errorMsg.append("Attempted locations:\n");
for (String path : attemptedPaths) {
errorMsg.append(" - ").append(path).append("\n");
}
if (fileSystemException != null) {
errorMsg.append("\nOriginal error: ").append(fileSystemException.getMessage());
}
throw new IOException(errorMsg.toString(), fileSystemException);
}
private void loadNetworkConfig() {
try (InputStream is = getClass().getClassLoader().getResourceAsStream("network_config.json")) {
if (is == null) {
System.err.println("Warning: network_config.json not found in classpath. Using defaults/empty.");
return; return;
} }
try (Reader reader = new InputStreamReader(is, StandardCharsets.UTF_8)) {
Gson gson = new Gson();
this.networkConfig = gson.fromJson(reader, NetworkConfig.class);
}
} catch (IOException e) {
System.err.println("Failed to load network_config.json: " + e.getMessage());
e.printStackTrace();
} }
} }
if (lastException != null) throw lastException;
public NetworkConfig getNetworkConfig() {
return networkConfig;
} }
// --- Network configurations --- // --- Network configurations ---
/** /**
* Gets the host address for a specific intersection. * Gets the host address for a specific intersection.
*
* @param intersectionId The ID of the intersection (e.g., "Cr1"). * @param intersectionId The ID of the intersection (e.g., "Cr1").
* @return The host (e.g., "localhost"). * @return The host (e.g., "localhost").
*/ */
@@ -79,6 +172,7 @@ public class SimulationConfig {
/** /**
* Gets the port number for a specific intersection. * Gets the port number for a specific intersection.
*
* @param intersectionId The ID of the intersection (e.g., "Cr1"). * @param intersectionId The ID of the intersection (e.g., "Cr1").
* @return The port number. * @return The port number.
*/ */
@@ -88,6 +182,7 @@ public class SimulationConfig {
/** /**
* Gets the host address for the dashboard server. * Gets the host address for the dashboard server.
*
* @return The dashboard host. * @return The dashboard host.
*/ */
public String getDashboardHost() { public String getDashboardHost() {
@@ -96,6 +191,7 @@ public class SimulationConfig {
/** /**
* Gets the port number for the dashboard server. * Gets the port number for the dashboard server.
*
* @return The dashboard port. * @return The dashboard port.
*/ */
public int getDashboardPort() { public int getDashboardPort() {
@@ -104,6 +200,7 @@ public class SimulationConfig {
/** /**
* Gets the host address for the exit node. * Gets the host address for the exit node.
*
* @return The exit node host. * @return The exit node host.
*/ */
public String getExitHost() { public String getExitHost() {
@@ -112,6 +209,7 @@ public class SimulationConfig {
/** /**
* Gets the port number for the exit node. * Gets the port number for the exit node.
*
* @return The exit node port. * @return The exit node port.
*/ */
public int getExitPort() { public int getExitPort() {
@@ -122,14 +220,26 @@ public class SimulationConfig {
/** /**
* Gets the total duration of the simulation in virtual seconds. * Gets the total duration of the simulation in virtual seconds.
*
* @return The simulation duration. * @return The simulation duration.
*/ */
public double getSimulationDuration() { public double getSimulationDuration() {
return Double.parseDouble(properties.getProperty("simulation.duration", "3600.0")); return Double.parseDouble(properties.getProperty("simulation.duration", "3600.0"));
} }
/**
* Gets the drain time (in virtual seconds) to allow vehicles to exit after
* generation stops.
*
* @return The drain time.
*/
public double getDrainTime() {
return Double.parseDouble(properties.getProperty("simulation.drain.time", "60.0"));
}
/** /**
* Gets the vehicle arrival model ("POISSON" or "FIXED"). * Gets the vehicle arrival model ("POISSON" or "FIXED").
*
* @return The arrival model as a string. * @return The arrival model as a string.
*/ */
public String getArrivalModel() { public String getArrivalModel() {
@@ -139,6 +249,7 @@ public class SimulationConfig {
/** /**
* Gets the average arrival rate (lambda) for the POISSON model. * Gets the average arrival rate (lambda) for the POISSON model.
* This represents the average number of vehicles arriving per second. * This represents the average number of vehicles arriving per second.
*
* @return The arrival rate. * @return The arrival rate.
*/ */
public double getArrivalRate() { public double getArrivalRate() {
@@ -147,6 +258,7 @@ public class SimulationConfig {
/** /**
* Gets the fixed time interval between vehicle arrivals for the FIXED model. * Gets the fixed time interval between vehicle arrivals for the FIXED model.
*
* @return The fixed interval in seconds. * @return The fixed interval in seconds.
*/ */
public double getFixedArrivalInterval() { public double getFixedArrivalInterval() {
@@ -157,6 +269,7 @@ public class SimulationConfig {
/** /**
* Gets the duration of the GREEN light state for a specific traffic light. * Gets the duration of the GREEN light state for a specific traffic light.
*
* @param intersectionId The ID of the intersection (e.g., "Cr1"). * @param intersectionId The ID of the intersection (e.g., "Cr1").
* @param direction The direction of the light (e.g., "North"). * @param direction The direction of the light (e.g., "North").
* @return The green light time in seconds. * @return The green light time in seconds.
@@ -168,6 +281,7 @@ public class SimulationConfig {
/** /**
* Gets the duration of the RED light state for a specific traffic light. * Gets the duration of the RED light state for a specific traffic light.
*
* @param intersectionId The ID of the intersection (e.g., "Cr1"). * @param intersectionId The ID of the intersection (e.g., "Cr1").
* @param direction The direction of the light (e.g., "North"). * @param direction The direction of the light (e.g., "North").
* @return The red light time in seconds. * @return The red light time in seconds.
@@ -181,6 +295,7 @@ public class SimulationConfig {
/** /**
* Gets the probability (0.0 to 1.0) that a generated vehicle is of type LIGHT. * Gets the probability (0.0 to 1.0) that a generated vehicle is of type LIGHT.
*
* @return The probability for LIGHT vehicles. * @return The probability for LIGHT vehicles.
*/ */
public double getLightVehicleProbability() { public double getLightVehicleProbability() {
@@ -189,6 +304,7 @@ public class SimulationConfig {
/** /**
* Gets the average time it takes a LIGHT vehicle to cross an intersection. * Gets the average time it takes a LIGHT vehicle to cross an intersection.
*
* @return The crossing time in seconds. * @return The crossing time in seconds.
*/ */
public double getLightVehicleCrossingTime() { public double getLightVehicleCrossingTime() {
@@ -197,6 +313,7 @@ public class SimulationConfig {
/** /**
* Gets the probability (0.0 to 1.0) that a generated vehicle is of type BIKE. * Gets the probability (0.0 to 1.0) that a generated vehicle is of type BIKE.
*
* @return The probability for BIKE vehicles. * @return The probability for BIKE vehicles.
*/ */
public double getBikeVehicleProbability() { public double getBikeVehicleProbability() {
@@ -205,6 +322,7 @@ public class SimulationConfig {
/** /**
* Gets the average time it takes a BIKE vehicle to cross an intersection. * Gets the average time it takes a BIKE vehicle to cross an intersection.
*
* @return The crossing time in seconds. * @return The crossing time in seconds.
*/ */
public double getBikeVehicleCrossingTime() { public double getBikeVehicleCrossingTime() {
@@ -213,6 +331,7 @@ public class SimulationConfig {
/** /**
* Gets the probability (0.0 to 1.0) that a generated vehicle is of type HEAVY. * Gets the probability (0.0 to 1.0) that a generated vehicle is of type HEAVY.
*
* @return The probability for HEAVY vehicles. * @return The probability for HEAVY vehicles.
*/ */
public double getHeavyVehicleProbability() { public double getHeavyVehicleProbability() {
@@ -221,26 +340,58 @@ public class SimulationConfig {
/** /**
* Gets the average time it takes a HEAVY vehicle to cross an intersection. * Gets the average time it takes a HEAVY vehicle to cross an intersection.
*
* @return The crossing time in seconds. * @return The crossing time in seconds.
*/ */
public double getHeavyVehicleCrossingTime() { public double getHeavyVehicleCrossingTime() {
return Double.parseDouble(properties.getProperty("vehicle.crossing.time.heavy", "4.0")); return Double.parseDouble(properties.getProperty("vehicle.crossing.time.heavy", "4.0"));
} }
/**
* Gets the base travel time between intersections for light vehicles.
*
* @return The base travel time in seconds.
*/
public double getBaseTravelTime() {
return Double.parseDouble(properties.getProperty("vehicle.travel.time.base", "8.0"));
}
/**
* Gets the travel time multiplier for bike vehicles.
* Bike travel time = base time × this multiplier.
*
* @return The multiplier for bike travel time.
*/
public double getBikeTravelTimeMultiplier() {
return Double.parseDouble(properties.getProperty("vehicle.travel.time.bike.multiplier", "0.5"));
}
/**
* Gets the travel time multiplier for heavy vehicles.
* Heavy vehicle travel time = base time × this multiplier.
*
* @return The multiplier for heavy vehicle travel time.
*/
public double getHeavyTravelTimeMultiplier() {
return Double.parseDouble(properties.getProperty("vehicle.travel.time.heavy.multiplier", "2.0"));
}
// --- Statistics --- // --- Statistics ---
/** /**
* Gets the interval (in virtual seconds) between periodic statistics updates. * Gets the interval (in virtual seconds) between periodic statistics updates.
*
* @return The statistics update interval. * @return The statistics update interval.
*/ */
public double getStatisticsUpdateInterval() { public double getStatisticsUpdateInterval() {
return Double.parseDouble(properties.getProperty("statistics.update.interval", "10.0")); return Double.parseDouble(properties.getProperty("statistics.update.interval", "1.0"));
} }
// --- Generic getters --- // --- Generic getters ---
/** /**
* Generic method to get any property as a string, with a default value. * Generic method to get any property as a string, with a default value.
*
* @param key The property key. * @param key The property key.
* @param defaultValue The value to return if the key is not found. * @param defaultValue The value to return if the key is not found.
* @return The property value or the default. * @return The property value or the default.
@@ -251,6 +402,7 @@ public class SimulationConfig {
/** /**
* Generic method to get any property as a string. * Generic method to get any property as a string.
*
* @param key The property key. * @param key The property key.
* @return The property value, or null if not found. * @return The property value, or null if not found.
*/ */

View File

@@ -119,11 +119,30 @@ public class CoordinatorProcess {
nextGenerationTime = vehicleGenerator.getNextArrivalTime(currentTime); nextGenerationTime = vehicleGenerator.getNextArrivalTime(currentTime);
final double TIME_STEP = 0.1; final double TIME_STEP = 0.1;
while (running && currentTime < duration) { double drainTime = config.getDrainTime();
double totalDuration = duration + drainTime;
boolean draining = false;
while (running && currentTime < totalDuration) {
// Only generate vehicles during the main duration
if (currentTime < duration) {
if (currentTime >= nextGenerationTime) { if (currentTime >= nextGenerationTime) {
generateAndSendVehicle(); generateAndSendVehicle();
nextGenerationTime = vehicleGenerator.getNextArrivalTime(currentTime); nextGenerationTime = vehicleGenerator.getNextArrivalTime(currentTime);
} }
} else if (!draining) {
draining = true;
System.out.println("\n[t=" + String.format("%.2f", currentTime)
+ "] Generation complete. Entering DRAIN MODE for " + drainTime + "s...");
}
try {
Thread.sleep((long) (TIME_STEP * 1000));
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
break;
}
currentTime += TIME_STEP; currentTime += TIME_STEP;
} }
@@ -165,8 +184,7 @@ public class CoordinatorProcess {
MessageType.VEHICLE_SPAWN, MessageType.VEHICLE_SPAWN,
"COORDINATOR", "COORDINATOR",
intersectionId, intersectionId,
vehicle vehicle);
);
client.send(message); client.send(message);
System.out.printf("->Sent to %s%n", intersectionId); System.out.printf("->Sent to %s%n", intersectionId);
@@ -192,8 +210,7 @@ public class CoordinatorProcess {
MessageType.SHUTDOWN, MessageType.SHUTDOWN,
"COORDINATOR", "COORDINATOR",
intersectionId, intersectionId,
"Simulation complete" "Simulation complete");
);
client.send(personalizedShutdown); client.send(personalizedShutdown);
System.out.println("Sent shutdown message to " + intersectionId); System.out.println("Sent shutdown message to " + intersectionId);
} }
@@ -242,8 +259,7 @@ public class CoordinatorProcess {
MessageType.STATS_UPDATE, MessageType.STATS_UPDATE,
"COORDINATOR", "COORDINATOR",
"Dashboard", "Dashboard",
payload payload);
);
dashboardClient.send(message); dashboardClient.send(message);
} catch (Exception e) { // This is fine - can add IOException if need be } catch (Exception e) { // This is fine - can add IOException if need be
@@ -262,8 +278,7 @@ public class CoordinatorProcess {
MessageType.SIMULATION_START, MessageType.SIMULATION_START,
"COORDINATOR", "COORDINATOR",
entry.getKey(), entry.getKey(),
startTimeMillis startTimeMillis);
);
entry.getValue().send(message); entry.getValue().send(message);
} catch (Exception e) { // Same thing here } catch (Exception e) { // Same thing here
System.err.println("Failed to send start time to " + entry.getKey() + ": " + e.getMessage()); System.err.println("Failed to send start time to " + entry.getKey() + ": " + e.getMessage());
@@ -277,8 +292,7 @@ public class CoordinatorProcess {
MessageType.SIMULATION_START, MessageType.SIMULATION_START,
"COORDINATOR", "COORDINATOR",
"Dashboard", "Dashboard",
startTimeMillis startTimeMillis);
);
dashboardClient.send(message); dashboardClient.send(message);
} catch (Exception e) { // And here } catch (Exception e) { // And here
// Don't crash // Don't crash

View File

@@ -12,10 +12,10 @@ import javafx.geometry.Insets;
import javafx.geometry.Pos; import javafx.geometry.Pos;
import javafx.scene.Scene; import javafx.scene.Scene;
import javafx.scene.control.Alert; import javafx.scene.control.Alert;
import javafx.scene.control.Button;
import javafx.scene.control.Label; import javafx.scene.control.Label;
import javafx.scene.control.TableColumn; import javafx.scene.control.TableColumn;
import javafx.scene.control.TableView; import javafx.scene.control.TableView;
import javafx.scene.control.TitledPane;
import javafx.scene.control.cell.PropertyValueFactory; import javafx.scene.control.cell.PropertyValueFactory;
import javafx.scene.layout.BorderPane; import javafx.scene.layout.BorderPane;
import javafx.scene.layout.GridPane; import javafx.scene.layout.GridPane;
@@ -23,10 +23,7 @@ import javafx.scene.layout.HBox;
import javafx.scene.layout.Priority; import javafx.scene.layout.Priority;
import javafx.scene.layout.Region; import javafx.scene.layout.Region;
import javafx.scene.layout.VBox; import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle; import javafx.scene.shape.Circle;
import javafx.scene.text.Font;
import javafx.scene.text.FontWeight;
import javafx.stage.Stage; import javafx.stage.Stage;
import sd.config.SimulationConfig; import sd.config.SimulationConfig;
import sd.model.VehicleType; import sd.model.VehicleType;
@@ -74,7 +71,7 @@ public class DashboardUI extends Application {
// Build UI // Build UI
BorderPane root = new BorderPane(); BorderPane root = new BorderPane();
root.setStyle("-fx-background-color: #f5f5f5;"); root.getStyleClass().add("root");
// Header // Header
VBox header = createHeader(); VBox header = createHeader();
@@ -89,7 +86,12 @@ public class DashboardUI extends Application {
root.setBottom(footer); root.setBottom(footer);
// Create scene // Create scene
Scene scene = new Scene(root, 1200, 800); Scene scene = new Scene(root, 1200, 850);
// Load CSS
String cssUrl = getClass().getResource("/dashboard.css").toExternalForm();
scene.getStylesheets().add(cssUrl);
primaryStage.setTitle("Traffic Simulation Dashboard - Real-time Statistics"); primaryStage.setTitle("Traffic Simulation Dashboard - Real-time Statistics");
primaryStage.setScene(scene); primaryStage.setScene(scene);
primaryStage.show(); primaryStage.show();
@@ -102,153 +104,204 @@ public class DashboardUI extends Application {
shutdown(); shutdown();
}); });
} catch (IOException e) { } catch (Exception e) {
showErrorAlert("Failed to start Dashboard Server", e.getMessage()); showErrorAlert("Failed to start Dashboard Server", e.getMessage());
e.printStackTrace();
Platform.exit(); Platform.exit();
} }
} }
private VBox createHeader() { private VBox createHeader() {
VBox header = new VBox(10); VBox header = new VBox(10);
header.setPadding(new Insets(20)); header.getStyleClass().add("header");
header.setStyle("-fx-background-color: linear-gradient(to right, #2c3e50, #3498db);"); header.setAlignment(Pos.CENTER);
Label title = new Label("DISTRIBUTED TRAFFIC SIMULATION DASHBOARD"); Label title = new Label("DISTRIBUTED TRAFFIC SIMULATION DASHBOARD");
title.setFont(Font.font("Arial", FontWeight.BOLD, 28)); title.getStyleClass().add("header-title");
title.setTextFill(Color.WHITE);
Label subtitle = new Label("Real-time Statistics and Monitoring"); Label subtitle = new Label("Real-time Statistics and Monitoring");
subtitle.setFont(Font.font("Arial", FontWeight.NORMAL, 16)); subtitle.getStyleClass().add("header-subtitle");
subtitle.setTextFill(Color.web("#ecf0f1"));
header.getChildren().addAll(title, subtitle); // Control Buttons
header.setAlignment(Pos.CENTER); HBox controls = new HBox(15);
controls.setAlignment(Pos.CENTER);
Button btnStart = new Button("START SIMULATION");
btnStart.getStyleClass().add("button-start");
Button btnStop = new Button("STOP SIMULATION");
btnStop.getStyleClass().add("button-stop");
btnStop.setDisable(true);
SimulationProcessManager processManager = new SimulationProcessManager();
btnStart.setOnAction(e -> {
try {
processManager.startSimulation();
btnStart.setDisable(true);
btnStop.setDisable(false);
} catch (IOException ex) {
showErrorAlert("Start Failed", "Could not start simulation processes: " + ex.getMessage());
}
});
btnStop.setOnAction(e -> {
processManager.stopSimulation();
btnStart.setDisable(false);
btnStop.setDisable(true);
});
controls.getChildren().addAll(btnStart, btnStop);
header.getChildren().addAll(title, subtitle, controls);
return header; return header;
} }
private VBox createMainContent() { private VBox createMainContent() {
VBox mainContent = new VBox(15); VBox mainContent = new VBox(20);
mainContent.setPadding(new Insets(20)); mainContent.setPadding(new Insets(20));
// Global Statistics Panel // Global Statistics Panel
TitledPane globalStatsPane = createGlobalStatisticsPanel(); VBox globalStatsCard = createGlobalStatisticsPanel();
// Tables Container
HBox tablesContainer = new HBox(20);
tablesContainer.setAlignment(Pos.TOP_CENTER);
// Vehicle Type Statistics Panel // Vehicle Type Statistics Panel
TitledPane vehicleTypePane = createVehicleTypePanel(); VBox vehicleTypeCard = createVehicleTypePanel();
HBox.setHgrow(vehicleTypeCard, Priority.ALWAYS);
// Intersection Statistics Panel // Intersection Statistics Panel
TitledPane intersectionPane = createIntersectionPanel(); VBox intersectionCard = createIntersectionPanel();
HBox.setHgrow(intersectionCard, Priority.ALWAYS);
mainContent.getChildren().addAll(globalStatsPane, vehicleTypePane, intersectionPane); tablesContainer.getChildren().addAll(vehicleTypeCard, intersectionCard);
mainContent.getChildren().addAll(globalStatsCard, tablesContainer);
return mainContent; return mainContent;
} }
private TitledPane createGlobalStatisticsPanel() { private VBox createGlobalStatisticsPanel() {
VBox card = new VBox();
card.getStyleClass().add("card");
// Card Header
HBox cardHeader = new HBox();
cardHeader.getStyleClass().add("card-header");
Label cardTitle = new Label("Global Statistics");
cardTitle.getStyleClass().add("card-title");
cardHeader.getChildren().add(cardTitle);
// Card Content
GridPane grid = new GridPane(); GridPane grid = new GridPane();
grid.setPadding(new Insets(15)); grid.getStyleClass().add("card-content");
grid.setHgap(20); grid.setHgap(40);
grid.setVgap(15); grid.setVgap(15);
grid.setStyle("-fx-background-color: white; -fx-border-radius: 5;"); grid.setAlignment(Pos.CENTER);
// Initialize labels // Initialize labels
lblVehiclesGenerated = createStatLabel("0"); lblVehiclesGenerated = createStatValueLabel("0");
lblVehiclesCompleted = createStatLabel("0"); lblVehiclesCompleted = createStatValueLabel("0");
lblVehiclesInTransit = createStatLabel("0"); lblVehiclesInTransit = createStatValueLabel("0");
lblAvgSystemTime = createStatLabel("0.00 ms"); lblAvgSystemTime = createStatValueLabel("0.00 s");
lblAvgWaitingTime = createStatLabel("0.00 ms"); lblAvgWaitingTime = createStatValueLabel("0.00 s");
// Add labels with descriptions // Add labels with descriptions
addStatRow(grid, 0, "Total Vehicles Generated:", lblVehiclesGenerated); addStatRow(grid, 0, 0, "Total Vehicles Generated", lblVehiclesGenerated);
addStatRow(grid, 1, "Total Vehicles Completed:", lblVehiclesCompleted); addStatRow(grid, 1, 0, "Total Vehicles Completed", lblVehiclesCompleted);
addStatRow(grid, 2, "Vehicles In Transit:", lblVehiclesInTransit); addStatRow(grid, 2, 0, "Vehicles In Transit", lblVehiclesInTransit);
addStatRow(grid, 3, "Average System Time:", lblAvgSystemTime); addStatRow(grid, 0, 1, "Average System Time", lblAvgSystemTime);
addStatRow(grid, 4, "Average Waiting Time:", lblAvgWaitingTime); addStatRow(grid, 1, 1, "Average Waiting Time", lblAvgWaitingTime);
TitledPane pane = new TitledPane("Global Statistics", grid); card.getChildren().addAll(cardHeader, grid);
pane.setCollapsible(false); return card;
pane.setFont(Font.font("Arial", FontWeight.BOLD, 16));
return pane;
} }
private TitledPane createVehicleTypePanel() { private VBox createVehicleTypePanel() {
VBox card = new VBox();
card.getStyleClass().add("card");
// Card Header
HBox cardHeader = new HBox();
cardHeader.getStyleClass().add("card-header");
Label cardTitle = new Label("Vehicle Type Statistics");
cardTitle.getStyleClass().add("card-title");
cardHeader.getChildren().add(cardTitle);
// Table
vehicleTypeTable = new TableView<>(); vehicleTypeTable = new TableView<>();
vehicleTypeTable.setColumnResizePolicy(TableView.CONSTRAINED_RESIZE_POLICY); vehicleTypeTable.setColumnResizePolicy(TableView.CONSTRAINED_RESIZE_POLICY);
vehicleTypeTable.setPrefHeight(200); vehicleTypeTable.setPrefHeight(300);
TableColumn<VehicleTypeRow, String> typeCol = new TableColumn<>("Vehicle Type"); TableColumn<VehicleTypeRow, String> typeCol = new TableColumn<>("Vehicle Type");
typeCol.setCellValueFactory(new PropertyValueFactory<>("vehicleType")); typeCol.setCellValueFactory(new PropertyValueFactory<>("vehicleType"));
typeCol.setPrefWidth(200);
TableColumn<VehicleTypeRow, Integer> countCol = new TableColumn<>("Count"); TableColumn<VehicleTypeRow, Integer> countCol = new TableColumn<>("Count");
countCol.setCellValueFactory(new PropertyValueFactory<>("count")); countCol.setCellValueFactory(new PropertyValueFactory<>("count"));
countCol.setPrefWidth(150);
TableColumn<VehicleTypeRow, String> avgWaitCol = new TableColumn<>("Avg Wait Time"); TableColumn<VehicleTypeRow, String> avgWaitCol = new TableColumn<>("Avg Wait Time");
avgWaitCol.setCellValueFactory(new PropertyValueFactory<>("avgWaitTime")); avgWaitCol.setCellValueFactory(new PropertyValueFactory<>("avgWaitTime"));
avgWaitCol.setPrefWidth(150);
vehicleTypeTable.getColumns().addAll(typeCol, countCol, avgWaitCol); vehicleTypeTable.getColumns().addAll(typeCol, countCol, avgWaitCol);
TitledPane pane = new TitledPane("Vehicle Type Statistics", vehicleTypeTable); card.getChildren().addAll(cardHeader, vehicleTypeTable);
pane.setCollapsible(false); return card;
pane.setFont(Font.font("Arial", FontWeight.BOLD, 16));
return pane;
} }
private TitledPane createIntersectionPanel() { private VBox createIntersectionPanel() {
VBox card = new VBox();
card.getStyleClass().add("card");
// Card Header
HBox cardHeader = new HBox();
cardHeader.getStyleClass().add("card-header");
Label cardTitle = new Label("Intersection Statistics");
cardTitle.getStyleClass().add("card-title");
cardHeader.getChildren().add(cardTitle);
// Table
intersectionTable = new TableView<>(); intersectionTable = new TableView<>();
intersectionTable.setColumnResizePolicy(TableView.CONSTRAINED_RESIZE_POLICY); intersectionTable.setColumnResizePolicy(TableView.CONSTRAINED_RESIZE_POLICY);
intersectionTable.setPrefHeight(250); intersectionTable.setPrefHeight(300);
TableColumn<IntersectionRow, String> idCol = new TableColumn<>("Intersection ID"); TableColumn<IntersectionRow, String> idCol = new TableColumn<>("Intersection ID");
idCol.setCellValueFactory(new PropertyValueFactory<>("intersectionId")); idCol.setCellValueFactory(new PropertyValueFactory<>("intersectionId"));
idCol.setPrefWidth(200);
TableColumn<IntersectionRow, Integer> arrivalsCol = new TableColumn<>("Total Arrivals"); TableColumn<IntersectionRow, Integer> arrivalsCol = new TableColumn<>("Total Arrivals");
arrivalsCol.setCellValueFactory(new PropertyValueFactory<>("arrivals")); arrivalsCol.setCellValueFactory(new PropertyValueFactory<>("arrivals"));
arrivalsCol.setPrefWidth(150);
TableColumn<IntersectionRow, Integer> departuresCol = new TableColumn<>("Total Departures"); TableColumn<IntersectionRow, Integer> departuresCol = new TableColumn<>("Total Departures");
departuresCol.setCellValueFactory(new PropertyValueFactory<>("departures")); departuresCol.setCellValueFactory(new PropertyValueFactory<>("departures"));
departuresCol.setPrefWidth(150);
TableColumn<IntersectionRow, Integer> queueCol = new TableColumn<>("Current Queue"); TableColumn<IntersectionRow, Integer> queueCol = new TableColumn<>("Current Queue");
queueCol.setCellValueFactory(new PropertyValueFactory<>("queueSize")); queueCol.setCellValueFactory(new PropertyValueFactory<>("queueSize"));
queueCol.setPrefWidth(150);
intersectionTable.getColumns().addAll(idCol, arrivalsCol, departuresCol, queueCol); intersectionTable.getColumns().addAll(idCol, arrivalsCol, departuresCol, queueCol);
TitledPane pane = new TitledPane("Intersection Statistics", intersectionTable); card.getChildren().addAll(cardHeader, intersectionTable);
pane.setCollapsible(false); return card;
pane.setFont(Font.font("Arial", FontWeight.BOLD, 16));
return pane;
} }
private HBox createFooter() { private HBox createFooter() {
HBox footer = new HBox(10); HBox footer = new HBox(10);
footer.setPadding(new Insets(10, 20, 10, 20)); footer.getStyleClass().add("footer");
footer.setStyle("-fx-background-color: #34495e;");
footer.setAlignment(Pos.CENTER_LEFT); footer.setAlignment(Pos.CENTER_LEFT);
Label statusLabel = new Label("Status:"); Label statusLabel = new Label("Status:");
statusLabel.setTextFill(Color.WHITE); statusLabel.getStyleClass().add("footer-text");
statusLabel.setFont(Font.font("Arial", FontWeight.BOLD, 12)); statusLabel.setStyle("-fx-font-weight: bold;");
Circle statusIndicator = new Circle(6); Circle statusIndicator = new Circle(6);
statusIndicator.setFill(Color.LIME); statusIndicator.setFill(javafx.scene.paint.Color.LIME);
Label statusText = new Label("Connected and Receiving Data"); Label statusText = new Label("Connected and Receiving Data");
statusText.setTextFill(Color.WHITE); statusText.getStyleClass().add("footer-text");
statusText.setFont(Font.font("Arial", 12));
lblLastUpdate = new Label("Last Update: --:--:--"); lblLastUpdate = new Label("Last Update: --:--:--");
lblLastUpdate.setTextFill(Color.web("#ecf0f1")); lblLastUpdate.getStyleClass().add("footer-text");
lblLastUpdate.setFont(Font.font("Arial", 12));
Region spacer = new Region(); Region spacer = new Region();
HBox.setHgrow(spacer, Priority.ALWAYS); HBox.setHgrow(spacer, Priority.ALWAYS);
@@ -258,20 +311,22 @@ public class DashboardUI extends Application {
return footer; return footer;
} }
private Label createStatLabel(String initialValue) { private Label createStatValueLabel(String initialValue) {
Label label = new Label(initialValue); Label label = new Label(initialValue);
label.setFont(Font.font("Arial", FontWeight.BOLD, 20)); label.getStyleClass().add("stat-value");
label.setTextFill(Color.web("#2980b9"));
return label; return label;
} }
private void addStatRow(GridPane grid, int row, String description, Label valueLabel) { private void addStatRow(GridPane grid, int row, int colGroup, String description, Label valueLabel) {
Label descLabel = new Label(description); VBox container = new VBox(5);
descLabel.setFont(Font.font("Arial", FontWeight.NORMAL, 14)); container.setAlignment(Pos.CENTER_LEFT);
descLabel.setTextFill(Color.web("#34495e"));
grid.add(descLabel, 0, row); Label descLabel = new Label(description);
grid.add(valueLabel, 1, row); descLabel.getStyleClass().add("stat-label");
container.getChildren().addAll(descLabel, valueLabel);
grid.add(container, colGroup, row);
} }
private void startPeriodicUpdates() { private void startPeriodicUpdates() {
@@ -287,8 +342,8 @@ public class DashboardUI extends Application {
lblVehiclesCompleted.setText(String.valueOf(statistics.getTotalVehiclesCompleted())); lblVehiclesCompleted.setText(String.valueOf(statistics.getTotalVehiclesCompleted()));
lblVehiclesInTransit.setText(String.valueOf( lblVehiclesInTransit.setText(String.valueOf(
statistics.getTotalVehiclesGenerated() - statistics.getTotalVehiclesCompleted())); statistics.getTotalVehiclesGenerated() - statistics.getTotalVehiclesCompleted()));
lblAvgSystemTime.setText(String.format("%.2f ms", statistics.getAverageSystemTime())); lblAvgSystemTime.setText(String.format("%.2f s", statistics.getAverageSystemTime() / 1000.0));
lblAvgWaitingTime.setText(String.format("%.2f ms", statistics.getAverageWaitingTime())); lblAvgWaitingTime.setText(String.format("%.2f s", statistics.getAverageWaitingTime() / 1000.0));
lblLastUpdate.setText(String.format("Last Update: %tT", statistics.getLastUpdateTime())); lblLastUpdate.setText(String.format("Last Update: %tT", statistics.getLastUpdateTime()));
// Update vehicle type table // Update vehicle type table
@@ -297,20 +352,18 @@ public class DashboardUI extends Application {
int count = statistics.getVehicleTypeCount(type); int count = statistics.getVehicleTypeCount(type);
double avgWait = statistics.getAverageWaitingTimeByType(type); double avgWait = statistics.getAverageWaitingTimeByType(type);
vehicleTypeTable.getItems().add(new VehicleTypeRow( vehicleTypeTable.getItems().add(new VehicleTypeRow(
type.toString(), count, String.format("%.2f ms", avgWait))); type.toString(), count, String.format("%.2f s", avgWait / 1000.0)));
} }
// Update intersection table // Update intersection table
intersectionTable.getItems().clear(); intersectionTable.getItems().clear();
Map<String, DashboardStatistics.IntersectionStats> intersectionStats = Map<String, DashboardStatistics.IntersectionStats> intersectionStats = statistics.getAllIntersectionStats();
statistics.getAllIntersectionStats();
for (DashboardStatistics.IntersectionStats stats : intersectionStats.values()) { for (DashboardStatistics.IntersectionStats stats : intersectionStats.values()) {
intersectionTable.getItems().add(new IntersectionRow( intersectionTable.getItems().add(new IntersectionRow(
stats.getIntersectionId(), stats.getIntersectionId(),
stats.getTotalArrivals(), stats.getTotalArrivals(),
stats.getTotalDepartures(), stats.getTotalDepartures(),
stats.getCurrentQueueSize() stats.getCurrentQueueSize()));
));
} }
} }
@@ -352,9 +405,17 @@ public class DashboardUI extends Application {
this.avgWaitTime = avgWaitTime; this.avgWaitTime = avgWaitTime;
} }
public String getVehicleType() { return vehicleType; } public String getVehicleType() {
public int getCount() { return count; } return vehicleType;
public String getAvgWaitTime() { return avgWaitTime; } }
public int getCount() {
return count;
}
public String getAvgWaitTime() {
return avgWaitTime;
}
} }
public static class IntersectionRow { public static class IntersectionRow {
@@ -370,9 +431,20 @@ public class DashboardUI extends Application {
this.queueSize = queueSize; this.queueSize = queueSize;
} }
public String getIntersectionId() { return intersectionId; } public String getIntersectionId() {
public int getArrivals() { return arrivals; } return intersectionId;
public int getDepartures() { return departures; } }
public int getQueueSize() { return queueSize; }
public int getArrivals() {
return arrivals;
}
public int getDepartures() {
return departures;
}
public int getQueueSize() {
return queueSize;
}
} }
} }

View File

@@ -0,0 +1,112 @@
package sd.dashboard;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
/**
* Manages the lifecycle of simulation processes (Intersections, Exit Node,
* Coordinator).
* Allows starting and stopping the distributed simulation from within the Java
* application.
*/
public class SimulationProcessManager {
private final List<Process> runningProcesses;
private final String classpath;
public SimulationProcessManager() {
this.runningProcesses = new ArrayList<>();
this.classpath = System.getProperty("java.class.path");
}
/**
* Starts the full simulation: 5 Intersections, 1 Exit Node, and 1 Coordinator.
*
* @throws IOException If a process fails to start.
*/
public void startSimulation() throws IOException {
if (!runningProcesses.isEmpty()) {
stopSimulation();
}
System.out.println("Starting simulation processes...");
// 1. Start Intersections (Cr1 - Cr5)
String[] intersectionIds = { "Cr1", "Cr2", "Cr3", "Cr4", "Cr5" };
for (String id : intersectionIds) {
startProcess("sd.IntersectionProcess", id);
}
// 2. Start Exit Node
startProcess("sd.ExitNodeProcess", null);
// 3. Start Coordinator (Wait a bit for others to initialize)
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
startProcess("sd.coordinator.CoordinatorProcess", null);
System.out.println("All simulation processes started.");
}
/**
* Stops all running simulation processes.
*/
public void stopSimulation() {
System.out.println("Stopping simulation processes...");
for (Process process : runningProcesses) {
if (process.isAlive()) {
process.destroy(); // Try graceful termination first
}
}
// Wait a bit and force kill if necessary
try {
Thread.sleep(500);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
for (Process process : runningProcesses) {
if (process.isAlive()) {
process.destroyForcibly();
}
}
runningProcesses.clear();
System.out.println("All simulation processes stopped.");
}
/**
* Helper to start a single Java process.
*/
private void startProcess(String className, String arg) throws IOException {
String javaBin = System.getProperty("java.home") + File.separator + "bin" + File.separator + "java";
ProcessBuilder builder;
if (arg != null) {
builder = new ProcessBuilder(javaBin, "-cp", classpath, className, arg);
} else {
builder = new ProcessBuilder(javaBin, "-cp", classpath, className);
}
// this is a linux thing - not sure about windows
String logName = className.substring(className.lastIndexOf('.') + 1) + (arg != null ? "-" + arg : "") + ".log";
File logFile = new File("/tmp/" + logName);
builder.redirectOutput(logFile);
builder.redirectError(logFile);
Process process = builder.start();
runningProcesses.add(process);
System.out.println("Started " + className + (arg != null ? " " + arg : ""));
}
public boolean isSimulationRunning() {
return !runningProcesses.isEmpty() && runningProcesses.stream().anyMatch(Process::isAlive);
}
}

View File

@@ -1,628 +0,0 @@
package sd.engine;
import java.util.HashMap;
import java.util.Map;
import java.util.PriorityQueue;
import sd.config.SimulationConfig;
import sd.model.Event;
import sd.model.EventType;
import sd.model.Intersection;
import sd.model.TrafficLight;
import sd.model.TrafficLightState;
import sd.model.Vehicle;
import sd.model.VehicleType;
import sd.util.StatisticsCollector;
import sd.util.VehicleGenerator;
/**
* Core simulation engine using discrete event simulation (DES).
* * This class orchestrates the entire simulation. It maintains a
* {@link PriorityQueue} of {@link Event} objects, representing all
* scheduled future actions. The engine processes events in strict
* chronological order (based on their timestamp).
* * It manages the simulation's state, including:
* - The current simulation time ({@code currentTime}).
* - The collection of all {@link Intersection} objects.
* - The {@link VehicleGenerator} for creating new vehicles.
* - The {@link StatisticsCollector} for tracking metrics.
*/
public class SimulationEngine {
/**
* Holds all simulation parameters loaded from the properties file.
*/
private final SimulationConfig config;
/**
* The core of the discrete event simulation. Events are pulled from this
* queue in order of their timestamp.
*/
private final PriorityQueue<Event> eventQueue;
/**
* A map storing all intersections in the simulation, keyed by their ID (e.g., "Cr1").
*/
private final Map<String, Intersection> intersections;
/**
* Responsible for creating new vehicles according to the configured arrival model.
*/
private final VehicleGenerator vehicleGenerator;
/**
* Collects and calculates statistics throughout the simulation.
*/
private final StatisticsCollector statisticsCollector;
/**
* The current time in the simulation (in virtual seconds).
* This time advances based on the timestamp of the event being processed.
*/
private double currentTime;
/**
* A simple counter to generate unique IDs for vehicles.
*/
private int vehicleCounter;
/**
* Constructs a new SimulationEngine.
*
* @param config The {@link SimulationConfig} object containing all
* simulation parameters.
*/
public SimulationEngine(SimulationConfig config) {
this.config = config;
this.eventQueue = new PriorityQueue<>();
this.intersections = new HashMap<>();
this.vehicleGenerator = new VehicleGenerator(config);
this.statisticsCollector = new StatisticsCollector(config);
this.currentTime = 0.0;
this.vehicleCounter = 0;
}
/**
* Initializes the simulation. This involves:
* 1. Creating all {@link Intersection} and {@link TrafficLight} objects.
* 2. Configuring the routing logic between intersections.
* 3. Scheduling the initial events (first traffic light changes,
* first vehicle generation, and periodic statistics updates).
*/
public void initialize() {
System.out.println("Initializing simulation...");
setupIntersections();
setupRouting();
// Schedule initial events to "bootstrap" the simulation
scheduleTrafficLightEvents();
scheduleNextVehicleGeneration(0.0);
scheduleStatisticsUpdates();
System.out.println("Simulation initialized with " + intersections.size() + " intersections");
}
/**
* Creates all intersections defined in the configuration
* and adds their corresponding traffic lights.
*/
private void setupIntersections() {
String[] intersectionIds = {"Cr1", "Cr2", "Cr3", "Cr4", "Cr5"};
// Note: "North" is commented out, so it won't be created.
String[] directions = {/*"North",*/ "South", "East", "West"};
for (String id : intersectionIds) {
Intersection intersection = new Intersection(id);
// Add traffic lights for each configured direction
for (String direction : directions) {
double greenTime = config.getTrafficLightGreenTime(id, direction);
double redTime = config.getTrafficLightRedTime(id, direction);
TrafficLight light = new TrafficLight(
id + "-" + direction,
direction,
greenTime,
redTime
);
intersection.addTrafficLight(light);
}
intersections.put(id, intersection);
}
}
/**
* Configures how vehicles should be routed between intersections.
* This hardcoded logic defines the "map" of the city.
* * For example, `intersections.get("Cr1").configureRoute("Cr2", "East");` means
* "at intersection Cr1, any vehicle whose *next* destination is Cr2
* should be sent to the 'East' traffic light queue."
*/
private void setupRouting() {
// Cr1 routing
intersections.get("Cr1").configureRoute("Cr2", "East");
intersections.get("Cr1").configureRoute("Cr4", "South");
// Cr2 routing
intersections.get("Cr2").configureRoute("Cr1", "West");
intersections.get("Cr2").configureRoute("Cr3", "East");
intersections.get("Cr2").configureRoute("Cr5", "South");
// Cr3 routing
intersections.get("Cr3").configureRoute("Cr2", "West");
intersections.get("Cr3").configureRoute("S", "South"); // "S" is the exit
// Cr4 routing
//intersections.get("Cr4").configureRoute("Cr1", "North");
intersections.get("Cr4").configureRoute("Cr5", "East");
// Cr5 routing
//intersections.get("Cr5").configureRoute("Cr2", "North");
//intersections.get("Cr5").configureRoute("Cr4", "West");
intersections.get("Cr5").configureRoute("S", "East"); // "S" is the exit
}
/**
* Schedules the initial {@link EventType#TRAFFIC_LIGHT_CHANGE} event
* for every traffic light in the simulation.
* A small random delay is added to "stagger" the lights, preventing
* all of them from changing at the exact same time at t=0.
*/
private void scheduleTrafficLightEvents() {
for (Intersection intersection : intersections.values()) {
for (TrafficLight light : intersection.getTrafficLights()) {
// Start with lights in RED state, schedule first GREEN change
// Stagger the start times slightly to avoid all lights changing at once
double staggerDelay = Math.random() * 1.5;
scheduleTrafficLightChange(light, intersection.getId(), staggerDelay);
}
}
}
/**
* Creates and schedules a new {@link EventType#TRAFFIC_LIGHT_CHANGE} event.
* The event is scheduled to occur at {@code currentTime + delay}.
*
* @param light The {@link TrafficLight} that will change state.
* @param intersectionId The ID of the intersection where the light is located.
* @param delay The time (in seconds) from {@code currentTime} when the change should occur.
*/
private void scheduleTrafficLightChange(TrafficLight light, String intersectionId, double delay) {
double changeTime = currentTime + delay;
Event event = new Event(changeTime, EventType.TRAFFIC_LIGHT_CHANGE, light, intersectionId);
eventQueue.offer(event);
}
/**
* Schedules the next {@link EventType#VEHICLE_GENERATION} event.
* The time of the next arrival is determined by the {@link VehicleGenerator}.
*
* @param baseTime The time from which to calculate the next arrival (usually {@code currentTime}).
*/
private void scheduleNextVehicleGeneration(double baseTime) {
// Get the absolute time for the next arrival.
double nextArrivalTime = vehicleGenerator.getNextArrivalTime(baseTime);
// Only schedule the event if it's within the simulation's total duration.
if (nextArrivalTime < config.getSimulationDuration()) {
Event event = new Event(nextArrivalTime, EventType.VEHICLE_GENERATION, null, null);
eventQueue.offer(event);
}
}
/**
* Schedules all periodic {@link EventType#STATISTICS_UPDATE} events
* for the entire duration of the simulation.
*/
private void scheduleStatisticsUpdates() {
double interval = config.getStatisticsUpdateInterval();
double duration = config.getSimulationDuration();
for (double time = interval; time < duration; time += interval) {
Event event = new Event(time, EventType.STATISTICS_UPDATE, null, null);
eventQueue.offer(event);
}
}
/**
* Runs the main simulation loop.
* The loop continues as long as there are events in the queue and
* the {@code currentTime} is less than the total simulation duration.
* * In each iteration, it:
* 1. Polls the next event from the {@link #eventQueue}.
* 2. Advances {@link #currentTime} to the event's timestamp.
* 3. Calls {@link #processEvent(Event)} to handle the event.
* * After the loop, it prints the final statistics.
*/
public void run() {
System.out.println("Starting simulation...");
double duration = config.getSimulationDuration();
while (!eventQueue.isEmpty() && currentTime < duration) {
// Get the next event in chronological order
Event event = eventQueue.poll();
// Advance simulation time to this event's time
currentTime = event.getTimestamp();
// Process the event
processEvent(event);
}
System.out.println("\nSimulation completed at t=" + String.format("%.2f", currentTime) + "s");
printFinalStatistics();
}
/**
* Main event processing logic.
* Delegates the event to the appropriate handler method based on its {@link EventType}.
*
* @param event The {@link Event} to be processed.
*/
private void processEvent(Event event) {
switch (event.getType()) {
case VEHICLE_GENERATION -> handleVehicleGeneration();
case VEHICLE_ARRIVAL -> handleVehicleArrival(event);
case TRAFFIC_LIGHT_CHANGE -> handleTrafficLightChange(event);
case CROSSING_START -> handleCrossingStart(event);
case CROSSING_END -> handleCrossingEnd(event);
case STATISTICS_UPDATE -> handleStatisticsUpdate();
default -> System.err.println("Unknown event type: " + event.getType());
}
}
/**
* Handles {@link EventType#VEHICLE_GENERATION}.
* 1. Creates a new {@link Vehicle} using the {@link #vehicleGenerator}.
* 2. Records the generation event with the {@link #statisticsCollector}.
* 3. Schedules a {@link EventType#VEHICLE_ARRIVAL} event for the vehicle
* at its first destination intersection.
* 4. Schedules the *next* {@link EventType#VEHICLE_GENERATION} event.
* (Note: This line is commented out in the original, which might be a bug,
* as it implies only one vehicle is ever generated. It should likely be active.)
*/
private void handleVehicleGeneration() {
Vehicle vehicle = vehicleGenerator.generateVehicle("V" + (++vehicleCounter), currentTime);
System.out.printf("[t=%.2f] Vehicle %s generated (type=%s, route=%s)%n",
currentTime, vehicle.getId(), vehicle.getType(), vehicle.getRoute());
// Register with statistics collector
statisticsCollector.recordVehicleGeneration(vehicle, currentTime);
// Schedule arrival at first intersection
String firstIntersection = vehicle.getCurrentDestination();
if (firstIntersection != null && !firstIntersection.equals("S")) {
// Assume minimal travel time to first intersection (e.g., 1-3 seconds)
double arrivalTime = currentTime + 1.0 + Math.random() * 2.0;
Event arrivalEvent = new Event(arrivalTime, EventType.VEHICLE_ARRIVAL, vehicle, firstIntersection);
eventQueue.offer(arrivalEvent);
}
// Schedule next vehicle generation
// This was commented out in the original file.
// For a continuous simulation, it should be enabled:
scheduleNextVehicleGeneration(currentTime);
}
/**
* Handles {@link EventType#VEHICLE_ARRIVAL} at an intersection.
* 1. Records the arrival for statistics.
* 2. Advances the vehicle's internal route planner to its *next* destination.
* 3. If the next destination is the exit ("S") or null,
* the vehicle exits the system via {@link #handleVehicleExit(Vehicle)}.
* 4. Otherwise, the vehicle is placed in the correct queue at the
* current intersection using {@link Intersection#receiveVehicle(Vehicle)}.
* 5. Attempts to process the vehicle immediately if its light is green.
*
* @param event The arrival event, containing the {@link Vehicle} and intersection ID.
*/
private void handleVehicleArrival(Event event) {
Vehicle vehicle = (Vehicle) event.getData();
String intersectionId = event.getLocation();
Intersection intersection = intersections.get(intersectionId);
if (intersection == null) {
System.err.println("Unknown intersection: " + intersectionId);
return;
}
System.out.printf("[t=%.2f] Vehicle %s arrived at %s%n",
currentTime, vehicle.getId(), intersectionId);
// Record arrival time (used to calculate waiting time later)
statisticsCollector.recordVehicleArrival(vehicle, intersectionId, currentTime);
// Advance the vehicle's route to the *next* stop
// (it has now arrived at its *current* destination)
boolean hasNext = vehicle.advanceRoute();
if (!hasNext) {
// This was the last stop
handleVehicleExit(vehicle);
return;
}
String nextDestination = vehicle.getCurrentDestination();
if (nextDestination == null || "S".equals(nextDestination)) {
// Next stop is the exit
handleVehicleExit(vehicle);
return;
}
// Add vehicle to the appropriate traffic light queue based on its next destination
intersection.receiveVehicle(vehicle);
// Try to process the vehicle immediately if its light is already green
tryProcessVehicle(vehicle, intersection);
}
/**
* Checks if a newly arrived vehicle (or a vehicle in a queue
* that just turned green) can start crossing.
*
* @param vehicle The vehicle to process.
* @param intersection The intersection where the vehicle is.
*/
private void tryProcessVehicle(Vehicle vehicle, Intersection intersection) { //FIXME
// Find the direction (and light) this vehicle is queued at
// This logic is a bit flawed: it just finds the *first* non-empty queue
// A better approach would be to get the light from the vehicle's route
String direction = intersection.getTrafficLights().stream()
.filter(tl -> tl.getQueueSize() > 0)
.map(TrafficLight::getDirection)
.findFirst()
.orElse(null);
if (direction != null) {
TrafficLight light = intersection.getTrafficLight(direction);
// If the light is green and it's the correct one...
if (light != null && light.getState() == TrafficLightState.GREEN) {
// ...remove the vehicle from the queue (if it's at the front)
Vehicle v = light.removeVehicle();
if (v != null) {
// ...and schedule its crossing.
scheduleCrossing(v, intersection);
}
}
}
}
/**
* Schedules the crossing for a vehicle that has just been dequeued
* from a green light.
* 1. Calculates and records the vehicle's waiting time.
* 2. Schedules an immediate {@link EventType#CROSSING_START} event.
*
* @param vehicle The {@link Vehicle} that is crossing.
* @param intersection The {@link Intersection} it is crossing.
*/
private void scheduleCrossing(Vehicle vehicle, Intersection intersection) {
// Calculate time spent waiting at the red light
double waitTime = currentTime - statisticsCollector.getArrivalTime(vehicle);
vehicle.addWaitingTime(waitTime);
// Schedule crossing start event *now*
Event crossingStart = new Event(currentTime, EventType.CROSSING_START, vehicle, intersection.getId());
processEvent(crossingStart); // Process immediately
}
/**
* Handles {@link EventType#CROSSING_START}.
* 1. Determines the crossing time based on vehicle type.
* 2. Schedules a {@link EventType#CROSSING_END} event to occur
* at {@code currentTime + crossingTime}.
*
* @param event The crossing start event.
*/
private void handleCrossingStart(Event event) {
Vehicle vehicle = (Vehicle) event.getData();
String intersectionId = event.getLocation();
double crossingTime = getCrossingTime(vehicle.getType());
System.out.printf("[t=%.2f] Vehicle %s started crossing at %s (duration=%.2fs)%n",
currentTime, vehicle.getId(), intersectionId, crossingTime);
// Schedule the *end* of the crossing
double endTime = currentTime + crossingTime;
Event crossingEnd = new Event(endTime, EventType.CROSSING_END, vehicle, intersectionId);
eventQueue.offer(crossingEnd);
}
/**
* Handles {@link EventType#CROSSING_END}.
* 1. Updates intersection and vehicle statistics.
* 2. Checks the vehicle's *next* destination.
* 3. If the next destination is the exit ("S"), call {@link #handleVehicleExit(Vehicle)}.
* 4. Otherwise, schedule a {@link EventType#VEHICLE_ARRIVAL} event at the
* *next* intersection, after some travel time.
*
* @param event The crossing end event.
*/
private void handleCrossingEnd(Event event) {
Vehicle vehicle = (Vehicle) event.getData();
String intersectionId = event.getLocation();
// Update stats
Intersection intersection = intersections.get(intersectionId);
if (intersection != null) {
intersection.incrementVehiclesSent();
}
double crossingTime = getCrossingTime(vehicle.getType());
vehicle.addCrossingTime(crossingTime);
System.out.printf("[t=%.2f] Vehicle %s finished crossing at %s%n",
currentTime, vehicle.getId(), intersectionId);
// Decide what to do next
String nextDest = vehicle.getCurrentDestination();
if (nextDest != null && !nextDest.equals("S")) {
// Route to the *next* intersection
// Assume 5-10 seconds travel time between intersections
double travelTime = 5.0 + Math.random() * 5.0;
double arrivalTime = currentTime + travelTime;
Event arrivalEvent = new Event(arrivalTime, EventType.VEHICLE_ARRIVAL, vehicle, nextDest);
eventQueue.offer(arrivalEvent);
} else {
// Reached the exit
handleVehicleExit(vehicle);
}
}
/**
* Handles a vehicle exiting the simulation.
* Records final statistics for the vehicle.
*
* @param vehicle The {@link Vehicle} that has completed its route.
*/
private void handleVehicleExit(Vehicle vehicle) {
System.out.printf("[t=%.2f] Vehicle %s exited the system (wait=%.2fs, travel=%.2fs)%n",
currentTime, vehicle.getId(),
vehicle.getTotalWaitingTime(),
vehicle.getTotalTravelTime(currentTime));
// Record the exit for final statistics calculation
statisticsCollector.recordVehicleExit(vehicle, currentTime);
}
/**
* Handles {@link EventType#TRAFFIC_LIGHT_CHANGE}.
* 1. Toggles the light's state (RED to GREEN or GREEN to RED).
* 2. If the light just turned GREEN, call {@link #processGreenLight(TrafficLight, Intersection)}
* to process any waiting vehicles.
* 3. Schedules the *next* state change for this light based on its
* green/red time duration.
*
* @param event The light change event.
*/
private void handleTrafficLightChange(Event event) {
TrafficLight light = (TrafficLight) event.getData();
String intersectionId = event.getLocation();
// Toggle state
TrafficLightState newState = (light.getState() == TrafficLightState.RED)
? TrafficLightState.GREEN
: TrafficLightState.RED;
light.changeState(newState);
System.out.printf("[t=%.2f] Traffic light %s changed to %s%n",
currentTime, light.getId(), newState);
// If changed to GREEN, process waiting vehicles
if (newState == TrafficLightState.GREEN) {
Intersection intersection = intersections.get(intersectionId);
if (intersection != null) {
processGreenLight(light, intersection);
}
}
// Schedule the *next* state change for this same light
double nextChangeDelay = (newState == TrafficLightState.GREEN)
? light.getGreenTime()
: light.getRedTime();
scheduleTrafficLightChange(light, intersectionId, nextChangeDelay);
}
/**
* Processes vehicles when a light turns green.
* It loops as long as the light is green and there are vehicles in the queue,
* dequeuing one vehicle at a time and scheduling its crossing.
* * *Note*: This is a simplified model. A real simulation would
* account for the *time* it takes each vehicle to cross, processing
* one vehicle every {@code crossingTime} seconds. This implementation
* processes the entire queue "instantaneously" at the moment
* the light turns green.
*
* @param light The {@link TrafficLight} that just turned green.
* @param intersection The {@link Intersection} where the light is.
*/
private void processGreenLight(TrafficLight light, Intersection intersection) {
// While the light is green and vehicles are waiting...
while (light.getState() == TrafficLightState.GREEN && light.getQueueSize() > 0) {
Vehicle vehicle = light.removeVehicle();
if (vehicle != null) {
// Dequeue one vehicle and schedule its crossing
scheduleCrossing(vehicle, intersection);
}
}
}
/**
* Handles {@link EventType#STATISTICS_UPDATE}.
* Calls the {@link StatisticsCollector} to print the current
* state of the simulation (queue sizes, averages, etc.).
*/
private void handleStatisticsUpdate() {
System.out.printf("\n=== Statistics at t=%.2f ===%n", currentTime);
statisticsCollector.printCurrentStatistics(intersections, currentTime);
System.out.println();
}
/**
* Utility method to get the configured crossing time for a given {@link VehicleType}.
*
* @param type The type of vehicle.
* @return The crossing time in seconds.
*/
private double getCrossingTime(VehicleType type) {
return switch (type) {
case BIKE -> config.getBikeVehicleCrossingTime();
case LIGHT -> config.getLightVehicleCrossingTime();
case HEAVY -> config.getHeavyVehicleCrossingTime();
default -> 2.0;
}; // Default fallback
}
/**
* Prints the final summary of statistics at the end of the simulation.
*/
private void printFinalStatistics() {
System.out.println("\n" + "=".repeat(60));
System.out.println("FINAL SIMULATION STATISTICS");
System.out.println("=".repeat(60));
statisticsCollector.printFinalStatistics(intersections, currentTime);
System.out.println("=".repeat(60));
}
// --- Public Getters ---
/**
* Gets the current simulation time.
* @return The time in virtual seconds.
*/
public double getCurrentTime() {
return currentTime;
}
/**
* Gets a map of all intersections in the simulation.
* Returns a copy to prevent external modification.
* @return A {@link Map} of intersection IDs to {@link Intersection} objects.
*/
public Map<String, Intersection> getIntersections() {
return new HashMap<>(intersections);
}
/**
* Gets the statistics collector instance.
* @return The {@link StatisticsCollector}.
*/
public StatisticsCollector getStatisticsCollector() {
return statisticsCollector;
}
}

View File

@@ -44,14 +44,12 @@ public class TrafficLightThread implements Runnable {
light.changeState(TrafficLightState.GREEN); light.changeState(TrafficLightState.GREEN);
System.out.println("[" + light.getId() + "] State: GREEN"); System.out.println("[" + light.getId() + "] State: GREEN");
processGreenLightQueue(); // Process queue for the duration of the green light
long greenDurationMs = (long) (light.getGreenTime() * 1000);
processGreenLightQueue(greenDurationMs);
if (!running || Thread.currentThread().isInterrupted()) break; if (!running || Thread.currentThread().isInterrupted())
break;
// Wait for green duration
Thread.sleep((long) (light.getGreenTime() * 1000));
if (!running || Thread.currentThread().isInterrupted()) break;
// --- RED Phase --- // --- RED Phase ---
light.changeState(TrafficLightState.RED); light.changeState(TrafficLightState.RED);
@@ -74,22 +72,35 @@ public class TrafficLightThread implements Runnable {
} }
} }
private void processGreenLightQueue() throws InterruptedException { private void processGreenLightQueue(long greenDurationMs) throws InterruptedException {
while (running && !Thread.currentThread().isInterrupted() long startTime = System.currentTimeMillis();
&& light.getState() == TrafficLightState.GREEN
&& light.getQueueSize() > 0) {
while (running && !Thread.currentThread().isInterrupted()
&& light.getState() == TrafficLightState.GREEN) {
// Check if green time has expired
long elapsed = System.currentTimeMillis() - startTime;
if (elapsed >= greenDurationMs) {
break;
}
if (light.getQueueSize() > 0) {
Vehicle vehicle = light.removeVehicle(); Vehicle vehicle = light.removeVehicle();
if (vehicle != null) { if (vehicle != null) {
double crossingTime = getCrossingTimeForVehicle(vehicle); double crossingTime = getCrossingTimeForVehicle(vehicle);
long crossingTimeMs = (long) (crossingTime * 1000);
Thread.sleep((long) (crossingTime * 1000)); Thread.sleep(crossingTimeMs);
vehicle.addCrossingTime(crossingTime); vehicle.addCrossingTime(crossingTime);
process.getIntersection().incrementVehiclesSent(); process.getIntersection().incrementVehiclesSent();
process.sendVehicleToNextDestination(vehicle); process.sendVehicleToNextDestination(vehicle);
} }
} else {
// Queue is empty, wait briefly for new vehicles or until time expires
Thread.sleep(50);
}
} }
} }

View File

@@ -1,131 +0,0 @@
package sd.model;
import java.io.Serializable;
/**
* Represents a single event in the discrete event simulation.
* * An Event is the fundamental unit of action in the simulation. It contains:
* - A {@code timestamp} (when the event should occur).
* - A {@link EventType} (what kind of event it is).
* - Associated {@code data} (e.g., the {@link Vehicle} or {@link TrafficLight} involved).
* - An optional {@code location} (e.g., the ID of the {@link Intersection}).
* * Events are {@link Comparable}, allowing them to be sorted in a
* {@link java.util.PriorityQueue}. The primary sorting key is the
* {@code timestamp}. If timestamps are equal, {@code EventType} is used
* as a tie-breaker to ensure a consistent, deterministic order.
* * Implements {@link Serializable} so events could (in theory) be sent
* across a network in a distributed simulation.
*/
public class Event implements Comparable<Event>, Serializable {
private static final long serialVersionUID = 1L;
/**
* The simulation time (in seconds) when this event is scheduled to occur.
*/
private final double timestamp;
/**
* The type of event (e.g., VEHICLE_ARRIVAL, TRAFFIC_LIGHT_CHANGE).
*/
private final EventType type;
/**
* The data payload associated with this event.
* This could be a {@link Vehicle}, {@link TrafficLight}, or null.
*/
private final Object data;
/**
* The ID of the location where the event occurs (e.g., "Cr1").
* Can be null if the event is not location-specific (like VEHICLE_GENERATION).
*/
private final String location;
/**
* Constructs a new Event.
*
* @param timestamp The simulation time when the event occurs.
* @param type The {@link EventType} of the event.
* @param data The associated data (e.g., a Vehicle object).
* @param location The ID of the location (e.g., an Intersection ID).
*/
public Event(double timestamp, EventType type, Object data, String location) {
this.timestamp = timestamp;
this.type = type;
this.data = data;
this.location = location;
}
/**
* Convenience constructor for an Event without a specific location.
*
* @param timestamp The simulation time when the event occurs.
* @param type The {@link EventType} of the event.
* @param data The associated data (e.g., a Vehicle object).
*/
public Event(double timestamp, EventType type, Object data) {
this(timestamp, type, data, null);
}
/**
* Compares this event to another event for ordering.
* * Events are ordered primarily by {@link #timestamp} (ascending).
* If timestamps are identical, they are ordered by {@link #type} (alphabetical)
* to provide a stable, deterministic tie-breaking mechanism.
*
* @param other The other Event to compare against.
* @return A negative integer if this event comes before {@code other},
* zero if they are "equal" in sorting (though this is rare),
* or a positive integer if this event comes after {@code other}.
*/
@Override
public int compareTo(Event other) {
// Primary sort: timestamp (earlier events come first)
int cmp = Double.compare(this.timestamp, other.timestamp);
if (cmp == 0) {
// Tie-breaker: event type (ensures deterministic order)
return this.type.compareTo(other.type);
}
return cmp;
}
// --- Getters ---
/**
* @return The simulation time when the event occurs.
*/
public double getTimestamp() {
return timestamp;
}
/**
* @return The {@link EventType} of the event.
*/
public EventType getType() {
return type;
}
/**
* @return The data payload (e.g., {@link Vehicle}, {@link TrafficLight}).
* The caller must cast this to the expected type.
*/
public Object getData() {
return data;
}
/**
* @return The location ID (e.g., "Cr1"), or null if not applicable.
*/
public String getLocation() {
return location;
}
/**
* @return A string representation of the event for logging.
*/
@Override
public String toString() {
return String.format("Event{t=%.2f, type=%s, loc=%s}",
timestamp, type, location);
}
}

View File

@@ -1,45 +0,0 @@
package sd.model;
/**
* Enumeration representing all possible event types in the discrete event simulation.
* These types are used by the {@link sd.engine.SimulationEngine} to determine
* how to process a given {@link Event}.
*/
public enum EventType {
/**
* Fired when a {@link Vehicle} arrives at an {@link Intersection}.
* Data: {@link Vehicle}, Location: Intersection ID
*/
VEHICLE_ARRIVAL,
/**
* Fired when a {@link TrafficLight} is scheduled to change its state.
* Data: {@link TrafficLight}, Location: Intersection ID
*/
TRAFFIC_LIGHT_CHANGE,
/**
* Fired when a {@link Vehicle} begins to cross an {@link Intersection}.
* Data: {@link Vehicle}, Location: Intersection ID
*/
CROSSING_START,
/**
* Fired when a {@link Vehicle} finishes crossing an {@link Intersection}.
* Data: {@link Vehicle}, Location: Intersection ID
*/
CROSSING_END,
/**
* Fired when a new {@link Vehicle} should be created and added to the system.
* Data: null, Location: null
*/
VEHICLE_GENERATION,
/**
* Fired periodically to trigger the printing or sending of simulation statistics.
* Data: null, Location: null
*/
STATISTICS_UPDATE
}

View File

@@ -140,6 +140,16 @@ public class Intersection {
} }
} }
/**
* Returns the direction a vehicle should take to reach a given destination.
*
* @param destination The next destination (e.g., "Cr3", "S").
* @return The direction (e.g., "East"), or null if no route is configured.
*/
public String getDirectionForDestination(String destination) {
return routing.get(destination);
}
/** /**
* Returns the traffic light controlling the given direction. * Returns the traffic light controlling the given direction.
* *

View File

@@ -12,7 +12,7 @@ import java.util.List;
* - Its complete, pre-determined {@code route} (a list of intersection IDs). * - Its complete, pre-determined {@code route} (a list of intersection IDs).
* - Its current position in the route ({@code currentRouteIndex}). * - Its current position in the route ({@code currentRouteIndex}).
* - Metrics for total time spent waiting at red lights and time spent crossing. * - Metrics for total time spent waiting at red lights and time spent crossing.
* * This object is passed around the simulation, primarily inside {@link Event} * * This object is passed around the simulation, primarily inside message
* payloads and stored in {@link TrafficLight} queues. * payloads and stored in {@link TrafficLight} queues.
* * Implements {@link Serializable} so it can be sent between processes * * Implements {@link Serializable} so it can be sent between processes
* or nodes (e.g., over a socket in a distributed version of the simulation). * or nodes (e.g., over a socket in a distributed version of the simulation).
@@ -70,7 +70,8 @@ public class Vehicle implements Serializable {
* @param id The unique ID for the vehicle. * @param id The unique ID for the vehicle.
* @param type The {@link VehicleType}. * @param type The {@link VehicleType}.
* @param entryTime The simulation time when the vehicle is created. * @param entryTime The simulation time when the vehicle is created.
* @param route The complete list of destination IDs (e.t., ["Cr1", "Cr2", "S"]). * @param route The complete list of destination IDs (e.t., ["Cr1", "Cr2",
* "S"]).
*/ */
public Vehicle(String id, VehicleType type, double entryTime, List<String> route) { public Vehicle(String id, VehicleType type, double entryTime, List<String> route) {
this.id = id; this.id = id;
@@ -151,7 +152,8 @@ public class Vehicle implements Serializable {
} }
/** /**
* @return The current index pointing to the vehicle's destination in its route list. * @return The current index pointing to the vehicle's destination in its route
* list.
*/ */
public int getCurrentRouteIndex() { public int getCurrentRouteIndex() {
return currentRouteIndex; return currentRouteIndex;
@@ -212,7 +214,6 @@ public class Vehicle implements Serializable {
public String toString() { public String toString() {
return String.format( return String.format(
"Vehicle{id='%s', type=%s, next='%s', route=%s}", "Vehicle{id='%s', type=%s, next='%s', route=%s}",
id, type, getCurrentDestination(), route id, type, getCurrentDestination(), route);
);
} }
} }

View File

@@ -4,7 +4,6 @@ import java.io.Closeable;
import java.io.DataInputStream; import java.io.DataInputStream;
import java.io.DataOutputStream; import java.io.DataOutputStream;
import java.io.IOException; import java.io.IOException;
import java.io.InputStream; import java.io.InputStream;
import java.io.OutputStream; import java.io.OutputStream;
import java.net.ConnectException; import java.net.ConnectException;
@@ -127,7 +126,7 @@ public class SocketConnection implements Closeable {
* @param message The "envelope" (which contains the Vehicle) to be sent. * @param message The "envelope" (which contains the Vehicle) to be sent.
* @throws IOException If writing to the stream fails or socket is not connected. * @throws IOException If writing to the stream fails or socket is not connected.
*/ */
public void sendMessage(MessageProtocol message) throws IOException { public synchronized void sendMessage(MessageProtocol message) throws IOException {
if (socket == null || !socket.isConnected()) { if (socket == null || !socket.isConnected()) {
throw new IOException("Socket is not connected"); throw new IOException("Socket is not connected");
} }

View File

@@ -1,134 +0,0 @@
package sd.serialization;
import sd.model.Message;
import sd.model.MessageType;
import sd.model.Vehicle;
import sd.model.VehicleType;
import java.util.Arrays;
import java.util.List;
/**
* Demonstration of JSON serialization usage in the traffic simulation system.
*
* This class shows practical examples of how to use JSON (Gson) serialization
* for network communication between simulation processes.
*/
public class SerializationExample {
public static void main(String[] args) {
System.out.println("=== JSON Serialization Example ===\n");
// Create a sample vehicle
List<String> route = Arrays.asList("Cr1", "Cr2", "Cr5", "S");
Vehicle vehicle = new Vehicle("V001", VehicleType.LIGHT, 10.5, route);
vehicle.addWaitingTime(2.3);
vehicle.addCrossingTime(1.2);
// Create a message containing the vehicle
Message message = new Message(
MessageType.VEHICLE_TRANSFER,
"Cr1",
"Cr2",
vehicle
);
// ===== JSON Serialization =====
demonstrateJsonSerialization(message);
// ===== Factory Usage =====
demonstrateFactoryUsage(message);
// ===== Performance Test =====
performanceTest(message);
}
private static void demonstrateJsonSerialization(Message message) {
System.out.println("--- JSON Serialization ---");
try {
// Create JSON serializer with pretty printing for readability
MessageSerializer serializer = new JsonMessageSerializer(true);
// Serialize to bytes
byte[] data = serializer.serialize(message);
// Display the JSON
String json = new String(data);
System.out.println("Serialized JSON (" + data.length + " bytes):");
System.out.println(json);
// Deserialize back
Message deserialized = serializer.deserialize(data, Message.class);
System.out.println("\nDeserialized: " + deserialized);
System.out.println("✓ JSON serialization successful\n");
} catch (SerializationException e) {
System.err.println("❌ JSON serialization failed: " + e.getMessage());
}
}
private static void demonstrateFactoryUsage(Message message) {
System.out.println("--- Using SerializerFactory ---");
try {
// Get default serializer (JSON)
MessageSerializer serializer = SerializerFactory.createDefault();
System.out.println("Default serializer: " + serializer.getName());
// Use it
byte[] data = serializer.serialize(message);
Message deserialized = serializer.deserialize(data, Message.class);
System.out.println("Message type: " + deserialized.getType());
System.out.println("From: " + deserialized.getSenderId() +
" → To: " + deserialized.getDestinationId());
System.out.println("✓ Factory usage successful\n");
} catch (SerializationException e) {
System.err.println("❌ Factory usage failed: " + e.getMessage());
}
}
private static void performanceTest(Message message) {
System.out.println("--- Performance Test ---");
int iterations = 1000;
try {
MessageSerializer compactSerializer = new JsonMessageSerializer(false);
MessageSerializer prettySerializer = new JsonMessageSerializer(true);
// Warm up
for (int i = 0; i < 100; i++) {
compactSerializer.serialize(message);
}
// Test compact JSON
long compactStart = System.nanoTime();
byte[] compactData = null;
for (int i = 0; i < iterations; i++) {
compactData = compactSerializer.serialize(message);
}
long compactTime = System.nanoTime() - compactStart;
// Test pretty JSON
byte[] prettyData = prettySerializer.serialize(message);
// Results
System.out.println("Iterations: " + iterations);
System.out.println("\nJSON Compact:");
System.out.println(" Size: " + compactData.length + " bytes");
System.out.println(" Time: " + (compactTime / 1_000_000.0) + " ms total");
System.out.println(" Avg: " + (compactTime / iterations / 1_000.0) + " μs/operation");
System.out.println("\nJSON Pretty-Print:");
System.out.println(" Size: " + prettyData.length + " bytes");
System.out.println(" Size increase: " +
String.format("%.1f%%", ((double)prettyData.length / compactData.length - 1) * 100));
} catch (SerializationException e) {
System.err.println("❌ Performance test failed: " + e.getMessage());
}
}
}

View File

@@ -1,379 +0,0 @@
package sd.util;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import sd.config.SimulationConfig;
import sd.model.Intersection;
import sd.model.Vehicle;
import sd.model.VehicleType;
/**
* Collects, manages, and reports statistics throughout the simulation.
* * This class acts as the central bookkeeper for simulation metrics. It tracks:
* - Overall system statistics (total vehicles, completion time, wait time).
* - Per-vehicle-type statistics (counts, average wait time by type).
* - Per-intersection statistics (arrivals, departures).
* * It also maintains "in-flight" data, such as the arrival time of a
* vehicle at its *current* intersection, which is necessary to
* calculate waiting time when the vehicle later departs.
*/
public class StatisticsCollector {
// --- Vehicle tracking (for in-flight vehicles) ---
/**
* Tracks the simulation time when a vehicle arrives at its *current* intersection.
* This is used later to calculate waiting time (Depart_Time - Arrive_Time).
* Key: Vehicle ID (String)
* Value: Arrival Time (Double)
*/
private final Map<String, Double> vehicleArrivalTimes;
/**
* Tracks the sequence of intersections a vehicle has visited.
* Key: Vehicle ID (String)
* Value: List of Intersection IDs (String)
*/
private final Map<String, List<String>> vehicleIntersectionHistory;
// --- Overall system statistics ---
/** Total number of vehicles created by the {@link VehicleGenerator}. */
private int totalVehiclesGenerated;
/** Total number of vehicles that have reached their final destination ("S"). */
private int totalVehiclesCompleted;
/** The sum of all *completed* vehicles' total travel times. Used for averaging. */
private double totalSystemTime;
/** The sum of all *completed* vehicles' total waiting times. Used for averaging. */
private double totalWaitingTime;
// --- Per-vehicle-type statistics ---
/**
* Tracks the total number of vehicles generated, broken down by type.
* Key: {@link VehicleType}
* Value: Count (Integer)
*/
private final Map<VehicleType, Integer> vehicleTypeCount;
/**
* Tracks the total waiting time, broken down by vehicle type.
* Key: {@link VehicleType}
* Value: Total Wait Time (Double)
*/
private final Map<VehicleType, Double> vehicleTypeWaitTime;
// --- Per-intersection statistics ---
/**
* A map to hold statistics objects for each intersection.
* Key: Intersection ID (String)
* Value: {@link IntersectionStats} object
*/
private final Map<String, IntersectionStats> intersectionStats;
/**
* Constructs a new StatisticsCollector.
* Initializes all maps and counters.
*
* @param config The {@link SimulationConfig} (not currently used, but
* could be for configuration-dependent stats).
*/
public StatisticsCollector(SimulationConfig config) {
this.vehicleArrivalTimes = new HashMap<>();
this.vehicleIntersectionHistory = new HashMap<>();
this.totalVehiclesGenerated = 0;
this.totalVehiclesCompleted = 0;
this.totalSystemTime = 0.0;
this.totalWaitingTime = 0.0;
this.vehicleTypeCount = new HashMap<>();
this.vehicleTypeWaitTime = new HashMap<>();
this.intersectionStats = new HashMap<>();
// Initialize vehicle type counters to 0
for (VehicleType type : VehicleType.values()) {
vehicleTypeCount.put(type, 0);
vehicleTypeWaitTime.put(type, 0.0);
}
}
/**
* Records that a new vehicle has been generated.
* This is called by the {@link sd.engine.SimulationEngine}
* during a {@code VEHICLE_GENERATION} event.
*
* @param vehicle The {@link Vehicle} that was just created.
* @param currentTime The simulation time of the event.
*/
public void recordVehicleGeneration(Vehicle vehicle, double currentTime) {
totalVehiclesGenerated++;
// Track by vehicle type
VehicleType type = vehicle.getType();
vehicleTypeCount.put(type, vehicleTypeCount.get(type) + 1);
// Initialize history tracking for this vehicle
vehicleIntersectionHistory.put(vehicle.getId(), new ArrayList<>());
}
/**
* Records that a vehicle has arrived at an intersection queue.
* This is called by the {@link sd.engine.SimulationEngine}
* during a {@code VEHICLE_ARRIVAL} event.
*
* @param vehicle The {@link Vehicle} that arrived.
* @param intersectionId The ID of the intersection it arrived at.
* @param currentTime The simulation time of the arrival.
*/
public void recordVehicleArrival(Vehicle vehicle, String intersectionId, double currentTime) {
// Store arrival time - this is the "start waiting" time
vehicleArrivalTimes.put(vehicle.getId(), currentTime);
// Track intersection history
List<String> history = vehicleIntersectionHistory.get(vehicle.getId());
if (history != null) {
history.add(intersectionId);
}
// Update per-intersection statistics
getOrCreateIntersectionStats(intersectionId).recordArrival();
}
/**
* Records that a vehicle has completed its route and exited the system.
* This is where final metrics for the vehicle are aggregated.
* This is called by the {@link sd.engine.SimulationEngine}
* when a vehicle reaches destination "S".
*
* @param vehicle The {@link Vehicle} that is exiting.
* @param currentTime The simulation time of the exit.
*/
public void recordVehicleExit(Vehicle vehicle, double currentTime) {
totalVehiclesCompleted++;
// Calculate and aggregate total system time
double systemTime = vehicle.getTotalTravelTime(currentTime);
totalSystemTime += systemTime;
// Aggregate waiting time
double waitTime = vehicle.getTotalWaitingTime();
totalWaitingTime += waitTime;
// Aggregate waiting time by vehicle type
VehicleType type = vehicle.getType();
vehicleTypeWaitTime.put(type, vehicleTypeWaitTime.get(type) + waitTime);
// Clean up tracking maps to save memory
vehicleArrivalTimes.remove(vehicle.getId());
vehicleIntersectionHistory.remove(vehicle.getId());
}
/**
* Gets the time a vehicle arrived at its *current* intersection.
* This is used by the {@link sd.engine.SimulationEngine} to calculate
* wait time just before the vehicle crosses.
*
* @param vehicle The {@link Vehicle} to check.
* @return The arrival time, or 0.0 if not found.
*/
public double getArrivalTime(Vehicle vehicle) {
return vehicleArrivalTimes.getOrDefault(vehicle.getId(), 0.0);
}
/**
* Prints a "snapshot" of the current simulation statistics.
* This is called periodically by the {@link sd.engine.SimulationEngine}
* during a {@code STATISTICS_UPDATE} event.
*
* @param intersections A map of all intersections (to get queue data).
* @param currentTime The current simulation time.
*/
public void printCurrentStatistics(Map<String, Intersection> intersections, double currentTime) {
System.out.printf("--- Statistics at t=%.2f ---%n", currentTime);
System.out.printf("Vehicles: Generated=%d, Completed=%d, In-System=%d%n",
totalVehiclesGenerated,
totalVehiclesCompleted,
totalVehiclesGenerated - totalVehiclesCompleted);
if (totalVehiclesCompleted > 0) {
System.out.printf("Average System Time (so far): %.2fs%n", totalSystemTime / totalVehiclesCompleted);
System.out.printf("Average Waiting Time (so far): %.2fs%n", totalWaitingTime / totalVehiclesCompleted);
}
// Print per-intersection queue sizes
System.out.println("\nIntersection Queues:");
for (Map.Entry<String, Intersection> entry : intersections.entrySet()) {
String id = entry.getKey();
Intersection intersection = entry.getValue();
System.out.printf(" %s: Queue=%d, Received=%d, Sent=%d%n",
id,
intersection.getTotalQueueSize(),
intersection.getTotalVehiclesReceived(),
intersection.getTotalVehiclesSent());
}
}
/**
* Prints the final simulation summary statistics at the end of the run.
*
* @param intersections A map of all intersections.
* @param currentTime The final simulation time.
*/
public void printFinalStatistics(Map<String, Intersection> intersections, double currentTime) {
System.out.println("\n=== SIMULATION SUMMARY ===");
System.out.printf("Duration: %.2f seconds%n", currentTime);
System.out.printf("Total Vehicles Generated: %d%n", totalVehiclesGenerated);
System.out.printf("Total Vehicles Completed: %d%n", totalVehiclesCompleted);
System.out.printf("Vehicles Still in System: %d%n", totalVehiclesGenerated - totalVehiclesCompleted);
// Overall averages
if (totalVehiclesCompleted > 0) {
System.out.printf("%nAVERAGE METRICS (for completed vehicles):%n");
System.out.printf(" System Time: %.2f seconds%n", totalSystemTime / totalVehiclesCompleted);
System.out.printf(" Waiting Time: %.2f seconds%n", totalWaitingTime / totalVehiclesCompleted);
System.out.printf(" Throughput: %.2f vehicles/second%n", totalVehiclesCompleted / currentTime);
}
// Vehicle type breakdown
System.out.println("\nVEHICLE TYPE DISTRIBUTION:");
for (VehicleType type : VehicleType.values()) {
int count = vehicleTypeCount.get(type);
if (count > 0) {
double percentage = (count * 100.0) / totalVehiclesGenerated;
// Calculate avg wait *only* for this type
// This assumes all generated vehicles of this type *completed*
// A more accurate way would be to track completed vehicle types
double avgWait = vehicleTypeWaitTime.get(type) / count;
System.out.printf(" %s: %d (%.1f%%), Avg Wait: %.2fs%n",
type, count, percentage, avgWait);
}
}
// Per-intersection statistics
System.out.println("\nINTERSECTION STATISTICS:");
for (Map.Entry<String, Intersection> entry : intersections.entrySet()) {
String id = entry.getKey();
Intersection intersection = entry.getValue();
System.out.printf(" %s:%n", id);
System.out.printf(" Vehicles Received: %d%n", intersection.getTotalVehiclesReceived());
System.out.printf(" Vehicles Sent: %d%n", intersection.getTotalVehiclesSent());
System.out.printf(" Final Queue Size: %d%n", intersection.getTotalQueueSize());
// Traffic light details
intersection.getTrafficLights().forEach(light -> {
System.out.printf(" Light %s: State=%s, Queue=%d, Processed=%d%n",
light.getDirection(),
light.getState(),
light.getQueueSize(),
light.getTotalVehiclesProcessed());
});
}
// System health indicators
System.out.println("\nSYSTEM HEALTH:");
int totalQueuedVehicles = intersections.values().stream()
.mapToInt(Intersection::getTotalQueueSize)
.sum();
System.out.printf(" Total Queued Vehicles (at end): %d%n", totalQueuedVehicles);
if (totalVehiclesGenerated > 0) {
double completionRate = (totalVehiclesCompleted * 100.0) / totalVehiclesGenerated;
System.out.printf(" Completion Rate: %.1f%%%n", completionRate);
}
}
/**
* Gets or creates the statistics object for a given intersection.
* Uses {@code computeIfAbsent} for efficient, thread-safe-like instantiation.
*
* @param intersectionId The ID of the intersection.
* @return The {@link IntersectionStats} object for that ID.
*/
private IntersectionStats getOrCreateIntersectionStats(String intersectionId) {
// If 'intersectionId' is not in the map, create a new IntersectionStats()
// and put it in the map, then return it.
// Otherwise, just return the one that's already there.
return intersectionStats.computeIfAbsent(intersectionId, k -> new IntersectionStats());
}
/**
* Inner class to track per-intersection statistics.
* This is a simple data holder.
*/
private static class IntersectionStats {
private int totalArrivals;
private int totalDepartures;
public IntersectionStats() {
this.totalArrivals = 0;
this.totalDepartures = 0;
}
public void recordArrival() {
totalArrivals++;
}
public void recordDeparture() {
totalDepartures++;
}
public int getTotalArrivals() {
return totalArrivals;
}
public int getTotalDepartures() {
return totalDepartures;
}
}
// --- Public Getters for Final Statistics ---
/**
* @return Total vehicles generated during the simulation.
*/
public int getTotalVehiclesGenerated() {
return totalVehiclesGenerated;
}
/**
* @return Total vehicles that completed their route.
*/
public int getTotalVehiclesCompleted() {
return totalVehiclesCompleted;
}
/**
* @return The sum of all travel times for *completed* vehicles.
*/
public double getTotalSystemTime() {
return totalSystemTime;
}
/**
* @return The sum of all waiting times for *completed* vehicles.
*/
public double getTotalWaitingTime() {
return totalWaitingTime;
}
/**
* @return The average travel time for *completed* vehicles.
*/
public double getAverageSystemTime() {
return totalVehiclesCompleted > 0 ? totalSystemTime / totalVehiclesCompleted : 0.0;
}
/**
* @return The average waiting time for *completed* vehicles.
*/
public double getAverageWaitingTime() {
return totalVehiclesCompleted > 0 ? totalWaitingTime / totalVehiclesCompleted : 0.0;
}
}

View File

@@ -0,0 +1,142 @@
/* Global Styles */
.root {
-fx-background-color: #f4f7f6;
-fx-font-family: 'Segoe UI', sans-serif;
}
/* Header */
.header {
-fx-background-color: linear-gradient(to right, #2c3e50, #4ca1af);
-fx-padding: 20;
-fx-effect: dropshadow(three-pass-box, rgba(0,0,0,0.2), 10, 0, 0, 5);
}
.header-title {
-fx-font-size: 28px;
-fx-font-weight: bold;
-fx-text-fill: white;
}
.header-subtitle {
-fx-font-size: 16px;
-fx-text-fill: #ecf0f1;
}
/* Buttons */
.button-start {
-fx-background-color: #2ecc71;
-fx-text-fill: white;
-fx-font-weight: bold;
-fx-padding: 10 20;
-fx-background-radius: 5;
-fx-cursor: hand;
-fx-effect: dropshadow(three-pass-box, rgba(0,0,0,0.1), 5, 0, 0, 2);
}
.button-start:hover {
-fx-background-color: #27ae60;
}
.button-start:disabled {
-fx-background-color: #95a5a6;
-fx-opacity: 0.7;
}
.button-stop {
-fx-background-color: #e74c3c;
-fx-text-fill: white;
-fx-font-weight: bold;
-fx-padding: 10 20;
-fx-background-radius: 5;
-fx-cursor: hand;
-fx-effect: dropshadow(three-pass-box, rgba(0,0,0,0.1), 5, 0, 0, 2);
}
.button-stop:hover {
-fx-background-color: #c0392b;
}
.button-stop:disabled {
-fx-background-color: #95a5a6;
-fx-opacity: 0.7;
}
/* Cards / Panels */
.card {
-fx-background-color: white;
-fx-background-radius: 8;
-fx-effect: dropshadow(three-pass-box, rgba(0,0,0,0.05), 10, 0, 0, 2);
-fx-padding: 0;
}
.card-header {
-fx-background-color: #ecf0f1;
-fx-background-radius: 8 8 0 0;
-fx-padding: 10 15;
-fx-border-color: #bdc3c7;
-fx-border-width: 0 0 1 0;
}
.card-title {
-fx-font-size: 16px;
-fx-font-weight: bold;
-fx-text-fill: #2c3e50;
}
.card-content {
-fx-padding: 15;
}
/* Statistics Grid */
.stat-label {
-fx-font-size: 14px;
-fx-text-fill: #7f8c8d;
}
.stat-value {
-fx-font-size: 20px;
-fx-font-weight: bold;
-fx-text-fill: #2980b9;
}
/* Tables */
.table-view {
-fx-background-color: transparent;
-fx-border-color: transparent;
}
.table-view .column-header-background {
-fx-background-color: #ecf0f1;
-fx-border-color: #bdc3c7;
-fx-border-width: 0 0 1 0;
}
.table-view .column-header .label {
-fx-text-fill: #2c3e50;
-fx-font-weight: bold;
}
.table-row-cell {
-fx-background-color: white;
-fx-border-color: transparent;
}
.table-row-cell:odd {
-fx-background-color: #f9f9f9;
}
.table-row-cell:selected {
-fx-background-color: #3498db;
-fx-text-fill: white;
}
/* Footer */
.footer {
-fx-background-color: #34495e;
-fx-padding: 10 20;
}
.footer-text {
-fx-text-fill: #ecf0f1;
-fx-font-size: 12px;
}

View File

@@ -0,0 +1,43 @@
{
"intersections": [
{
"id": "Cr1",
"lights": ["East", "South"],
"routes": {
"Cr2": "East",
"Cr4": "South"
}
},
{
"id": "Cr2",
"lights": ["West", "East", "South"],
"routes": {
"Cr1": "West",
"Cr3": "East",
"Cr5": "South"
}
},
{
"id": "Cr3",
"lights": ["West", "South"],
"routes": {
"Cr2": "West",
"S": "South"
}
},
{
"id": "Cr4",
"lights": ["East"],
"routes": {
"Cr5": "East"
}
},
{
"id": "Cr5",
"lights": ["East"],
"routes": {
"S": "East"
}
}
]
}

View File

@@ -46,54 +46,44 @@ simulation.arrival.fixed.interval=2.0
# === TRAFFIC LIGHT TIMINGS === # === TRAFFIC LIGHT TIMINGS ===
# Format: trafficlight.<intersection>.<direction>.<state>=<seconds> # Format: trafficlight.<intersection>.<direction>.<state>=<seconds>
# Intersection 1 # Intersection 1 (Entry point - balanced)
trafficlight.Cr1.North.green=30.0 trafficlight.Cr1.South.green=20.0
trafficlight.Cr1.North.red=30.0 trafficlight.Cr1.South.red=40.0
trafficlight.Cr1.South.green=30.0 trafficlight.Cr1.East.green=20.0
trafficlight.Cr1.South.red=30.0 trafficlight.Cr1.East.red=40.0
trafficlight.Cr1.East.green=30.0 trafficlight.Cr1.West.green=20.0
trafficlight.Cr1.East.red=30.0 trafficlight.Cr1.West.red=40.0
trafficlight.Cr1.West.green=30.0
trafficlight.Cr1.West.red=30.0
# Intersection 2 # Intersection 2 (Main hub - shorter cycles, favor East-West)
trafficlight.Cr2.North.green=25.0 trafficlight.Cr2.South.green=12.0
trafficlight.Cr2.North.red=35.0 trafficlight.Cr2.South.red=36.0
trafficlight.Cr2.South.green=25.0 trafficlight.Cr2.East.green=18.0
trafficlight.Cr2.South.red=35.0 trafficlight.Cr2.East.red=30.0
trafficlight.Cr2.East.green=35.0 trafficlight.Cr2.West.green=18.0
trafficlight.Cr2.East.red=25.0 trafficlight.Cr2.West.red=30.0
trafficlight.Cr2.West.green=35.0
trafficlight.Cr2.West.red=25.0
# Intersection 3 # Intersection 3 (Path to exit - favor East)
trafficlight.Cr3.North.green=30.0 trafficlight.Cr3.South.green=15.0
trafficlight.Cr3.North.red=30.0
trafficlight.Cr3.South.green=30.0
trafficlight.Cr3.South.red=30.0 trafficlight.Cr3.South.red=30.0
trafficlight.Cr3.East.green=30.0 trafficlight.Cr3.East.green=20.0
trafficlight.Cr3.East.red=30.0 trafficlight.Cr3.East.red=25.0
trafficlight.Cr3.West.green=30.0 trafficlight.Cr3.West.green=15.0
trafficlight.Cr3.West.red=30.0 trafficlight.Cr3.West.red=30.0
# Intersection 4 # Intersection 4 (Favor East toward Cr5)
trafficlight.Cr4.North.green=30.0 trafficlight.Cr4.South.green=15.0
trafficlight.Cr4.North.red=30.0
trafficlight.Cr4.South.green=30.0
trafficlight.Cr4.South.red=30.0 trafficlight.Cr4.South.red=30.0
trafficlight.Cr4.East.green=30.0 trafficlight.Cr4.East.green=20.0
trafficlight.Cr4.East.red=30.0 trafficlight.Cr4.East.red=25.0
trafficlight.Cr4.West.green=30.0 trafficlight.Cr4.West.green=15.0
trafficlight.Cr4.West.red=30.0 trafficlight.Cr4.West.red=30.0
# Intersection 5 # Intersection 5 (Near exit - favor East)
trafficlight.Cr5.North.green=30.0 trafficlight.Cr5.South.green=15.0
trafficlight.Cr5.North.red=30.0
trafficlight.Cr5.South.green=30.0
trafficlight.Cr5.South.red=30.0 trafficlight.Cr5.South.red=30.0
trafficlight.Cr5.East.green=30.0 trafficlight.Cr5.East.green=22.0
trafficlight.Cr5.East.red=30.0 trafficlight.Cr5.East.red=23.0
trafficlight.Cr5.West.green=30.0 trafficlight.Cr5.West.green=15.0
trafficlight.Cr5.West.red=30.0 trafficlight.Cr5.West.red=30.0
# === VEHICLE CONFIGURATION === # === VEHICLE CONFIGURATION ===
@@ -103,11 +93,19 @@ vehicle.probability.light=0.6
vehicle.probability.heavy=0.2 vehicle.probability.heavy=0.2
# Average crossing times (in seconds) # Average crossing times (in seconds)
vehicle.crossing.time.bike=1.5 vehicle.crossing.time.bike=1.0
vehicle.crossing.time.light=2.0 vehicle.crossing.time.light=2.0
vehicle.crossing.time.heavy=4.0 vehicle.crossing.time.heavy=4.0
# Travel times between intersections (in seconds)
# Base time for light vehicles (cars)
vehicle.travel.time.base=8.0
# Bike travel time = 0.5 × car travel time
vehicle.travel.time.bike.multiplier=0.5
# Heavy vehicle travel time = 4 × bike travel time
vehicle.travel.time.heavy.multiplier=2.0
# === STATISTICS === # === STATISTICS ===
# Interval between dashboard updates (seconds) # Interval between dashboard updates (seconds)
statistics.update.interval=10.0 statistics.update.interval=1.0

View File

@@ -6,15 +6,11 @@ import static org.junit.jupiter.api.Assertions.assertTrue;
import org.junit.jupiter.api.Test; import org.junit.jupiter.api.Test;
import sd.config.SimulationConfig; import sd.config.SimulationConfig;
import sd.engine.SimulationEngine;
import sd.model.Event;
import sd.model.EventType;
import sd.model.Intersection; import sd.model.Intersection;
import sd.model.TrafficLight; import sd.model.TrafficLight;
import sd.model.TrafficLightState; import sd.model.TrafficLightState;
import sd.model.Vehicle; import sd.model.Vehicle;
import sd.model.VehicleType; import sd.model.VehicleType;
import sd.util.StatisticsCollector;
import sd.util.VehicleGenerator; import sd.util.VehicleGenerator;
/** /**
@@ -29,7 +25,7 @@ class SimulationTest {
assertEquals(60.0, config.getSimulationDuration()); assertEquals(60.0, config.getSimulationDuration());
assertEquals("POISSON", config.getArrivalModel()); assertEquals("POISSON", config.getArrivalModel());
assertEquals(0.5, config.getArrivalRate()); assertEquals(0.5, config.getArrivalRate());
assertEquals(10.0, config.getStatisticsUpdateInterval()); assertEquals(1.0, config.getStatisticsUpdateInterval());
} }
@Test @Test
@@ -46,16 +42,6 @@ class SimulationTest {
assertTrue(!vehicle.getRoute().isEmpty()); assertTrue(!vehicle.getRoute().isEmpty());
} }
@Test
void testEventOrdering() {
Event e1 = new Event(5.0, EventType.VEHICLE_ARRIVAL, null, "Cr1");
Event e2 = new Event(3.0, EventType.VEHICLE_ARRIVAL, null, "Cr2");
Event e3 = new Event(7.0, EventType.TRAFFIC_LIGHT_CHANGE, null, "Cr1");
assertTrue(e2.compareTo(e1) < 0); // e2 should come before e1
assertTrue(e1.compareTo(e3) < 0); // e1 should come before e3
}
@Test @Test
void testIntersectionVehicleQueue() { void testIntersectionVehicleQueue() {
Intersection intersection = new Intersection("TestCr"); Intersection intersection = new Intersection("TestCr");
@@ -90,36 +76,7 @@ class SimulationTest {
assertEquals(TrafficLightState.RED, light.getState()); assertEquals(TrafficLightState.RED, light.getState());
} }
@Test // Removed testSimulationEngineInitialization as SimulationEngine has been
void testSimulationEngineInitialization() throws IOException { // removed.
SimulationConfig config = new SimulationConfig("src/main/resources/simulation.properties");
SimulationEngine engine = new SimulationEngine(config);
engine.initialize();
assertNotNull(engine.getIntersections());
assertEquals(5, engine.getIntersections().size());
// Check that intersections have traffic lights
for (Intersection intersection : engine.getIntersections().values()) {
assertEquals(3, intersection.getTrafficLights().size()); // North, South, East, West
}
}
@Test
void testStatisticsCollector() throws IOException {
SimulationConfig config = new SimulationConfig("src/main/resources/simulation.properties");
StatisticsCollector collector = new StatisticsCollector(config);
Vehicle v1 = new Vehicle("V1", VehicleType.LIGHT, 0.0,
java.util.Arrays.asList("Cr1", "Cr2", "S"));
collector.recordVehicleGeneration(v1, 0.0);
assertEquals(1, collector.getTotalVehiclesGenerated());
collector.recordVehicleArrival(v1, "Cr1", 1.0);
collector.recordVehicleExit(v1, 10.0);
assertEquals(1, collector.getTotalVehiclesCompleted());
}
} }

View File

@@ -133,8 +133,8 @@ public class TrafficLightCoordinationTest {
List<TrafficLight> lights = intersectionProcess.getIntersection().getTrafficLights(); List<TrafficLight> lights = intersectionProcess.getIntersection().getTrafficLights();
boolean[] hasBeenGreen = new boolean[lights.size()]; boolean[] hasBeenGreen = new boolean[lights.size()];
// Monitor for 15 seconds (enough time for all lights to cycle) // Monitor for 60 seconds (enough time for all lights to cycle: 18+18+12 = 48s)
long endTime = System.currentTimeMillis() + 15000; long endTime = System.currentTimeMillis() + 60000;
while (System.currentTimeMillis() < endTime) { while (System.currentTimeMillis() < endTime) {
for (int i = 0; i < lights.size(); i++) { for (int i = 0; i < lights.size(); i++) {
@@ -152,7 +152,8 @@ public class TrafficLightCoordinationTest {
for (int i = 0; i < lights.size(); i++) { for (int i = 0; i < lights.size(); i++) {
String status = hasBeenGreen[i] ? "✓ YES" : "✗ NO"; String status = hasBeenGreen[i] ? "✓ YES" : "✗ NO";
System.out.println(lights.get(i).getDirection() + " got GREEN time: " + status); System.out.println(lights.get(i).getDirection() + " got GREEN time: " + status);
if (hasBeenGreen[i]) greenCount++; if (hasBeenGreen[i])
greenCount++;
} }
assertTrue(greenCount > 0, "At least one light should have been GREEN during the test"); assertTrue(greenCount > 0, "At least one light should have been GREEN during the test");

1055
main/testing.txt Normal file

File diff suppressed because it is too large Load Diff