1 Commits

10 changed files with 482 additions and 1148 deletions

View File

@@ -1,94 +0,0 @@
package sd;
import java.io.IOException;
import sd.config.SimulationConfig;
import sd.engine.SimulationEngine;
/**
* Main entry point for the traffic simulation.
* * This class is responsible for loading the simulation configuration,
* initializing the {@link SimulationEngine}, and starting the simulation run.
* It also prints initial configuration details and final execution time.
*/
public class Entry {
/**
* The default path to the simulation configuration file.
* This is used if no command-line arguments are provided.
*/
private static final String DEFAULT_CONFIG_FILE = "src/main/resources/simulation.properties";
/**
* The main method to start the simulation.
* * @param args Command-line arguments. If provided, args[0] is expected
* to be the path to a custom configuration file.
*/
public static void main(String[] args) {
System.out.println("=".repeat(60));
System.out.println("TRAFFIC SIMULATION - DISCRETE EVENT SIMULATOR");
System.out.println("=".repeat(60));
try {
// 1. Load configuration
String configFile = args.length > 0 ? args[0] : DEFAULT_CONFIG_FILE;
System.out.println("Loading configuration from: " + configFile);
SimulationConfig config = new SimulationConfig(configFile);
// 2. Display configuration
displayConfiguration(config);
// 3. Create and initialize simulation engine
SimulationEngine engine = new SimulationEngine(config);
engine.initialize();
System.out.println("\n" + "=".repeat(60));
// 4. Run simulation
long startTime = System.currentTimeMillis();
engine.run();
long endTime = System.currentTimeMillis();
// 5. Display execution time
double executionTime = (endTime - startTime) / 1000.0;
System.out.println("\nExecution time: " + String.format("%.2f", executionTime) + " seconds");
System.out.println("=".repeat(60));
} catch (IOException e) {
System.err.println("Error loading configuration: " + e.getMessage());
e.printStackTrace();
} catch (Exception e) {
System.err.println("Error during simulation: " + e.getMessage());
e.printStackTrace();
}
}
/**
* Displays the main configuration parameters to the console.
* This provides a summary of the simulation settings before it starts.
*
* @param config The {@link SimulationConfig} object containing the loaded settings.
*/
private static void displayConfiguration(SimulationConfig config) {
System.out.println("\nSIMULATION CONFIGURATION:");
System.out.println(" Duration: " + config.getSimulationDuration() + " seconds");
System.out.println(" Arrival Model: " + config.getArrivalModel());
if ("POISSON".equalsIgnoreCase(config.getArrivalModel())) {
System.out.println(" Arrival Rate (λ): " + config.getArrivalRate() + " vehicles/second");
} else {
System.out.println(" Fixed Interval: " + config.getFixedArrivalInterval() + " seconds");
}
System.out.println(" Statistics Update Interval: " + config.getStatisticsUpdateInterval() + " seconds");
System.out.println("\nVEHICLE TYPES:");
System.out.println(" Bike: " + (config.getBikeVehicleProbability() * 100) + "% " +
"(crossing time: " + config.getBikeVehicleCrossingTime() + "s)");
System.out.println(" Light: " + (config.getLightVehicleProbability() * 100) + "% " +
"(crossing time: " + config.getLightVehicleCrossingTime() + "s)");
System.out.println(" Heavy: " + (config.getHeavyVehicleProbability() * 100) + "% " +
"(crossing time: " + config.getHeavyVehicleCrossingTime() + "s)");
}
}

View File

@@ -18,12 +18,13 @@ import sd.model.Vehicle;
import sd.model.VehicleType;
import sd.protocol.MessageProtocol;
import sd.protocol.SocketConnection;
import sd.serialization.SerializationException;
/**
* Processo responsável pelo nó de saída do sistema de simulação de tráfego distribuído.
* Processo responsável pelo nó de saída do sistema de simulação de tráfego
* distribuído.
*
* Este processo representa o ponto final ("S") onde os veículos completam as suas rotas.
* Este processo representa o ponto final ("S") onde os veículos completam as
* suas rotas.
* As suas principais responsabilidades são:
* - Receber veículos que terminam a sua rota vindos das interseções
* - Calcular e agregar estatísticas finais dos veículos
@@ -35,34 +36,37 @@ public class ExitNodeProcess {
private final SimulationConfig config;
private ServerSocket serverSocket;
private final ExecutorService connectionHandlerPool;
/** Flag para controlar a execução do processo (volatile para visibilidade entre threads) */
/**
* Flag para controlar a execução do processo (volatile para visibilidade entre
* threads)
*/
private volatile boolean running;
/** Simulation start time (milliseconds) to calculate relative times */
private long simulationStartMillis;
/** Counter de veículos que completaram a rota */
private int totalVehiclesReceived;
/** Soma dos tempos no sistema de todos os veículos */
private double totalSystemTime;
/** Soma dos tempos de espera de todos os veículos */
private double totalWaitingTime;
/** Soma dos tempos de travessia de todos os veículos */
private double totalCrossingTime;
/** Contagem de veículos por tipo */
private final Map<VehicleType, Integer> vehicleTypeCount;
/** Tempo total de espera acumulado por tipo de veículo */
private final Map<VehicleType, Double> vehicleTypeWaitTime;
/** Socket para comunicação com o dashboard */
private SocketClient dashboardClient;
/**
* Método para iniciar o processo
*
@@ -73,20 +77,20 @@ public class ExitNodeProcess {
System.out.println("=".repeat(60));
System.out.println("EXIT NODE PROCESS");
System.out.println("=".repeat(60));
try {
String configFile = args.length > 0 ? args[0] : "src/main/resources/simulation.properties";
System.out.println("Loading configuration from: " + configFile);
SimulationConfig config = new SimulationConfig(configFile);
ExitNodeProcess exitNode = new ExitNodeProcess(config);
System.out.println("\n" + "=".repeat(60));
exitNode.initialize();
System.out.println("\n" + "=".repeat(60));
exitNode.start();
} catch (IOException e) {
System.err.println("Failed to start exit node: " + e.getMessage());
System.exit(1);
@@ -95,38 +99,40 @@ public class ExitNodeProcess {
System.exit(1);
}
}
/**
* Constrói um novo processo de nó de saída.
*
* Inicializa todas as estruturas de dados necessárias para recolher estatísticas
* Inicializa todas as estruturas de dados necessárias para recolher
* estatísticas
* e configura o pool de threads para processar as ligações concorrentes.
*
* @param config Configuração da simulação contendo portas e endereços dos serviços
* @param config Configuração da simulação contendo portas e endereços dos
* serviços
*/
public ExitNodeProcess(SimulationConfig config) {
this.config = config;
this.connectionHandlerPool = Executors.newCachedThreadPool();
this.running = false;
this.totalVehiclesReceived = 0;
this.totalSystemTime = 0.0;
this.totalWaitingTime = 0.0;
this.totalCrossingTime = 0.0;
this.vehicleTypeCount = new HashMap<>();
this.vehicleTypeWaitTime = new HashMap<>();
// Inicializa os counters para cada tipo de veículo
for (VehicleType type : VehicleType.values()) {
vehicleTypeCount.put(type, 0);
vehicleTypeWaitTime.put(type, 0.0);
}
System.out.println("Exit node initialized");
System.out.println(" - Exit port: " + config.getExitPort());
System.out.println(" - Dashboard: " + config.getDashboardHost() + ":" + config.getDashboardPort());
}
/**
* Inicializa o processo de ligação ao dashboard.
*
@@ -136,21 +142,21 @@ public class ExitNodeProcess {
*/
public void initialize() {
System.out.println("Connecting to dashboard...");
try {
String host = config.getDashboardHost();
int port = config.getDashboardPort();
dashboardClient = new SocketClient("Dashboard", host, port);
dashboardClient.connect();
System.out.println("Successfully connected to dashboard");
} catch (IOException e) {
System.err.println("WARNING: Failed to connect to dashboard: " + e.getMessage());
System.err.println("Exit node will continue without dashboard connection");
}
}
/**
* Inicia o socket e começa a aceitar ligações.
*
@@ -159,17 +165,18 @@ public class ExitNodeProcess {
* 2. Aguarda pelas ligações das interseções
* 3. Delega cada ligação a uma thread da pool para processamento assíncrono
*
* @throws IOException Se o socket não puder ser criado ou houver erro na aceitação
* @throws IOException Se o socket não puder ser criado ou houver erro na
* aceitação
*/
public void start() throws IOException {
int port = config.getExitPort();
serverSocket = new ServerSocket(port);
running = true;
simulationStartMillis = System.currentTimeMillis();
System.out.println("Exit node started on port " + port);
System.out.println("Waiting for vehicles...\\n");
while (running) {
try {
Socket clientSocket = serverSocket.accept();
@@ -181,28 +188,29 @@ public class ExitNodeProcess {
}
}
}
/**
* Processa uma ligação recebida de uma interseção.
*
* Mantém a ligação aberta e processa continuamente mensagens do tipo
* VEHICLE_TRANSFER. Cada mensagem representa um veículo que chegou ao nó de saída.
* VEHICLE_TRANSFER. Cada mensagem representa um veículo que chegou ao nó de
* saída.
*
* @param clientSocket Socket da ligação estabelecida com a interseção
*/
private void handleIncomingConnection(Socket clientSocket) {
String clientAddress = clientSocket.getInetAddress().getHostAddress();
System.out.println("New connection accepted from " + clientAddress);
try (SocketConnection connection = new SocketConnection(clientSocket)) {
while (running && connection.isConnected()) {
try {
System.out.println("[Exit] Waiting for message from " + clientAddress);
MessageProtocol message = connection.receiveMessage();
System.out.println("[Exit] Received message type: " + message.getType() +
" from " + message.getSourceNode());
System.out.println("[Exit] Received message type: " + message.getType() +
" from " + message.getSourceNode());
if (message.getType() == MessageType.SIMULATION_START) {
// Coordinator sends start time - use it instead of our local start
simulationStartMillis = ((Number) message.getPayload()).longValue();
@@ -210,20 +218,20 @@ public class ExitNodeProcess {
} else if (message.getType() == MessageType.VEHICLE_TRANSFER) {
Object payload = message.getPayload();
System.out.println("[Exit] Payload type: " + payload.getClass().getName());
// Handle Gson LinkedHashMap
Vehicle vehicle;
if (payload instanceof com.google.gson.internal.LinkedTreeMap ||
payload instanceof java.util.LinkedHashMap) {
payload instanceof java.util.LinkedHashMap) {
String json = new com.google.gson.Gson().toJson(payload);
vehicle = new com.google.gson.Gson().fromJson(json, Vehicle.class);
} else {
vehicle = (Vehicle) payload;
}
processExitingVehicle(vehicle);
}
} catch (ClassNotFoundException e) {
System.err.println("[Exit] Unknown message type: " + e.getMessage());
e.printStackTrace();
@@ -232,9 +240,9 @@ public class ExitNodeProcess {
e.printStackTrace();
}
}
System.out.println("[Exit] Connection closed from " + clientAddress);
} catch (IOException e) {
if (running) {
System.err.println("[Exit] Connection error from " + clientAddress + ": " + e.getMessage());
@@ -242,7 +250,7 @@ public class ExitNodeProcess {
}
}
}
/**
* Processa um veículo que chegou ao nó de saída.
*
@@ -256,42 +264,30 @@ public class ExitNodeProcess {
*/
private synchronized void processExitingVehicle(Vehicle vehicle) {
totalVehiclesReceived++;
// Calculate relative simulation time (seconds since simulation start)
double currentSimTime = (System.currentTimeMillis() - simulationStartMillis) / 1000.0;
// System time = time vehicle spent in system (current time - entry time)
double systemTime = currentSimTime - vehicle.getEntryTime();
double waitTime = vehicle.getTotalWaitingTime();
double crossingTime = vehicle.getTotalCrossingTime();
// Store times in seconds, will be converted to ms when sending to dashboard
totalSystemTime += systemTime;
totalWaitingTime += waitTime;
totalCrossingTime += crossingTime;
VehicleType type = vehicle.getType();
vehicleTypeCount.put(type, vehicleTypeCount.get(type) + 1);
vehicleTypeWaitTime.put(type, vehicleTypeWaitTime.get(type) + waitTime);
System.out.printf("[Exit] Vehicle %s completed (type=%s, system_time=%.2fs, wait=%.2fs, crossing=%.2fs)%n",
vehicle.getId(), vehicle.getType(), systemTime, waitTime, crossingTime);
vehicle.getId(), vehicle.getType(), systemTime, waitTime, crossingTime);
// Send stats after every vehicle to ensure dashboard updates quickly
sendStatsToDashboard();
}
/**
* Obtém o tempo atual da simulação em segundos.
*
* @return Tempo atual em segundos desde "epoch"
*
* "Epoch" é um ponto de referência temporal Unix (1 de janeiro de 1970).
* Este método retorna os segundos decorridos desde esse momento.
*/
private double getCurrentTime() {
return System.currentTimeMillis() / 1000.0;
}
/**
* Envia as estatísticas para o dashboard.
*
@@ -305,65 +301,69 @@ public class ExitNodeProcess {
if (dashboardClient == null || !dashboardClient.isConnected()) {
return;
}
try {
// Create stats payload
StatsUpdatePayload payload = new StatsUpdatePayload();
// Set global stats - convert seconds to milliseconds
payload.setTotalVehiclesCompleted(totalVehiclesReceived);
payload.setTotalSystemTime((long)(totalSystemTime * 1000.0)); // s -> ms
payload.setTotalWaitingTime((long)(totalWaitingTime * 1000.0)); // s -> ms
payload.setTotalSystemTime((long) (totalSystemTime * 1000.0)); // s -> ms
payload.setTotalWaitingTime((long) (totalWaitingTime * 1000.0)); // s -> ms
// Set intersection-like stats so it shows up correctly in the dashboard table
payload.setIntersectionArrivals(totalVehiclesReceived);
payload.setIntersectionDepartures(totalVehiclesReceived);
payload.setIntersectionQueueSize(0);
// Set vehicle type stats
Map<VehicleType, Integer> typeCounts = new HashMap<>();
Map<VehicleType, Long> typeWaitTimes = new HashMap<>();
for (VehicleType type : VehicleType.values()) {
typeCounts.put(type, vehicleTypeCount.get(type));
typeWaitTimes.put(type, (long)(vehicleTypeWaitTime.get(type) * 1000.0)); // s -> ms
typeWaitTimes.put(type, (long) (vehicleTypeWaitTime.get(type) * 1000.0)); // s -> ms
}
payload.setVehicleTypeCounts(typeCounts);
payload.setVehicleTypeWaitTimes(typeWaitTimes);
// Send message
Message message = new Message(
MessageType.STATS_UPDATE,
"ExitNode",
"Dashboard",
payload
);
MessageType.STATS_UPDATE,
"ExitNode",
"Dashboard",
payload);
dashboardClient.send(message);
double avgWait = totalVehiclesReceived > 0 ? totalWaitingTime / totalVehiclesReceived : 0.0;
System.out.printf("[Exit] Sent stats to dashboard (total=%d, avg_wait=%.2fs)%n",
totalVehiclesReceived, avgWait);
totalVehiclesReceived, avgWait);
} catch (Exception e) {
System.err.println("[Exit] Failed to send stats to dashboard: " + e.getMessage());
}
}
/**
* Termina o processo
*
* Executa a seguinte sequência:
* Imprime as estatísticas finais no terminal;
* Envia a última atualização de estatísticas ao dashboard;
* Fecha o socket;
* Aguarda pela finalização das threads;
* Fecha a ligação com o dashboard;
* Imprime as estatísticas finais no terminal;
* Envia a última atualização de estatísticas ao dashboard;
* Fecha o socket;
* Aguarda pela finalização das threads;
* Fecha a ligação com o dashboard;
*/
public void shutdown() {
System.out.println("\n[Exit] Shutting down...");
running = false;
printFinalStatistics();
sendStatsToDashboard();
try {
if (serverSocket != null && !serverSocket.isClosed()) {
serverSocket.close();
@@ -371,7 +371,7 @@ public class ExitNodeProcess {
} catch (IOException e) {
System.err.println("Error closing server socket: " + e.getMessage());
}
connectionHandlerPool.shutdown();
try {
if (!connectionHandlerPool.awaitTermination(5, TimeUnit.SECONDS)) {
@@ -380,15 +380,15 @@ public class ExitNodeProcess {
} catch (InterruptedException e) {
connectionHandlerPool.shutdownNow();
}
if (dashboardClient != null) {
dashboardClient.close();
}
System.out.println("[Exit] Shutdown complete.");
System.out.println("=".repeat(60));
}
/**
* Imprime as estatísticas finais detalhadas no terminal
*
@@ -403,14 +403,14 @@ public class ExitNodeProcess {
private void printFinalStatistics() {
System.out.println("\n=== EXIT NODE STATISTICS ===");
System.out.printf("Total Vehicles Completed: %d%n", totalVehiclesReceived);
if (totalVehiclesReceived > 0) {
System.out.printf("%nAVERAGE METRICS:%n");
System.out.printf(" System Time: %.2f seconds%n", totalSystemTime / totalVehiclesReceived);
System.out.printf(" Waiting Time: %.2f seconds%n", totalWaitingTime / totalVehiclesReceived);
System.out.printf(" Crossing Time: %.2f seconds%n", totalCrossingTime / totalVehiclesReceived);
}
System.out.println("\nVEHICLE TYPE DISTRIBUTION:");
for (VehicleType type : VehicleType.values()) {
int count = vehicleTypeCount.get(type);
@@ -418,9 +418,9 @@ public class ExitNodeProcess {
double percentage = (count * 100.0) / totalVehiclesReceived;
double avgWait = vehicleTypeWaitTime.get(type) / count;
System.out.printf(" %s: %d (%.1f%%), Avg Wait: %.2fs%n",
type, count, percentage, avgWait);
type, count, percentage, avgWait);
}
}
}
}

View File

@@ -4,6 +4,7 @@ import java.io.IOException;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
@@ -64,7 +65,6 @@ public class IntersectionProcess {
private volatile String currentGreenDirection;
private SocketClient dashboardClient;
private long simulationStartMillis;
private volatile int totalArrivals = 0;
private volatile int totalDepartures = 0;
private long lastStatsUpdateTime;
@@ -140,19 +140,19 @@ public class IntersectionProcess {
try {
String dashboardHost = config.getDashboardHost();
int dashboardPort = config.getDashboardPort();
System.out.println("[" + intersectionId + "] Connecting to dashboard at " +
dashboardHost + ":" + dashboardPort + "...");
System.out.println("[" + intersectionId + "] Connecting to dashboard at " +
dashboardHost + ":" + dashboardPort + "...");
dashboardClient = new SocketClient(intersectionId, dashboardHost, dashboardPort);
dashboardClient.connect();
System.out.println("[" + intersectionId + "] Connected to dashboard.");
lastStatsUpdateTime = System.currentTimeMillis();
} catch (IOException e) {
System.err.println("[" + intersectionId + "] Failed to connect to dashboard: " +
e.getMessage());
System.err.println("[" + intersectionId + "] Failed to connect to dashboard: " +
e.getMessage());
System.err.println("[" + intersectionId + "] Will continue without dashboard reporting.");
dashboardClient = null;
}
@@ -167,23 +167,12 @@ public class IntersectionProcess {
private void createTrafficLights() {
System.out.println("\n[" + intersectionId + "] Creating traffic lights...");
String[] directions = new String[0];
switch (intersectionId) {
case "Cr1":
directions = new String[] { "East", "South" };
break;
case "Cr2":
directions = new String[] { "West", "East", "South" };
break;
case "Cr3":
directions = new String[] { "West", "South" };
break;
case "Cr4":
directions = new String[] { "East" };
break;
case "Cr5":
directions = new String[] { "East" };
break;
SimulationConfig.IntersectionConfig intersectionConfig = getIntersectionConfig();
List<String> directions = intersectionConfig.getLights();
if (directions == null || directions.isEmpty()) {
System.err.println(" Warning: No traffic lights configured for " + intersectionId);
return;
}
for (String direction : directions) {
@@ -202,36 +191,31 @@ public class IntersectionProcess {
}
}
private SimulationConfig.IntersectionConfig getIntersectionConfig() {
if (config.getNetworkConfig() == null || config.getNetworkConfig().getIntersections() == null) {
throw new RuntimeException("Network configuration not loaded or empty.");
}
return config.getNetworkConfig().getIntersections().stream()
.filter(i -> i.getId().equals(intersectionId))
.findFirst()
.orElseThrow(() -> new RuntimeException("Intersection config not found for " + intersectionId));
}
private void configureRouting() {
System.out.println("\n[" + intersectionId + "] Configuring routing...");
switch (intersectionId) {
case "Cr1":
intersection.configureRoute("Cr2", "East");
intersection.configureRoute("Cr4", "South");
break;
SimulationConfig.IntersectionConfig intersectionConfig = getIntersectionConfig();
Map<String, String> routes = intersectionConfig.getRoutes();
case "Cr2":
intersection.configureRoute("Cr1", "West");
intersection.configureRoute("Cr3", "East");
intersection.configureRoute("Cr5", "South");
break;
case "Cr3":
intersection.configureRoute("Cr2", "West");
intersection.configureRoute("S", "South");
break;
case "Cr4":
intersection.configureRoute("Cr5", "East");
break;
case "Cr5":
intersection.configureRoute("S", "East");
break;
default:
System.err.println(" Error: unknown intersection ID: " + intersectionId);
if (routes != null) {
for (Map.Entry<String, String> entry : routes.entrySet()) {
String destination = entry.getKey();
String direction = entry.getValue();
intersection.configureRoute(destination, direction);
System.out.println(" Route configured: To " + destination + " -> Use " + direction);
}
} else {
System.out.println(" No routes configured.");
}
System.out.println(" Routing configured.");
@@ -247,7 +231,7 @@ public class IntersectionProcess {
trafficCoordinationLock.lock();
currentGreenDirection = direction;
}
/**
* Releases the green light permission, allowing another light to turn green.
*
@@ -259,7 +243,7 @@ public class IntersectionProcess {
trafficCoordinationLock.unlock();
}
}
/**
* Starts all traffic light threads.
*/
@@ -447,14 +431,13 @@ public class IntersectionProcess {
// Handle simulation start time synchronization
if (message.getType() == MessageType.SIMULATION_START) {
simulationStartMillis = ((Number) message.getPayload()).longValue();
System.out.println("[" + intersectionId + "] Simulation start time synchronized");
continue;
}
// Accept both VEHICLE_TRANSFER and VEHICLE_SPAWN (from coordinator)
if (message.getType() == MessageType.VEHICLE_TRANSFER ||
message.getType() == MessageType.VEHICLE_SPAWN) {
if (message.getType() == MessageType.VEHICLE_TRANSFER ||
message.getType() == MessageType.VEHICLE_SPAWN) {
// Cast payload to Vehicle - handle Gson deserialization
Vehicle vehicle;
Object payload = message.getPayload();
@@ -478,7 +461,7 @@ public class IntersectionProcess {
// Add vehicle to appropriate queue
intersection.receiveVehicle(vehicle);
// Record arrival for statistics
recordVehicleArrival();
}
@@ -601,12 +584,13 @@ public class IntersectionProcess {
}
/**
* Checks if it's time to send statistics to the dashboard and sends them if needed.
* Checks if it's time to send statistics to the dashboard and sends them if
* needed.
*/
private void checkAndSendStats() {
long now = System.currentTimeMillis();
long elapsed = now - lastStatsUpdateTime;
// Send stats every 5 seconds
if (elapsed >= 5000) {
sendStatsToDashboard();
@@ -625,68 +609,28 @@ public class IntersectionProcess {
try {
// Calculate current queue size
int currentQueueSize = intersection.getTrafficLights().stream()
.mapToInt(TrafficLight::getQueueSize)
.sum();
.mapToInt(TrafficLight::getQueueSize)
.sum();
StatsUpdatePayload payload = new StatsUpdatePayload()
.setIntersectionArrivals(totalArrivals)
.setIntersectionDepartures(totalDepartures)
.setIntersectionQueueSize(currentQueueSize);
.setIntersectionArrivals(totalArrivals)
.setIntersectionDepartures(totalDepartures)
.setIntersectionQueueSize(currentQueueSize);
// Send StatsUpdatePayload directly as the message payload
sd.model.Message message = new sd.model.Message(
MessageType.STATS_UPDATE,
intersectionId,
"Dashboard",
payload
);
MessageType.STATS_UPDATE,
intersectionId,
"Dashboard",
payload);
dashboardClient.send(message);
System.out.printf("[%s] Sent stats to dashboard (arrivals=%d, departures=%d, queue=%d)%n",
intersectionId, totalArrivals, totalDepartures, currentQueueSize);
intersectionId, totalArrivals, totalDepartures, currentQueueSize);
} catch (SerializationException | IOException e) {
System.err.println("[" + intersectionId + "] Failed to send stats to dashboard: " + e.getMessage());
}
}
// --- Inner class for Vehicle Transfer Messages ---
/**
* Implementation of MessageProtocol for vehicle transfers between processes.
*/
private static class VehicleTransferMessage implements MessageProtocol {
private static final long serialVersionUID = 1L;
private final String sourceNode;
private final String destinationNode;
private final Vehicle payload;
public VehicleTransferMessage(String sourceNode, String destinationNode, Vehicle vehicle) {
this.sourceNode = sourceNode;
this.destinationNode = destinationNode;
this.payload = vehicle;
}
@Override
public MessageType getType() {
return MessageType.VEHICLE_TRANSFER;
}
@Override
public Object getPayload() {
return payload;
}
@Override
public String getSourceNode() {
return sourceNode;
}
@Override
public String getDestinationNode() {
return destinationNode;
}
}
}

View File

@@ -3,8 +3,16 @@ package sd.config;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.Reader;
import java.nio.charset.StandardCharsets;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import com.google.gson.Gson;
/**
* Class to load and manage simulation configurations.
* Configurations are read from a .properties file. This class provides
@@ -12,64 +20,149 @@ import java.util.Properties;
* with default values to ensure robustness.
*/
public class SimulationConfig {
/**
* Holds all properties loaded from the file.
*/
private final Properties properties;
private NetworkConfig networkConfig;
public static class NetworkConfig {
private List<IntersectionConfig> intersections;
public List<IntersectionConfig> getIntersections() {
return intersections;
}
}
public static class IntersectionConfig {
private String id;
private List<String> lights;
private Map<String, String> routes;
public String getId() {
return id;
}
public List<String> getLights() {
return lights;
}
public Map<String, String> getRoutes() {
return routes;
}
}
/**
* Constructs a new SimulationConfig object by loading properties
* from the specified file path.
*
* This constructor attempts to load the configuration file using multiple
* strategies:
* 1. Direct file system path
* 2. Classpath resource (with automatic path normalization)
* 3. Classpath resource with leading slash
*
* @param filePath The path to the .properties file (e.g., "src/main/resources/simulation.properties").
* @throws IOException If the file cannot be found or read.
* @param filePath The path to the .properties file (e.g.,
* "src/main/resources/simulation.properties").
* @throws IOException If the file cannot be found or read from any location.
*/
public SimulationConfig(String filePath) throws IOException {
properties = new Properties();
/**Tenta carregar diretamente a partir do sistema de ficheiros, se o ficheiro não existir
* (por exemplo quando executado a partir do classpath/jar),
* faz fallback para carregar a partir do classpath usando o ClassLoader.
*/
IOException lastException = null; //FIXME: melhorar esta parte para reportar erros de forma mais clara
try {
try (InputStream input = new FileInputStream(filePath)) {
properties.load(input);
return; // carregado com sucesso a partir do caminho fornecido
}
// List to track all attempted paths for better error reporting
List<String> attemptedPaths = new ArrayList<>();
IOException fileSystemException = null;
// Strategy 1: Try to load directly from file system
try (InputStream input = new FileInputStream(filePath)) {
properties.load(input);
loadNetworkConfig();
return; // Successfully loaded from file system
} catch (IOException e) {
lastException = e;
//tenta carregar a partir do classpath sem prefixos comuns
String resourcePath = filePath;
//Remove prefixos que apontam para src/main/resources quando presentes
resourcePath = resourcePath.replace("src/main/resources/", "").replace("src\\main\\resources\\", "");
//Remove prefixo classpath: se fornecido
if (resourcePath.startsWith("classpath:")) {
resourcePath = resourcePath.substring("classpath:".length());
if (resourcePath.startsWith("/")) resourcePath = resourcePath.substring(1);
}
fileSystemException = e;
attemptedPaths.add("File system: " + filePath);
}
InputStream resourceStream = Thread.currentThread().getContextClassLoader().getResourceAsStream(resourcePath);
if (resourceStream == null) {
//como último recurso, tentar com um leading slash
resourceStream = SimulationConfig.class.getResourceAsStream('/' + resourcePath);
}
// Strategy 2: Try to load from classpath with path normalization
String resourcePath = filePath;
if (resourceStream != null) {
try (InputStream input = resourceStream) {
properties.load(input);
return;
}
// Remove common src/main/resources prefixes
resourcePath = resourcePath.replace("src/main/resources/", "").replace("src\\main\\resources\\", "");
// Remove classpath: prefix if provided
if (resourcePath.startsWith("classpath:")) {
resourcePath = resourcePath.substring("classpath:".length());
if (resourcePath.startsWith("/")) {
resourcePath = resourcePath.substring(1);
}
}
if (lastException != null) throw lastException;
// Try loading from classpath using thread context class loader
InputStream resourceStream = Thread.currentThread().getContextClassLoader().getResourceAsStream(resourcePath);
attemptedPaths.add("Classpath (context): " + resourcePath);
if (resourceStream == null) {
// Strategy 3: Try with leading slash
String slashPath = "/" + resourcePath;
resourceStream = SimulationConfig.class.getResourceAsStream(slashPath);
attemptedPaths.add("Classpath (class): " + slashPath);
}
if (resourceStream != null) {
try (InputStream input = resourceStream) {
properties.load(input);
loadNetworkConfig();
return; // Successfully loaded from classpath
} catch (IOException e) {
// Failed to read from classpath resource
throw new IOException(
String.format("Failed to read properties from classpath resource '%s': %s",
resourcePath, e.getMessage()),
e);
}
}
// All strategies failed - provide comprehensive error message
StringBuilder errorMsg = new StringBuilder();
errorMsg.append("Configuration file '").append(filePath).append("' could not be found.\n");
errorMsg.append("Attempted locations:\n");
for (String path : attemptedPaths) {
errorMsg.append(" - ").append(path).append("\n");
}
if (fileSystemException != null) {
errorMsg.append("\nOriginal error: ").append(fileSystemException.getMessage());
}
throw new IOException(errorMsg.toString(), fileSystemException);
}
private void loadNetworkConfig() {
try (InputStream is = getClass().getClassLoader().getResourceAsStream("network_config.json")) {
if (is == null) {
System.err.println("Warning: network_config.json not found in classpath. Using defaults/empty.");
return;
}
try (Reader reader = new InputStreamReader(is, StandardCharsets.UTF_8)) {
Gson gson = new Gson();
this.networkConfig = gson.fromJson(reader, NetworkConfig.class);
}
} catch (IOException e) {
System.err.println("Failed to load network_config.json: " + e.getMessage());
e.printStackTrace();
}
}
public NetworkConfig getNetworkConfig() {
return networkConfig;
}
// --- Network configurations ---
/**
* Gets the host address for a specific intersection.
*
* @param intersectionId The ID of the intersection (e.g., "Cr1").
* @return The host (e.g., "localhost").
*/
@@ -79,6 +172,7 @@ public class SimulationConfig {
/**
* Gets the port number for a specific intersection.
*
* @param intersectionId The ID of the intersection (e.g., "Cr1").
* @return The port number.
*/
@@ -88,6 +182,7 @@ public class SimulationConfig {
/**
* Gets the host address for the dashboard server.
*
* @return The dashboard host.
*/
public String getDashboardHost() {
@@ -96,6 +191,7 @@ public class SimulationConfig {
/**
* Gets the port number for the dashboard server.
*
* @return The dashboard port.
*/
public int getDashboardPort() {
@@ -104,6 +200,7 @@ public class SimulationConfig {
/**
* Gets the host address for the exit node.
*
* @return The exit node host.
*/
public String getExitHost() {
@@ -112,6 +209,7 @@ public class SimulationConfig {
/**
* Gets the port number for the exit node.
*
* @return The exit node port.
*/
public int getExitPort() {
@@ -122,6 +220,7 @@ public class SimulationConfig {
/**
* Gets the total duration of the simulation in virtual seconds.
*
* @return The simulation duration.
*/
public double getSimulationDuration() {
@@ -130,6 +229,7 @@ public class SimulationConfig {
/**
* Gets the vehicle arrival model ("POISSON" or "FIXED").
*
* @return The arrival model as a string.
*/
public String getArrivalModel() {
@@ -139,6 +239,7 @@ public class SimulationConfig {
/**
* Gets the average arrival rate (lambda) for the POISSON model.
* This represents the average number of vehicles arriving per second.
*
* @return The arrival rate.
*/
public double getArrivalRate() {
@@ -147,6 +248,7 @@ public class SimulationConfig {
/**
* Gets the fixed time interval between vehicle arrivals for the FIXED model.
*
* @return The fixed interval in seconds.
*/
public double getFixedArrivalInterval() {
@@ -157,8 +259,9 @@ public class SimulationConfig {
/**
* Gets the duration of the GREEN light state for a specific traffic light.
*
* @param intersectionId The ID of the intersection (e.g., "Cr1").
* @param direction The direction of the light (e.g., "North").
* @param direction The direction of the light (e.g., "North").
* @return The green light time in seconds.
*/
public double getTrafficLightGreenTime(String intersectionId, String direction) {
@@ -168,8 +271,9 @@ public class SimulationConfig {
/**
* Gets the duration of the RED light state for a specific traffic light.
*
* @param intersectionId The ID of the intersection (e.g., "Cr1").
* @param direction The direction of the light (e.g., "North").
* @param direction The direction of the light (e.g., "North").
* @return The red light time in seconds.
*/
public double getTrafficLightRedTime(String intersectionId, String direction) {
@@ -181,6 +285,7 @@ public class SimulationConfig {
/**
* Gets the probability (0.0 to 1.0) that a generated vehicle is of type LIGHT.
*
* @return The probability for LIGHT vehicles.
*/
public double getLightVehicleProbability() {
@@ -189,6 +294,7 @@ public class SimulationConfig {
/**
* Gets the average time it takes a LIGHT vehicle to cross an intersection.
*
* @return The crossing time in seconds.
*/
public double getLightVehicleCrossingTime() {
@@ -197,6 +303,7 @@ public class SimulationConfig {
/**
* Gets the probability (0.0 to 1.0) that a generated vehicle is of type BIKE.
*
* @return The probability for BIKE vehicles.
*/
public double getBikeVehicleProbability() {
@@ -205,6 +312,7 @@ public class SimulationConfig {
/**
* Gets the average time it takes a BIKE vehicle to cross an intersection.
*
* @return The crossing time in seconds.
*/
public double getBikeVehicleCrossingTime() {
@@ -213,6 +321,7 @@ public class SimulationConfig {
/**
* Gets the probability (0.0 to 1.0) that a generated vehicle is of type HEAVY.
*
* @return The probability for HEAVY vehicles.
*/
public double getHeavyVehicleProbability() {
@@ -221,6 +330,7 @@ public class SimulationConfig {
/**
* Gets the average time it takes a HEAVY vehicle to cross an intersection.
*
* @return The crossing time in seconds.
*/
public double getHeavyVehicleCrossingTime() {
@@ -229,6 +339,7 @@ public class SimulationConfig {
/**
* Gets the base travel time between intersections for light vehicles.
*
* @return The base travel time in seconds.
*/
public double getBaseTravelTime() {
@@ -238,6 +349,7 @@ public class SimulationConfig {
/**
* Gets the travel time multiplier for bike vehicles.
* Bike travel time = base time × this multiplier.
*
* @return The multiplier for bike travel time.
*/
public double getBikeTravelTimeMultiplier() {
@@ -247,6 +359,7 @@ public class SimulationConfig {
/**
* Gets the travel time multiplier for heavy vehicles.
* Heavy vehicle travel time = base time × this multiplier.
*
* @return The multiplier for heavy vehicle travel time.
*/
public double getHeavyTravelTimeMultiplier() {
@@ -257,17 +370,19 @@ public class SimulationConfig {
/**
* Gets the interval (in virtual seconds) between periodic statistics updates.
*
* @return The statistics update interval.
*/
public double getStatisticsUpdateInterval() {
return Double.parseDouble(properties.getProperty("statistics.update.interval", "10.0"));
return Double.parseDouble(properties.getProperty("statistics.update.interval", "1.0"));
}
// --- Generic getters ---
/**
* Generic method to get any property as a string, with a default value.
* @param key The property key.
*
* @param key The property key.
* @param defaultValue The value to return if the key is not found.
* @return The property value or the default.
*/
@@ -277,6 +392,7 @@ public class SimulationConfig {
/**
* Generic method to get any property as a string.
*
* @param key The property key.
* @return The property value, or null if not found.
*/

View File

@@ -1,663 +0,0 @@
package sd.engine;
import java.util.HashMap;
import java.util.Map;
import java.util.PriorityQueue;
import sd.config.SimulationConfig;
import sd.model.Event;
import sd.model.EventType;
import sd.model.Intersection;
import sd.model.TrafficLight;
import sd.model.TrafficLightState;
import sd.model.Vehicle;
import sd.model.VehicleType;
import sd.util.StatisticsCollector;
import sd.util.VehicleGenerator;
/**
* Core simulation engine using discrete event simulation (DES).
* * This class orchestrates the entire simulation. It maintains a
* {@link PriorityQueue} of {@link Event} objects, representing all
* scheduled future actions. The engine processes events in strict
* chronological order (based on their timestamp).
* * It manages the simulation's state, including:
* - The current simulation time ({@code currentTime}).
* - The collection of all {@link Intersection} objects.
* - The {@link VehicleGenerator} for creating new vehicles.
* - The {@link StatisticsCollector} for tracking metrics.
*/
public class SimulationEngine {
/**
* Holds all simulation parameters loaded from the properties file.
*/
private final SimulationConfig config;
/**
* The core of the discrete event simulation. Events are pulled from this
* queue in order of their timestamp.
*/
private final PriorityQueue<Event> eventQueue;
/**
* A map storing all intersections in the simulation, keyed by their ID (e.g.,
* "Cr1").
*/
private final Map<String, Intersection> intersections;
/**
* Responsible for creating new vehicles according to the configured arrival
* model.
*/
private final VehicleGenerator vehicleGenerator;
/**
* Collects and calculates statistics throughout the simulation.
*/
private final StatisticsCollector statisticsCollector;
/**
* The current time in the simulation (in virtual seconds).
* This time advances based on the timestamp of the event being processed.
*/
private double currentTime;
/**
* A simple counter to generate unique IDs for vehicles.
*/
private int vehicleCounter;
/**
* Constructs a new SimulationEngine.
*
* @param config The {@link SimulationConfig} object containing all
* simulation parameters.
*/
public SimulationEngine(SimulationConfig config) {
this.config = config;
this.eventQueue = new PriorityQueue<>();
this.intersections = new HashMap<>();
this.vehicleGenerator = new VehicleGenerator(config);
this.statisticsCollector = new StatisticsCollector(config);
this.currentTime = 0.0;
this.vehicleCounter = 0;
}
/**
* Calculates the travel time between intersections based on vehicle type.
*
* @param vehicleType The type of the vehicle.
* @return The travel time in seconds.
*/
private double calculateTravelTime(VehicleType vehicleType) {
double baseTime = config.getBaseTravelTime();
switch (vehicleType) {
case BIKE:
return baseTime * config.getBikeTravelTimeMultiplier();
case HEAVY:
return baseTime * config.getHeavyTravelTimeMultiplier();
case LIGHT:
default:
return baseTime;
}
}
/**
* Initializes the simulation. This involves:
* 1. Creating all {@link Intersection} and {@link TrafficLight} objects.
* 2. Configuring the routing logic between intersections.
* 3. Scheduling the initial events (first traffic light changes,
* first vehicle generation, and periodic statistics updates).
*/
public void initialize() {
System.out.println("Initializing simulation...");
setupIntersections();
setupRouting();
// Schedule initial events to "bootstrap" the simulation
scheduleTrafficLightEvents();
scheduleNextVehicleGeneration(0.0);
scheduleStatisticsUpdates();
System.out.println("Simulation initialized with " + intersections.size() + " intersections");
}
/**
* Creates all intersections defined in the configuration
* and adds their corresponding traffic lights.
*/
private void setupIntersections() {
String[] intersectionIds = { "Cr1", "Cr2", "Cr3", "Cr4", "Cr5" };
// Note: "North" is commented out, so it won't be created.
String[] directions = { /* "North", */ "South", "East", "West" };
for (String id : intersectionIds) {
Intersection intersection = new Intersection(id);
// Add traffic lights for each configured direction
for (String direction : directions) {
double greenTime = config.getTrafficLightGreenTime(id, direction);
double redTime = config.getTrafficLightRedTime(id, direction);
TrafficLight light = new TrafficLight(
id + "-" + direction,
direction,
greenTime,
redTime);
intersection.addTrafficLight(light);
}
intersections.put(id, intersection);
}
}
/**
* Configures how vehicles should be routed between intersections.
* This hardcoded logic defines the "map" of the city.
* * For example, `intersections.get("Cr1").configureRoute("Cr2", "East");`
* means
* "at intersection Cr1, any vehicle whose *next* destination is Cr2
* should be sent to the 'East' traffic light queue."
*/
private void setupRouting() {
// Cr1 routing
intersections.get("Cr1").configureRoute("Cr2", "East");
intersections.get("Cr1").configureRoute("Cr4", "South");
// Cr2 routing
intersections.get("Cr2").configureRoute("Cr1", "West");
intersections.get("Cr2").configureRoute("Cr3", "East");
intersections.get("Cr2").configureRoute("Cr5", "South");
// Cr3 routing
intersections.get("Cr3").configureRoute("Cr2", "West");
intersections.get("Cr3").configureRoute("S", "South"); // "S" is the exit
// Cr4 routing
// intersections.get("Cr4").configureRoute("Cr1", "North");
intersections.get("Cr4").configureRoute("Cr5", "East");
// Cr5 routing
// intersections.get("Cr5").configureRoute("Cr2", "North");
// intersections.get("Cr5").configureRoute("Cr4", "West");
intersections.get("Cr5").configureRoute("S", "East"); // "S" is the exit
}
/**
* Schedules the initial {@link EventType#TRAFFIC_LIGHT_CHANGE} event
* for every traffic light in the simulation.
* A small random delay is added to "stagger" the lights, preventing
* all of them from changing at the exact same time at t=0.
*/
private void scheduleTrafficLightEvents() {
for (Intersection intersection : intersections.values()) {
for (TrafficLight light : intersection.getTrafficLights()) {
// Start with lights in RED state, schedule first GREEN change
// Stagger the start times slightly to avoid all lights changing at once
double staggerDelay = Math.random() * 1.5;
scheduleTrafficLightChange(light, intersection.getId(), staggerDelay);
}
}
}
/**
* Creates and schedules a new {@link EventType#TRAFFIC_LIGHT_CHANGE} event.
* The event is scheduled to occur at {@code currentTime + delay}.
*
* @param light The {@link TrafficLight} that will change state.
* @param intersectionId The ID of the intersection where the light is located.
* @param delay The time (in seconds) from {@code currentTime} when the
* change should occur.
*/
private void scheduleTrafficLightChange(TrafficLight light, String intersectionId, double delay) {
double changeTime = currentTime + delay;
Event event = new Event(changeTime, EventType.TRAFFIC_LIGHT_CHANGE, light, intersectionId);
eventQueue.offer(event);
}
/**
* Schedules the next {@link EventType#VEHICLE_GENERATION} event.
* The time of the next arrival is determined by the {@link VehicleGenerator}.
*
* @param baseTime The time from which to calculate the next arrival (usually
* {@code currentTime}).
*/
private void scheduleNextVehicleGeneration(double baseTime) {
// Get the absolute time for the next arrival.
double nextArrivalTime = vehicleGenerator.getNextArrivalTime(baseTime);
// Only schedule the event if it's within the simulation's total duration.
if (nextArrivalTime < config.getSimulationDuration()) {
Event event = new Event(nextArrivalTime, EventType.VEHICLE_GENERATION, null, null);
eventQueue.offer(event);
}
}
/**
* Schedules all periodic {@link EventType#STATISTICS_UPDATE} events
* for the entire duration of the simulation.
*/
private void scheduleStatisticsUpdates() {
double interval = config.getStatisticsUpdateInterval();
double duration = config.getSimulationDuration();
for (double time = interval; time < duration; time += interval) {
Event event = new Event(time, EventType.STATISTICS_UPDATE, null, null);
eventQueue.offer(event);
}
}
/**
* Runs the main simulation loop.
* The loop continues as long as there are events in the queue and
* the {@code currentTime} is less than the total simulation duration.
* * In each iteration, it:
* 1. Polls the next event from the {@link #eventQueue}.
* 2. Advances {@link #currentTime} to the event's timestamp.
* 3. Calls {@link #processEvent(Event)} to handle the event.
* * After the loop, it prints the final statistics.
*/
public void run() {
System.out.println("Starting simulation...");
double duration = config.getSimulationDuration();
while (!eventQueue.isEmpty() && currentTime < duration) {
// Get the next event in chronological order
Event event = eventQueue.poll();
// Advance simulation time to this event's time
currentTime = event.getTimestamp();
// Process the event
processEvent(event);
}
System.out.println("\nSimulation completed at t=" + String.format("%.2f", currentTime) + "s");
printFinalStatistics();
}
/**
* Main event processing logic.
* Delegates the event to the appropriate handler method based on its
* {@link EventType}.
*
* @param event The {@link Event} to be processed.
*/
private void processEvent(Event event) {
switch (event.getType()) {
case VEHICLE_GENERATION -> handleVehicleGeneration();
case VEHICLE_ARRIVAL -> handleVehicleArrival(event);
case TRAFFIC_LIGHT_CHANGE -> handleTrafficLightChange(event);
case CROSSING_START -> handleCrossingStart(event);
case CROSSING_END -> handleCrossingEnd(event);
case STATISTICS_UPDATE -> handleStatisticsUpdate();
default -> System.err.println("Unknown event type: " + event.getType());
}
}
/**
* Handles {@link EventType#VEHICLE_GENERATION}.
* 1. Creates a new {@link Vehicle} using the {@link #vehicleGenerator}.
* 2. Records the generation event with the {@link #statisticsCollector}.
* 3. Schedules a {@link EventType#VEHICLE_ARRIVAL} event for the vehicle
* at its first destination intersection.
* 4. Schedules the *next* {@link EventType#VEHICLE_GENERATION} event.
* (Note: This line is commented out in the original, which might be a bug,
* as it implies only one vehicle is ever generated. It should likely be
* active.)
*/
private void handleVehicleGeneration() {
Vehicle vehicle = vehicleGenerator.generateVehicle("V" + (++vehicleCounter), currentTime);
System.out.printf("[t=%.2f] Vehicle %s generated (type=%s, route=%s)%n",
currentTime, vehicle.getId(), vehicle.getType(), vehicle.getRoute());
// Register with statistics collector
statisticsCollector.recordVehicleGeneration(vehicle, currentTime);
// Schedule arrival at first intersection
String firstIntersection = vehicle.getCurrentDestination();
if (firstIntersection != null && !firstIntersection.equals("S")) {
double travelTime = calculateTravelTime(vehicle.getType());
double arrivalTime = currentTime + travelTime;
Event arrivalEvent = new Event(arrivalTime, EventType.VEHICLE_ARRIVAL, vehicle, firstIntersection);
eventQueue.offer(arrivalEvent);
}
// Schedule next vehicle generation
// This was commented out in the original file.
// For a continuous simulation, it should be enabled:
scheduleNextVehicleGeneration(currentTime);
}
/**
* Handles {@link EventType#VEHICLE_ARRIVAL} at an intersection.
* 1. Records the arrival for statistics.
* 2. Advances the vehicle's internal route planner to its *next* destination.
* 3. If the next destination is the exit ("S") or null,
* the vehicle exits the system via {@link #handleVehicleExit(Vehicle)}.
* 4. Otherwise, the vehicle is placed in the correct queue at the
* current intersection using {@link Intersection#receiveVehicle(Vehicle)}.
* 5. Attempts to process the vehicle immediately if its light is green.
*
* @param event The arrival event, containing the {@link Vehicle} and
* intersection ID.
*/
private void handleVehicleArrival(Event event) {
Vehicle vehicle = (Vehicle) event.getData();
String intersectionId = event.getLocation();
Intersection intersection = intersections.get(intersectionId);
if (intersection == null) {
System.err.println("Unknown intersection: " + intersectionId);
return;
}
System.out.printf("[t=%.2f] Vehicle %s arrived at %s%n",
currentTime, vehicle.getId(), intersectionId);
// Record arrival time (used to calculate waiting time later)
statisticsCollector.recordVehicleArrival(vehicle, intersectionId, currentTime);
// Advance the vehicle's route to the *next* stop
// (it has now arrived at its *current* destination)
boolean hasNext = vehicle.advanceRoute();
if (!hasNext) {
// This was the last stop
handleVehicleExit(vehicle);
return;
}
String nextDestination = vehicle.getCurrentDestination();
if (nextDestination == null || "S".equals(nextDestination)) {
// Next stop is the exit
handleVehicleExit(vehicle);
return;
}
// Add vehicle to the appropriate traffic light queue based on its next
// destination
intersection.receiveVehicle(vehicle);
// Try to process the vehicle immediately if its light is already green
tryProcessVehicle(vehicle, intersection);
}
/**
* Checks if a newly arrived vehicle (or a vehicle in a queue
* that just turned green) can start crossing.
*
* @param vehicle The vehicle to process.
* @param intersection The intersection where the vehicle is.
*/
private void tryProcessVehicle(Vehicle vehicle, Intersection intersection) { // FIXME
// Find the direction (and light) this vehicle is queued at
// This logic is a bit flawed: it just finds the *first* non-empty queue
// A better approach would be to get the light from the vehicle's route
String direction = intersection.getTrafficLights().stream()
.filter(tl -> tl.getQueueSize() > 0)
.map(TrafficLight::getDirection)
.findFirst()
.orElse(null);
if (direction != null) {
TrafficLight light = intersection.getTrafficLight(direction);
// If the light is green and it's the correct one...
if (light != null && light.getState() == TrafficLightState.GREEN) {
// ...remove the vehicle from the queue (if it's at the front)
Vehicle v = light.removeVehicle();
if (v != null) {
// ...and schedule its crossing.
scheduleCrossing(v, intersection);
}
}
}
}
/**
* Schedules the crossing for a vehicle that has just been dequeued
* from a green light.
* 1. Calculates and records the vehicle's waiting time.
* 2. Schedules an immediate {@link EventType#CROSSING_START} event.
*
* @param vehicle The {@link Vehicle} that is crossing.
* @param intersection The {@link Intersection} it is crossing.
*/
private void scheduleCrossing(Vehicle vehicle, Intersection intersection) {
// Calculate time spent waiting at the red light
double waitTime = currentTime - statisticsCollector.getArrivalTime(vehicle);
vehicle.addWaitingTime(waitTime);
// Schedule crossing start event *now*
Event crossingStart = new Event(currentTime, EventType.CROSSING_START, vehicle, intersection.getId());
processEvent(crossingStart); // Process immediately
}
/**
* Handles {@link EventType#CROSSING_START}.
* 1. Determines the crossing time based on vehicle type.
* 2. Schedules a {@link EventType#CROSSING_END} event to occur
* at {@code currentTime + crossingTime}.
*
* @param event The crossing start event.
*/
private void handleCrossingStart(Event event) {
Vehicle vehicle = (Vehicle) event.getData();
String intersectionId = event.getLocation();
double crossingTime = getCrossingTime(vehicle.getType());
System.out.printf("[t=%.2f] Vehicle %s started crossing at %s (duration=%.2fs)%n",
currentTime, vehicle.getId(), intersectionId, crossingTime);
// Schedule the *end* of the crossing
double endTime = currentTime + crossingTime;
Event crossingEnd = new Event(endTime, EventType.CROSSING_END, vehicle, intersectionId);
eventQueue.offer(crossingEnd);
}
/**
* Handles {@link EventType#CROSSING_END}.
* 1. Updates intersection and vehicle statistics.
* 2. Checks the vehicle's *next* destination.
* 3. If the next destination is the exit ("S"), call
* {@link #handleVehicleExit(Vehicle)}.
* 4. Otherwise, schedule a {@link EventType#VEHICLE_ARRIVAL} event at the
* *next* intersection, after some travel time.
*
* @param event The crossing end event.
*/
private void handleCrossingEnd(Event event) {
Vehicle vehicle = (Vehicle) event.getData();
String intersectionId = event.getLocation();
// Update stats
Intersection intersection = intersections.get(intersectionId);
if (intersection != null) {
intersection.incrementVehiclesSent();
}
double crossingTime = getCrossingTime(vehicle.getType());
vehicle.addCrossingTime(crossingTime);
System.out.printf("[t=%.2f] Vehicle %s finished crossing at %s%n",
currentTime, vehicle.getId(), intersectionId);
// Decide what to do next
String nextDest = vehicle.getCurrentDestination();
if (nextDest != null && !nextDest.equals("S")) {
// Route to the *next* intersection
// Travel time varies by vehicle type: tmoto = 0.5 × tcarro, tcaminhão = 4 ×
// tmoto
double travelTime = calculateTravelTime(vehicle.getType());
double arrivalTime = currentTime + travelTime;
Event arrivalEvent = new Event(arrivalTime, EventType.VEHICLE_ARRIVAL, vehicle, nextDest);
eventQueue.offer(arrivalEvent);
} else {
// Reached the exit
handleVehicleExit(vehicle);
}
}
/**
* Handles a vehicle exiting the simulation.
* Records final statistics for the vehicle.
*
* @param vehicle The {@link Vehicle} that has completed its route.
*/
private void handleVehicleExit(Vehicle vehicle) {
System.out.printf("[t=%.2f] Vehicle %s exited the system (wait=%.2fs, travel=%.2fs)%n",
currentTime, vehicle.getId(),
vehicle.getTotalWaitingTime(),
vehicle.getTotalTravelTime(currentTime));
// Record the exit for final statistics calculation
statisticsCollector.recordVehicleExit(vehicle, currentTime);
}
/**
* Handles {@link EventType#TRAFFIC_LIGHT_CHANGE}.
* 1. Toggles the light's state (RED to GREEN or GREEN to RED).
* 2. If the light just turned GREEN, call
* {@link #processGreenLight(TrafficLight, Intersection)}
* to process any waiting vehicles.
* 3. Schedules the *next* state change for this light based on its
* green/red time duration.
*
* @param event The light change event.
*/
private void handleTrafficLightChange(Event event) {
TrafficLight light = (TrafficLight) event.getData();
String intersectionId = event.getLocation();
// Toggle state
TrafficLightState newState = (light.getState() == TrafficLightState.RED)
? TrafficLightState.GREEN
: TrafficLightState.RED;
light.changeState(newState);
System.out.printf("[t=%.2f] Traffic light %s changed to %s%n",
currentTime, light.getId(), newState);
// If changed to GREEN, process waiting vehicles
if (newState == TrafficLightState.GREEN) {
Intersection intersection = intersections.get(intersectionId);
if (intersection != null) {
processGreenLight(light, intersection);
}
}
// Schedule the *next* state change for this same light
double nextChangeDelay = (newState == TrafficLightState.GREEN)
? light.getGreenTime()
: light.getRedTime();
scheduleTrafficLightChange(light, intersectionId, nextChangeDelay);
}
/**
* Processes vehicles when a light turns green.
* It loops as long as the light is green and there are vehicles in the queue,
* dequeuing one vehicle at a time and scheduling its crossing.
* * *Note*: This is a simplified model. A real simulation would
* account for the *time* it takes each vehicle to cross, processing
* one vehicle every {@code crossingTime} seconds. This implementation
* processes the entire queue "instantaneously" at the moment
* the light turns green.
*
* @param light The {@link TrafficLight} that just turned green.
* @param intersection The {@link Intersection} where the light is.
*/
private void processGreenLight(TrafficLight light, Intersection intersection) {
// While the light is green and vehicles are waiting...
while (light.getState() == TrafficLightState.GREEN && light.getQueueSize() > 0) {
Vehicle vehicle = light.removeVehicle();
if (vehicle != null) {
// Dequeue one vehicle and schedule its crossing
scheduleCrossing(vehicle, intersection);
}
}
}
/**
* Handles {@link EventType#STATISTICS_UPDATE}.
* Calls the {@link StatisticsCollector} to print the current
* state of the simulation (queue sizes, averages, etc.).
*/
private void handleStatisticsUpdate() {
System.out.printf("\n=== Statistics at t=%.2f ===%n", currentTime);
statisticsCollector.printCurrentStatistics(intersections, currentTime);
System.out.println();
}
/**
* Utility method to get the configured crossing time for a given
* {@link VehicleType}.
*
* @param type The type of vehicle.
* @return The crossing time in seconds.
*/
private double getCrossingTime(VehicleType type) {
return switch (type) {
case BIKE -> config.getBikeVehicleCrossingTime();
case LIGHT -> config.getLightVehicleCrossingTime();
case HEAVY -> config.getHeavyVehicleCrossingTime();
default -> 2.0;
}; // Default fallback
}
/**
* Prints the final summary of statistics at the end of the simulation.
*/
private void printFinalStatistics() {
System.out.println("\n" + "=".repeat(60));
System.out.println("FINAL SIMULATION STATISTICS");
System.out.println("=".repeat(60));
statisticsCollector.printFinalStatistics(intersections, currentTime);
System.out.println("=".repeat(60));
}
// --- Public Getters ---
/**
* Gets the current simulation time.
*
* @return The time in virtual seconds.
*/
public double getCurrentTime() {
return currentTime;
}
/**
* Gets a map of all intersections in the simulation.
* Returns a copy to prevent external modification.
*
* @return A {@link Map} of intersection IDs to {@link Intersection} objects.
*/
public Map<String, Intersection> getIntersections() {
return new HashMap<>(intersections);
}
/**
* Gets the statistics collector instance.
*
* @return The {@link StatisticsCollector}.
*/
public StatisticsCollector getStatisticsCollector() {
return statisticsCollector;
}
}

View File

@@ -140,6 +140,16 @@ public class Intersection {
}
}
/**
* Returns the direction a vehicle should take to reach a given destination.
*
* @param destination The next destination (e.g., "Cr3", "S").
* @return The direction (e.g., "East"), or null if no route is configured.
*/
public String getDirectionForDestination(String destination) {
return routing.get(destination);
}
/**
* Returns the traffic light controlling the given direction.
*

View File

@@ -12,7 +12,8 @@ import sd.model.VehicleType;
/**
* Collects, manages, and reports statistics throughout the simulation.
* * This class acts as the central bookkeeper for simulation metrics. It tracks:
* * This class acts as the central bookkeeper for simulation metrics. It
* tracks:
* - Overall system statistics (total vehicles, completion time, wait time).
* - Per-vehicle-type statistics (counts, average wait time by type).
* - Per-intersection statistics (arrivals, departures).
@@ -21,69 +22,74 @@ import sd.model.VehicleType;
* calculate waiting time when the vehicle later departs.
*/
public class StatisticsCollector {
// --- Vehicle tracking (for in-flight vehicles) ---
/**
* Tracks the simulation time when a vehicle arrives at its *current* intersection.
* Tracks the simulation time when a vehicle arrives at its *current*
* intersection.
* This is used later to calculate waiting time (Depart_Time - Arrive_Time).
* Key: Vehicle ID (String)
* Value: Arrival Time (Double)
*/
private final Map<String, Double> vehicleArrivalTimes;
/**
* Tracks the sequence of intersections a vehicle has visited.
* Key: Vehicle ID (String)
* Value: List of Intersection IDs (String)
*/
private final Map<String, List<String>> vehicleIntersectionHistory;
// --- Overall system statistics ---
/** Total number of vehicles created by the {@link VehicleGenerator}. */
private int totalVehiclesGenerated;
/** Total number of vehicles that have reached their final destination ("S"). */
private int totalVehiclesCompleted;
/** The sum of all *completed* vehicles' total travel times. Used for averaging. */
/**
* The sum of all *completed* vehicles' total travel times. Used for averaging.
*/
private double totalSystemTime;
/** The sum of all *completed* vehicles' total waiting times. Used for averaging. */
/**
* The sum of all *completed* vehicles' total waiting times. Used for averaging.
*/
private double totalWaitingTime;
// --- Per-vehicle-type statistics ---
/**
* Tracks the total number of vehicles generated, broken down by type.
* Key: {@link VehicleType}
* Value: Count (Integer)
*/
private final Map<VehicleType, Integer> vehicleTypeCount;
/**
* Tracks the total waiting time, broken down by vehicle type.
* Key: {@link VehicleType}
* Value: Total Wait Time (Double)
*/
private final Map<VehicleType, Double> vehicleTypeWaitTime;
// --- Per-intersection statistics ---
/**
* A map to hold statistics objects for each intersection.
* Key: Intersection ID (String)
* Value: {@link IntersectionStats} object
*/
private final Map<String, IntersectionStats> intersectionStats;
/**
* Constructs a new StatisticsCollector.
* Initializes all maps and counters.
*
* @param config The {@link SimulationConfig} (not currently used, but
* could be for configuration-dependent stats).
* could be for configuration-dependent stats).
*/
public StatisticsCollector(SimulationConfig config) {
this.vehicleArrivalTimes = new HashMap<>();
@@ -95,88 +101,88 @@ public class StatisticsCollector {
this.vehicleTypeCount = new HashMap<>();
this.vehicleTypeWaitTime = new HashMap<>();
this.intersectionStats = new HashMap<>();
// Initialize vehicle type counters to 0
for (VehicleType type : VehicleType.values()) {
vehicleTypeCount.put(type, 0);
vehicleTypeWaitTime.put(type, 0.0);
}
}
/**
* Records that a new vehicle has been generated.
* This is called by the {@link sd.engine.SimulationEngine}
* This is called by the vehicle generation component
* during a {@code VEHICLE_GENERATION} event.
*
* @param vehicle The {@link Vehicle} that was just created.
* @param vehicle The {@link Vehicle} that was just created.
* @param currentTime The simulation time of the event.
*/
public void recordVehicleGeneration(Vehicle vehicle, double currentTime) {
totalVehiclesGenerated++;
// Track by vehicle type
VehicleType type = vehicle.getType();
vehicleTypeCount.put(type, vehicleTypeCount.get(type) + 1);
// Initialize history tracking for this vehicle
vehicleIntersectionHistory.put(vehicle.getId(), new ArrayList<>());
}
/**
* Records that a vehicle has arrived at an intersection queue.
* This is called by the {@link sd.engine.SimulationEngine}
* This is called by the vehicle generation component
* during a {@code VEHICLE_ARRIVAL} event.
*
* @param vehicle The {@link Vehicle} that arrived.
* @param vehicle The {@link Vehicle} that arrived.
* @param intersectionId The ID of the intersection it arrived at.
* @param currentTime The simulation time of the arrival.
* @param currentTime The simulation time of the arrival.
*/
public void recordVehicleArrival(Vehicle vehicle, String intersectionId, double currentTime) {
// Store arrival time - this is the "start waiting" time
vehicleArrivalTimes.put(vehicle.getId(), currentTime);
// Track intersection history
List<String> history = vehicleIntersectionHistory.get(vehicle.getId());
if (history != null) {
history.add(intersectionId);
}
// Update per-intersection statistics
getOrCreateIntersectionStats(intersectionId).recordArrival();
}
/**
* Records that a vehicle has completed its route and exited the system.
* This is where final metrics for the vehicle are aggregated.
* This is called by the {@link sd.engine.SimulationEngine}
* This is called by the vehicle generation component
* when a vehicle reaches destination "S".
*
* @param vehicle The {@link Vehicle} that is exiting.
* @param vehicle The {@link Vehicle} that is exiting.
* @param currentTime The simulation time of the exit.
*/
public void recordVehicleExit(Vehicle vehicle, double currentTime) {
totalVehiclesCompleted++;
// Calculate and aggregate total system time
double systemTime = vehicle.getTotalTravelTime(currentTime);
totalSystemTime += systemTime;
// Aggregate waiting time
double waitTime = vehicle.getTotalWaitingTime();
totalWaitingTime += waitTime;
// Aggregate waiting time by vehicle type
VehicleType type = vehicle.getType();
vehicleTypeWaitTime.put(type, vehicleTypeWaitTime.get(type) + waitTime);
// Clean up tracking maps to save memory
vehicleArrivalTimes.remove(vehicle.getId());
vehicleIntersectionHistory.remove(vehicle.getId());
}
/**
* Gets the time a vehicle arrived at its *current* intersection.
* This is used by the {@link sd.engine.SimulationEngine} to calculate
* This is used by the intersection component to calculate
* wait time just before the vehicle crosses.
*
* @param vehicle The {@link Vehicle} to check.
@@ -185,45 +191,45 @@ public class StatisticsCollector {
public double getArrivalTime(Vehicle vehicle) {
return vehicleArrivalTimes.getOrDefault(vehicle.getId(), 0.0);
}
/**
* Prints a "snapshot" of the current simulation statistics.
* This is called periodically by the {@link sd.engine.SimulationEngine}
* This is called periodically by the simulation components
* during a {@code STATISTICS_UPDATE} event.
*
* @param intersections A map of all intersections (to get queue data).
* @param currentTime The current simulation time.
* @param currentTime The current simulation time.
*/
public void printCurrentStatistics(Map<String, Intersection> intersections, double currentTime) {
System.out.printf("--- Statistics at t=%.2f ---%n", currentTime);
System.out.printf("Vehicles: Generated=%d, Completed=%d, In-System=%d%n",
totalVehiclesGenerated,
totalVehiclesCompleted,
totalVehiclesGenerated - totalVehiclesCompleted);
totalVehiclesGenerated,
totalVehiclesCompleted,
totalVehiclesGenerated - totalVehiclesCompleted);
if (totalVehiclesCompleted > 0) {
System.out.printf("Average System Time (so far): %.2fs%n", totalSystemTime / totalVehiclesCompleted);
System.out.printf("Average Waiting Time (so far): %.2fs%n", totalWaitingTime / totalVehiclesCompleted);
}
// Print per-intersection queue sizes
System.out.println("\nIntersection Queues:");
for (Map.Entry<String, Intersection> entry : intersections.entrySet()) {
String id = entry.getKey();
Intersection intersection = entry.getValue();
System.out.printf(" %s: Queue=%d, Received=%d, Sent=%d%n",
id,
intersection.getTotalQueueSize(),
intersection.getTotalVehiclesReceived(),
intersection.getTotalVehiclesSent());
id,
intersection.getTotalQueueSize(),
intersection.getTotalVehiclesReceived(),
intersection.getTotalVehiclesSent());
}
}
/**
* Prints the final simulation summary statistics at the end of the run.
*
* @param intersections A map of all intersections.
* @param currentTime The final simulation time.
* @param currentTime The final simulation time.
*/
public void printFinalStatistics(Map<String, Intersection> intersections, double currentTime) {
System.out.println("\n=== SIMULATION SUMMARY ===");
@@ -231,7 +237,7 @@ public class StatisticsCollector {
System.out.printf("Total Vehicles Generated: %d%n", totalVehiclesGenerated);
System.out.printf("Total Vehicles Completed: %d%n", totalVehiclesCompleted);
System.out.printf("Vehicles Still in System: %d%n", totalVehiclesGenerated - totalVehiclesCompleted);
// Overall averages
if (totalVehiclesCompleted > 0) {
System.out.printf("%nAVERAGE METRICS (for completed vehicles):%n");
@@ -239,7 +245,7 @@ public class StatisticsCollector {
System.out.printf(" Waiting Time: %.2f seconds%n", totalWaitingTime / totalVehiclesCompleted);
System.out.printf(" Throughput: %.2f vehicles/second%n", totalVehiclesCompleted / currentTime);
}
// Vehicle type breakdown
System.out.println("\nVEHICLE TYPE DISTRIBUTION:");
for (VehicleType type : VehicleType.values()) {
@@ -249,46 +255,46 @@ public class StatisticsCollector {
// Calculate avg wait *only* for this type
// This assumes all generated vehicles of this type *completed*
// A more accurate way would be to track completed vehicle types
double avgWait = vehicleTypeWaitTime.get(type) / count;
double avgWait = vehicleTypeWaitTime.get(type) / count;
System.out.printf(" %s: %d (%.1f%%), Avg Wait: %.2fs%n",
type, count, percentage, avgWait);
type, count, percentage, avgWait);
}
}
// Per-intersection statistics
System.out.println("\nINTERSECTION STATISTICS:");
for (Map.Entry<String, Intersection> entry : intersections.entrySet()) {
String id = entry.getKey();
Intersection intersection = entry.getValue();
System.out.printf(" %s:%n", id);
System.out.printf(" Vehicles Received: %d%n", intersection.getTotalVehiclesReceived());
System.out.printf(" Vehicles Sent: %d%n", intersection.getTotalVehiclesSent());
System.out.printf(" Final Queue Size: %d%n", intersection.getTotalQueueSize());
// Traffic light details
intersection.getTrafficLights().forEach(light -> {
System.out.printf(" Light %s: State=%s, Queue=%d, Processed=%d%n",
light.getDirection(),
light.getState(),
light.getQueueSize(),
light.getTotalVehiclesProcessed());
light.getDirection(),
light.getState(),
light.getQueueSize(),
light.getTotalVehiclesProcessed());
});
}
// System health indicators
System.out.println("\nSYSTEM HEALTH:");
int totalQueuedVehicles = intersections.values().stream()
.mapToInt(Intersection::getTotalQueueSize)
.sum();
.mapToInt(Intersection::getTotalQueueSize)
.sum();
System.out.printf(" Total Queued Vehicles (at end): %d%n", totalQueuedVehicles);
if (totalVehiclesGenerated > 0) {
double completionRate = (totalVehiclesCompleted * 100.0) / totalVehiclesGenerated;
System.out.printf(" Completion Rate: %.1f%%%n", completionRate);
}
}
/**
* Gets or creates the statistics object for a given intersection.
* Uses {@code computeIfAbsent} for efficient, thread-safe-like instantiation.
@@ -302,7 +308,7 @@ public class StatisticsCollector {
// Otherwise, just return the one that's already there.
return intersectionStats.computeIfAbsent(intersectionId, k -> new IntersectionStats());
}
/**
* Inner class to track per-intersection statistics.
* This is a simple data holder.
@@ -310,66 +316,62 @@ public class StatisticsCollector {
private static class IntersectionStats {
private int totalArrivals;
private int totalDepartures;
public IntersectionStats() {
this.totalArrivals = 0;
this.totalDepartures = 0;
}
public void recordArrival() {
totalArrivals++;
}
public void recordDeparture() {
totalDepartures++;
}
public int getTotalArrivals() {
return totalArrivals;
}
public int getTotalDepartures() {
return totalDepartures;
}
}
// --- Public Getters for Final Statistics ---
/**
* @return Total vehicles generated during the simulation.
*/
public int getTotalVehiclesGenerated() {
return totalVehiclesGenerated;
}
/**
* @return Total vehicles that completed their route.
*/
public int getTotalVehiclesCompleted() {
return totalVehiclesCompleted;
}
/**
* @return The sum of all travel times for *completed* vehicles.
*/
public double getTotalSystemTime() {
return totalSystemTime;
}
/**
* @return The sum of all waiting times for *completed* vehicles.
*/
public double getTotalWaitingTime() {
return totalWaitingTime;
}
/**
* @return The average travel time for *completed* vehicles.
*/
public double getAverageSystemTime() {
return totalVehiclesCompleted > 0 ? totalSystemTime / totalVehiclesCompleted : 0.0;
}
/**
* @return The average waiting time for *completed* vehicles.
*/

View File

@@ -0,0 +1,43 @@
{
"intersections": [
{
"id": "Cr1",
"lights": ["East", "South"],
"routes": {
"Cr2": "East",
"Cr4": "South"
}
},
{
"id": "Cr2",
"lights": ["West", "East", "South"],
"routes": {
"Cr1": "West",
"Cr3": "East",
"Cr5": "South"
}
},
{
"id": "Cr3",
"lights": ["West", "South"],
"routes": {
"Cr2": "West",
"S": "South"
}
},
{
"id": "Cr4",
"lights": ["East"],
"routes": {
"Cr5": "East"
}
},
{
"id": "Cr5",
"lights": ["East"],
"routes": {
"S": "East"
}
}
]
}

View File

@@ -47,8 +47,6 @@ simulation.arrival.fixed.interval=2.0
# Format: trafficlight.<intersection>.<direction>.<state>=<seconds>
# Intersection 1 (Entry point - balanced)
trafficlight.Cr1.North.green=20.0
trafficlight.Cr1.North.red=40.0
trafficlight.Cr1.South.green=20.0
trafficlight.Cr1.South.red=40.0
trafficlight.Cr1.East.green=20.0
@@ -57,8 +55,6 @@ trafficlight.Cr1.West.green=20.0
trafficlight.Cr1.West.red=40.0
# Intersection 2 (Main hub - shorter cycles, favor East-West)
trafficlight.Cr2.North.green=12.0
trafficlight.Cr2.North.red=36.0
trafficlight.Cr2.South.green=12.0
trafficlight.Cr2.South.red=36.0
trafficlight.Cr2.East.green=18.0
@@ -67,8 +63,6 @@ trafficlight.Cr2.West.green=18.0
trafficlight.Cr2.West.red=30.0
# Intersection 3 (Path to exit - favor East)
trafficlight.Cr3.North.green=15.0
trafficlight.Cr3.North.red=30.0
trafficlight.Cr3.South.green=15.0
trafficlight.Cr3.South.red=30.0
trafficlight.Cr3.East.green=20.0
@@ -77,8 +71,6 @@ trafficlight.Cr3.West.green=15.0
trafficlight.Cr3.West.red=30.0
# Intersection 4 (Favor East toward Cr5)
trafficlight.Cr4.North.green=15.0
trafficlight.Cr4.North.red=30.0
trafficlight.Cr4.South.green=15.0
trafficlight.Cr4.South.red=30.0
trafficlight.Cr4.East.green=20.0
@@ -87,8 +79,6 @@ trafficlight.Cr4.West.green=15.0
trafficlight.Cr4.West.red=30.0
# Intersection 5 (Near exit - favor East)
trafficlight.Cr5.North.green=15.0
trafficlight.Cr5.North.red=30.0
trafficlight.Cr5.South.green=15.0
trafficlight.Cr5.South.red=30.0
trafficlight.Cr5.East.green=22.0

View File

@@ -6,7 +6,6 @@ import static org.junit.jupiter.api.Assertions.assertTrue;
import org.junit.jupiter.api.Test;
import sd.config.SimulationConfig;
import sd.engine.SimulationEngine;
import sd.model.Event;
import sd.model.EventType;
import sd.model.Intersection;
@@ -21,104 +20,91 @@ import sd.util.VehicleGenerator;
* Basic tests for the simulation components.
*/
class SimulationTest {
@Test
void testConfigurationLoading() throws IOException {
SimulationConfig config = new SimulationConfig("src/main/resources/simulation.properties");
assertEquals(60.0, config.getSimulationDuration());
assertEquals("POISSON", config.getArrivalModel());
assertEquals(0.5, config.getArrivalRate());
assertEquals(10.0, config.getStatisticsUpdateInterval());
assertEquals(1.0, config.getStatisticsUpdateInterval());
}
@Test
void testVehicleGeneration() throws IOException {
SimulationConfig config = new SimulationConfig("src/main/resources/simulation.properties");
VehicleGenerator generator = new VehicleGenerator(config);
Vehicle vehicle = generator.generateVehicle("TEST1", 0.0);
assertNotNull(vehicle);
assertEquals("TEST1", vehicle.getId());
assertNotNull(vehicle.getType());
assertNotNull(vehicle.getRoute());
assertTrue(!vehicle.getRoute().isEmpty());
}
@Test
void testEventOrdering() {
Event e1 = new Event(5.0, EventType.VEHICLE_ARRIVAL, null, "Cr1");
Event e2 = new Event(3.0, EventType.VEHICLE_ARRIVAL, null, "Cr2");
Event e3 = new Event(7.0, EventType.TRAFFIC_LIGHT_CHANGE, null, "Cr1");
assertTrue(e2.compareTo(e1) < 0); // e2 should come before e1
assertTrue(e1.compareTo(e3) < 0); // e1 should come before e3
}
@Test
void testIntersectionVehicleQueue() {
Intersection intersection = new Intersection("TestCr");
TrafficLight light = new TrafficLight("TestCr-N", "North", 30.0, 30.0);
intersection.addTrafficLight(light);
Vehicle v1 = new Vehicle("V1", VehicleType.LIGHT, 0.0,
java.util.Arrays.asList("TestCr", "S"));
Vehicle v1 = new Vehicle("V1", VehicleType.LIGHT, 0.0,
java.util.Arrays.asList("TestCr", "S"));
intersection.configureRoute("S", "North");
// Advance route to next destination
v1.advanceRoute();
intersection.receiveVehicle(v1);
assertEquals(1, intersection.getTotalQueueSize());
assertEquals(1, intersection.getTotalVehiclesReceived());
}
@Test
void testTrafficLightStateChange() {
TrafficLight light = new TrafficLight("Test-Light", "North", 30.0, 30.0);
assertEquals(TrafficLightState.RED, light.getState());
light.changeState(TrafficLightState.GREEN);
assertEquals(TrafficLightState.GREEN, light.getState());
light.changeState(TrafficLightState.RED);
assertEquals(TrafficLightState.RED, light.getState());
}
@Test
void testSimulationEngineInitialization() throws IOException {
SimulationConfig config = new SimulationConfig("src/main/resources/simulation.properties");
SimulationEngine engine = new SimulationEngine(config);
engine.initialize();
assertNotNull(engine.getIntersections());
assertEquals(5, engine.getIntersections().size());
// Check that intersections have traffic lights
for (Intersection intersection : engine.getIntersections().values()) {
assertEquals(3, intersection.getTrafficLights().size()); // North, South, East, West
}
}
// Removed testSimulationEngineInitialization as SimulationEngine has been
// removed.
@Test
void testStatisticsCollector() throws IOException {
SimulationConfig config = new SimulationConfig("src/main/resources/simulation.properties");
StatisticsCollector collector = new StatisticsCollector(config);
Vehicle v1 = new Vehicle("V1", VehicleType.LIGHT, 0.0,
java.util.Arrays.asList("Cr1", "Cr2", "S"));
Vehicle v1 = new Vehicle("V1", VehicleType.LIGHT, 0.0,
java.util.Arrays.asList("Cr1", "Cr2", "S"));
collector.recordVehicleGeneration(v1, 0.0);
assertEquals(1, collector.getTotalVehiclesGenerated());
collector.recordVehicleArrival(v1, "Cr1", 1.0);
collector.recordVehicleExit(v1, 10.0);
assertEquals(1, collector.getTotalVehiclesCompleted());
}