
Relatório de Correção de Regressão de Desempenho em
Linux

Leandro Afonso

11 de Dezembro de 2025

1 Resumo do Problema

A simulação distribuída de tráfego demonstrou uma regressão significativa de desempenho em
ambiente Linux nativo quando comparada com a execução em Windows/Wine.

A tabela abaixo ilustra a discrepância nas taxas de conclusão de veículos dentro da janela de
simulação fixa:

Ambiente Taxa de Conclusão

Windows / Wine ∼ 95− 100%
Linux (OpenJDK Nativo) ∼ 44%
Linux (com strace) ∼ 91%

Table 1: Comparação de desempenho por ambiente.

O insight crucial surgiu ao descobrir que a execução sob strace recuperava a taxa de conclusão
para 91%. O strace introduz overhead em cada syscall, o que, paradoxalmente, estabilizou o
sistema ao forçar um abrandamento natural (throttling).

2 Causa Raiz

O Linux executa demasiado rápido.

O Coordenador gera veículos a uma velocidade superior à capacidade de processamento das
interseções distribuídas e da pilha de rede. Em Windows/Wine, o overhead inerente à emulação
e ao agendador do SO limita naturalmente a taxa de transferência do sistema.

Em Linux nativo, a execução mais célere provoca uma condição de corrida sistémica:

• A geração de veículos excede a capacidade de processamento imediato dos nós.

• As filas de eventos congestionam (back up) rapidamente nas interseções.

• Veículos gerados tardiamente não dispõem de tempo de CPU suficiente para concluir o
percurso antes do fim da simulação.

3 Solução Implementada

A correção consistiu na introdução de micro-atrasos (micro-throttles) utilizando LockSupport.parkNanos().
Esta abordagem simula o overhead natural presente no ambiente Windows, permitindo o escoa-
mento das filas de E/S.

1



3.1 Alterações no Código

1. Ficheiro: SocketConnection.java
Adicionado um atraso de 50µs após operações de E/S para permitir o processamento da pilha
TCP.

1 // Em sendMessage () após o flush:
2 dataOut.flush();
3 LockSupport.parkNanos (50000); // 50 us delay
4

5 // Em receiveMessage () após readFully:
6 dataIn.readFully(data);
7 LockSupport.parkNanos (50000); // 50 us delay

SocketConnection.java (Excerto)

2. Ficheiro: CoordinatorProcess.java
Adicionado um atraso de 100µs na geração de veículos para limitar a taxa de produção.

1 // Em generateAndSendVehicle ():
2 sendVehicleToIntersection(vehicle , entryIntersection);
3 LockSupport.parkNanos (100000); // 100 us delay

CoordinatorProcess.java (Excerto)

Nota: Em ambos os ficheiros deve ser importado java.util.concurrent.locks.LockSupport.

4 Resultados e Validação

A aplicação dos atrasos sintéticos restaurou a paridade de desempenho entre os sistemas opera-
tivos.

Ambiente Antes da Correção Após Correção

Linux Nativo ∼ 44% ∼ 92%

4.1 Por que funciona?

• Precisão: LockSupport.parkNanos() oferece um atraso preciso e não bloqueante, com
impacto mínimo no agendador do SO, ao contrário de Thread.sleep().

• Ritmo de E/S (50µs): Abranda a comunicação via socket o suficiente para evitar a
saturação dos buffers de receção das interseções.

• Controlo de Fluxo (100µs): Limita a produção do Coordenador, garantindo que o
sistema a jusante consegue processar os eventos em tempo útil.

4.2 Verificação

Para validar a correção no ambiente de desenvolvimento:

1 mvn clean compile
2 mvn javafx:run

Resultado Esperado: Taxa de conclusão superior a 90%.

2



5 Abordagens Alternativas (Falhadas)

As seguintes tentativas foram realizadas antes da solução final, sem sucesso:

• Thread.sleep(1): Demasiado impreciso (granularidade mínima de ∼1ms em Linux), cau-
sando atrasos excessivos.

• Thread.yield(): Sem efeito prático no agendador CFS do Linux neste contexto.

• Garbage Collectors: A alteração entre G1, Parallel e Shenandoah não surtiu efeito.

• Versão Java: Testes com Java 17 e 25 mostraram o mesmo comportamento.

• Prioridade de Threads: Ajustes de prioridade na JVM foram ignorados pelo SO.

3


	Resumo do Problema
	Causa Raiz
	Solução Implementada
	Alterações no Código

	Resultados e Validação
	Por que funciona?
	Verificação

	Abordagens Alternativas (Falhadas)

