Relatorio de Correcao de Regressao de Desempenho em
Linux

Leandro Afonso

11 de Dezembro de 2025

1 Resumo do Problema

A simulagao distribuida de trafego demonstrou uma regressao significativa de desempenho em
ambiente Linux nativo quando comparada com a execu¢ao em Windows/Wine.

A tabela abaixo ilustra a discrepéncia nas taxas de conclusao de veiculos dentro da janela de
simulagao fixa:

Ambiente Taxa de Conclusao
Windows / Wine ~ 95 —100%
Linux (OpenJDK Nativo) ~ 44%

Linux (com strace) ~ 91%

Table 1: Comparacao de desempenho por ambiente.

O insight crucial surgiu ao descobrir que a execugao sob strace recuperava a taxa de conclusao
para 91%. O strace introduz overhead em cada syscall, o que, paradoxalmente, estabilizou o
sistema ao forgar um abrandamento natural (throttling).

2 Causa Raiz

O Linux executa demasiado rapido.

O Coordenador gera veiculos a uma velocidade superior & capacidade de processamento das
intersegoes distribuidas e da pilha de rede. Em Windows/Wine, o overhead inerente & emulagao
e ao agendador do SO limita naturalmente a taxa de transferéncia do sistema.

Em Linux nativo, a execu¢ao mais célere provoca uma condi¢ao de corrida sistémica:
e A geracao de veiculos excede a capacidade de processamento imediato dos nos.
e As filas de eventos congestionam (back up) rapidamente nas intersegoes.

e Veiculos gerados tardiamente nao dispoem de tempo de CPU suficiente para concluir o
percurso antes do fim da simulagao.

3 Solucao Implementada

A corregao consistiu na introdugao de micro-atrasos (micro-throttles) utilizando LockSupport . parkNanos ().
Esta abordagem simula o overhead natural presente no ambiente Windows, permitindo o escoa-
mento das filas de E/S.



N S

w N =

3.1 Alteragoes no Cédigo

1. Ficheiro: SocketConnection. java
Adicionado um atraso de 50us apds operagoes de E/S para permitir o processamento da pilha
TCP.

// Em sendMessage () apds o flush:
dataOut.flush () ;
LockSupport.parkNanos (50000); // 50 us delay

// Em receiveMessage () apds readFully:
dataln.readFully (data);
LockSupport.parkNanos (50000); // 50 us delay

SocketConnection.java (Excerto)

2. Ficheiro: CoordinatorProcess. java
Adicionado um atraso de 100us na geragao de veiculos para limitar a taxa de producao.

// Em generateAndSendVehicle () :
sendVehicleToIntersection(vehicle, entryIntersection);
LockSupport.parkNanos (100000) ; // 100 us delay

CoordinatorProcess.java (Excerto)
Nota: Em ambos os ficheiros deve ser importado java.util.concurrent.locks.LockSupport.

4 Resultados e Validacao

A aplicacao dos atrasos sintéticos restaurou a paridade de desempenho entre os sistemas opera-
tivos.

Ambiente Antes da Correcao Apés Corregao

Linux Nativo ~ 44% ~ 92%

4.1 Por que funciona?

e Precisao: LockSupport.parkNanos() oferece um atraso preciso e nao bloqueante, com
impacto minimo no agendador do SO, ao contrario de Thread.sleep().

e Ritmo de E/S (50us): Abranda a comunicagao via socket o suficiente para evitar a
saturacao dos buffers de rececao das intersegoes.

e Controlo de Fluxo (100us): Limita a produgao do Coordenador, garantindo que o
sistema a jusante consegue processar os eventos em tempo util.
4.2 Verificagao

Para validar a corre¢ao no ambiente de desenvolvimento:

mvn clean compile
mvn javafx:run

Resultado Esperado: Taxa de conclusio superior a 90%.



5 Abordagens Alternativas (Falhadas)

As seguintes tentativas foram realizadas antes da solugao final, sem sucesso:

e Thread.sleep(1): Demasiado impreciso (granularidade minima de ~1ms em Linux), cau-
sando atrasos excessivos.

Thread.yield(): Sem efeito pratico no agendador CFS do Linux neste contexto.

Garbage Collectors: A alteragao entre G1, Parallel e Shenandoah nao surtiu efeito.

Versao Java: Testes com Java 17 e 25 mostraram o mesmo comportamento.

Prioridade de Threads: Ajustes de prioridade na JVM foram ignorados pelo SO.



	Resumo do Problema
	Causa Raiz
	Solução Implementada
	Alterações no Código

	Resultados e Validação
	Por que funciona?
	Verificação

	Abordagens Alternativas (Falhadas)

