Files
SD/main/graphing.py
Leandro Afonso a2f9e725de feat: Implement batch performance analysis dialog and routing policies
- Added BatchAnalysisDialog for running multiple simulations and generating reports.
- Implemented LeastCongestedRouteSelector for dynamic routing based on congestion levels.
- Created RandomRouteSelector for baseline random routing strategy.
- Developed ShortestPathRouteSelector to select routes based on the shortest path.
- Defined RouteSelector interface to standardize routing policy implementations.
- Introduced RoutingPolicy enum to manage available routing strategies.
2025-12-07 00:35:06 +00:00

169 lines
6.5 KiB
Python

import pandas as pd
import matplotlib.pyplot as plt
import glob
import os
# Find CSV files using glob
def load_latest_csv(pattern):
"""Load the most recent CSV file matching the pattern"""
files = glob.glob(pattern)
if not files:
print(f"Warning: No files found matching '{pattern}'")
return None
# Sort by modification time, get the latest
latest_file = max(files, key=os.path.getmtime)
print(f"Loading: {latest_file}")
return pd.read_csv(latest_file)
# Carregar dados
print("Looking for analysis files...")
low = load_latest_csv('analysis/LOW_LOAD_*.csv')
medium = load_latest_csv('analysis/MEDIUM_LOAD_*.csv')
high = load_latest_csv('analysis/HIGH_LOAD_*.csv')
# Check if we have all data
if low is None or medium is None or high is None:
print("\nError: Missing analysis files!")
print("Please run the batch analysis first:")
exit(1)
# Print available columns for debugging
print("\nAvailable columns in LOW_LOAD CSV:")
print(low.columns.tolist())
# Create output directory for graphs
os.makedirs('graphs', exist_ok=True)
# 1. Gráfico: Dwelling Time vs Load
plt.figure(figsize=(10, 6))
dwelling_times = [
low['TempoMédioSistema'].mean(),
medium['TempoMédioSistema'].mean(),
high['TempoMédioSistema'].mean()
]
plt.bar(['Low', 'Medium', 'High'], dwelling_times, color=['green', 'orange', 'red'])
plt.ylabel('Average Dwelling Time (s)')
plt.title('System Performance vs Load')
plt.xlabel('Load Scenario')
plt.grid(axis='y', alpha=0.3)
for i, v in enumerate(dwelling_times):
plt.text(i, v + 1, f'{v:.2f}s', ha='center', va='bottom')
plt.savefig('graphs/dwelling_time_comparison.png', dpi=300, bbox_inches='tight')
print("\nGraph saved: graphs/dwelling_time_comparison.png")
plt.close()
# 2. Gráfico: Completion Rate vs Load
plt.figure(figsize=(10, 6))
completion_rates = [
low['TaxaConclusão'].mean(),
medium['TaxaConclusão'].mean(),
high['TaxaConclusão'].mean()
]
plt.bar(['Low', 'Medium', 'High'], completion_rates, color=['green', 'orange', 'red'])
plt.ylabel('Completion Rate (%)')
plt.title('Vehicle Completion Rate vs Load')
plt.xlabel('Load Scenario')
plt.grid(axis='y', alpha=0.3)
plt.ylim(0, 100)
for i, v in enumerate(completion_rates):
plt.text(i, v + 2, f'{v:.1f}%', ha='center', va='bottom')
plt.savefig('graphs/completion_rate_comparison.png', dpi=300, bbox_inches='tight')
print("Graph saved: graphs/completion_rate_comparison.png")
plt.close()
# 3. Gráfico: Waiting Time vs Load
plt.figure(figsize=(10, 6))
waiting_times = [
low['TempoMédioEspera'].mean(),
medium['TempoMédioEspera'].mean(),
high['TempoMédioEspera'].mean()
]
plt.bar(['Low', 'Medium', 'High'], waiting_times, color=['green', 'orange', 'red'])
plt.ylabel('Average Waiting Time (s)')
plt.title('Average Waiting Time vs Load')
plt.xlabel('Load Scenario')
plt.grid(axis='y', alpha=0.3)
for i, v in enumerate(waiting_times):
plt.text(i, v + 1, f'{v:.2f}s', ha='center', va='bottom')
plt.savefig('graphs/waiting_time_comparison.png', dpi=300, bbox_inches='tight')
print("Graph saved: graphs/waiting_time_comparison.png")
plt.close()
# 4. Gráfico: Summary Statistics
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(14, 10))
loads = ['Low', 'Medium', 'High']
# Vehicles generated
ax1.bar(loads, [low['VeículosGerados'].mean(), medium['VeículosGerados'].mean(), high['VeículosGerados'].mean()], color=['green', 'orange', 'red'])
ax1.set_title('Vehicles Generated')
ax1.set_ylabel('Count')
ax1.grid(axis='y', alpha=0.3)
# Vehicles completed
ax2.bar(loads, [low['VeículosCompletados'].mean(), medium['VeículosCompletados'].mean(), high['VeículosCompletados'].mean()], color=['green', 'orange', 'red'])
ax2.set_title('Vehicles Completed')
ax2.set_ylabel('Count')
ax2.grid(axis='y', alpha=0.3)
# Min/Max dwelling time
x = range(3)
width = 0.35
ax3.bar([i - width/2 for i in x], [low['TempoMínimoSistema'].mean(), medium['TempoMínimoSistema'].mean(), high['TempoMínimoSistema'].mean()], width, label='Min', color='lightblue')
ax3.bar([i + width/2 for i in x], [low['TempoMáximoSistema'].mean(), medium['TempoMáximoSistema'].mean(), high['TempoMáximoSistema'].mean()], width, label='Max', color='darkblue')
ax3.set_title('Min/Max Dwelling Time')
ax3.set_ylabel('Time (s)')
ax3.set_xticks(x)
ax3.set_xticklabels(loads)
ax3.legend()
ax3.grid(axis='y', alpha=0.3)
# Performance summary
metrics = ['Dwelling\nTime', 'Waiting\nTime', 'Completion\nRate']
low_vals = [low['TempoMédioSistema'].mean(), low['TempoMédioEspera'].mean(), low['TaxaConclusão'].mean()]
med_vals = [medium['TempoMédioSistema'].mean(), medium['TempoMédioEspera'].mean(), medium['TaxaConclusão'].mean()]
high_vals = [high['TempoMédioSistema'].mean(), high['TempoMédioEspera'].mean(), high['TaxaConclusão'].mean()]
x = range(len(metrics))
width = 0.25
ax4.bar([i - width for i in x], low_vals, width, label='Low', color='green')
ax4.bar(x, med_vals, width, label='Medium', color='orange')
ax4.bar([i + width for i in x], high_vals, width, label='High', color='red')
ax4.set_title('Performance Summary')
ax4.set_xticks(x)
ax4.set_xticklabels(metrics)
ax4.legend()
ax4.grid(axis='y', alpha=0.3)
plt.tight_layout()
plt.savefig('graphs/summary_statistics.png', dpi=300, bbox_inches='tight')
print("Graph saved: graphs/summary_statistics.png")
plt.close()
# Print summary statistics
print("\n" + "="*60)
print("SUMMARY STATISTICS")
print("="*60)
print(f"\nLOW LOAD:")
print(f" Avg Dwelling Time: {low['TempoMédioSistema'].mean():.2f}s")
print(f" Avg Waiting Time: {low['TempoMédioEspera'].mean():.2f}s")
print(f" Completion Rate: {low['TaxaConclusão'].mean():.1f}%")
print(f" Vehicles Generated: {low['VeículosGerados'].mean():.0f}")
print(f" Vehicles Completed: {low['VeículosCompletados'].mean():.0f}")
print(f"\nMEDIUM LOAD:")
print(f" Avg Dwelling Time: {medium['TempoMédioSistema'].mean():.2f}s")
print(f" Avg Waiting Time: {medium['TempoMédioEspera'].mean():.2f}s")
print(f" Completion Rate: {medium['TaxaConclusão'].mean():.1f}%")
print(f" Vehicles Generated: {medium['VeículosGerados'].mean():.0f}")
print(f" Vehicles Completed: {medium['VeículosCompletados'].mean():.0f}")
print(f"\nHIGH LOAD:")
print(f" Avg Dwelling Time: {high['TempoMédioSistema'].mean():.2f}s")
print(f" Avg Waiting Time: {high['TempoMédioEspera'].mean():.2f}s")
print(f" Completion Rate: {high['TaxaConclusão'].mean():.1f}%")
print(f" Vehicles Generated: {high['VeículosGerados'].mean():.0f}")
print(f" Vehicles Completed: {high['VeículosCompletados'].mean():.0f}")
print("\n" + "="*60)
print("All graphs saved in 'graphs/' directory!")
print("="*60)