Dash editor and DES impl

This commit is contained in:
2025-12-05 02:29:33 +00:00
parent d28a77b6a4
commit 90db380f61
43 changed files with 3737 additions and 1002 deletions

View File

@@ -12,6 +12,13 @@ import java.util.concurrent.TimeUnit;
import sd.config.SimulationConfig;
import sd.coordinator.SocketClient;
import sd.dashboard.StatsUpdatePayload;
import sd.des.DESEventType;
import sd.des.EventQueue;
import sd.des.SimulationClock;
import sd.des.SimulationEvent;
import sd.logging.EventLogger;
import sd.logging.EventType;
import sd.logging.VehicleTracer;
import sd.model.Message;
import sd.model.MessageType;
import sd.model.Vehicle;
@@ -20,16 +27,17 @@ import sd.protocol.MessageProtocol;
import sd.protocol.SocketConnection;
/**
* Processo responsável pelo nó de saída do sistema de simulação de tráfego
* distribuído.
* Destino final de todos os veículos da simulação (nó de saída S).
*
* Este processo representa o ponto final ("S") onde os veículos completam as
* suas rotas.
* As suas principais responsabilidades são:
* - Receber veículos que terminam a sua rota vindos das interseções
* - Calcular e agregar estatísticas finais dos veículos
* - Enviar estatísticas periódicas para o dashboard
* - Gerar relatórios finais ao terminar a simulação
* <p>Opera como sumidouro da rede:
* <ol>
* <li>Recebe veículos que completaram a viagem
* <li>Regista estatísticas finais (tempo total, espera, travessia)
* <li>Envia métricas ao dashboard em tempo real
* </ol>
*
* <p>Participa no DES rastreando eventos, mas opera principalmente
* de forma reativa, aguardando chegadas via socket.
*/
public class ExitNodeProcess {
@@ -37,41 +45,43 @@ public class ExitNodeProcess {
private ServerSocket serverSocket;
private final ExecutorService connectionHandlerPool;
/**
* Flag para controlar a execução do processo (volatile para visibilidade entre
* threads)
*/
// DES components
private final SimulationClock clock;
private final EventQueue eventQueue;
private final EventLogger eventLogger;
private Thread eventProcessorThread;
/** Flag de controlo (volatile para visibilidade entre threads) */
private volatile boolean running;
/** Simulation start time (milliseconds) to calculate relative times */
/** Instante de início da simulação (milissegundos) */
private long simulationStartMillis;
/** Counter de veículos que completaram a rota */
/** Contador de veículos que completaram a rota */
private int totalVehiclesReceived;
/** Soma dos tempos no sistema de todos os veículos */
/** Tempo acumulado no sistema de todos os veículos */
private double totalSystemTime;
/** Soma dos tempos de espera de todos os veículos */
/** Tempo acumulado em espera de todos os veículos */
private double totalWaitingTime;
/** Soma dos tempos de travessia de todos os veículos */
/** Tempo acumulado em travessia de todos os veículos */
private double totalCrossingTime;
/** Contagem de veículos por tipo */
private final Map<VehicleType, Integer> vehicleTypeCount;
/** Tempo total de espera acumulado por tipo de veículo */
/** Tempo de espera acumulado por tipo de veículo */
private final Map<VehicleType, Double> vehicleTypeWaitTime;
/** Socket para comunicação com o dashboard */
/** Cliente socket para envio de estatísticas ao dashboard */
private SocketClient dashboardClient;
/**
* Método para iniciar o processo
* Ponto de entrada do processo.
*
* @param args Argumentos da linha de comandos. Se fornecido, args[0] deve ser
* o caminho para um ficheiro de configuração personalizado.
* @param args args[0] (opcional) = caminho do ficheiro de configuração
*/
public static void main(String[] args) {
System.out.println("=".repeat(60));
@@ -79,6 +89,8 @@ public class ExitNodeProcess {
System.out.println("=".repeat(60));
try {
EventLogger.getInstance().log(EventType.PROCESS_STARTED, "ExitNode", "Exit node process started");
String configFile = args.length > 0 ? args[0] : "src/main/resources/simulation.properties";
System.out.println("Loading configuration from: " + configFile);
@@ -93,22 +105,25 @@ public class ExitNodeProcess {
} catch (IOException e) {
System.err.println("Failed to start exit node: " + e.getMessage());
EventLogger.getInstance().logError("ExitNode", "Failed to start", e);
System.exit(1);
} catch (Exception e) {
System.err.println("Exit node error: " + e.getMessage());
EventLogger.getInstance().logError("ExitNode", "Exit node error", e);
System.exit(1);
} finally {
EventLogger.getInstance().log(EventType.PROCESS_STOPPED, "ExitNode", "Exit node process stopped");
}
}
/**
* Constrói um novo processo de nó de saída.
* Configura o Nó de Saída.
*
* Inicializa todas as estruturas de dados necessárias para recolher
* estatísticas
* e configura o pool de threads para processar as ligações concorrentes.
* Inicializamos os nossos contadores, preparamos a pool de threads para tratar
* das ligações de veículos recebidas,
* e configuramos os componentes DES para rastreio de eventos.
*
* @param config Configuração da simulação contendo portas e endereços dos
* serviços
* @param config A configuração da simulação.
*/
public ExitNodeProcess(SimulationConfig config) {
this.config = config;
@@ -128,17 +143,23 @@ public class ExitNodeProcess {
vehicleTypeWaitTime.put(type, 0.0);
}
System.out.println("Exit node initialized");
// Initialize DES components
this.clock = new SimulationClock();
this.eventQueue = new EventQueue(true); // Track history
this.eventLogger = EventLogger.getInstance();
eventLogger.log(EventType.PROCESS_STARTED, "ExitNode",
"Exit node initialized with DES architecture");
System.out.println("Exit node initialized (DES Mode)");
System.out.println(" - Exit port: " + config.getExitPort());
System.out.println(" - Dashboard: " + config.getDashboardHost() + ":" + config.getDashboardPort());
}
/**
* Inicializa o processo de ligação ao dashboard.
*
* Tenta conectar-se ao dashboard. Se a ligação falhar, o processo
* continua a funcionar normalmente, mas sem enviar estatísticas.
*
* Tenta estabelecer uma ligação ao dashboard.
* Se for bem-sucedido, poderemos enviar estatísticas em tempo real. Se não,
* apenas registamos localmente.
*/
public void initialize() {
System.out.println("Connecting to dashboard...");
@@ -158,23 +179,141 @@ public class ExitNodeProcess {
}
/**
* Inicia o socket e começa a aceitar ligações.
* Starts the DES event processing thread.
* Currently, ExitNode is primarily reactive (receives vehicles via network),
* but maintains event queue for potential scheduled events and history
* tracking.
*/
private void startEventProcessor() {
eventProcessorThread = new Thread(() -> {
eventLogger.log(EventType.SIMULATION_STARTED, "ExitNode",
"Event processor thread started");
// Keep running while process is active
while (running) {
SimulationEvent event = eventQueue.poll();
if (event == null) {
// No events currently, wait before checking again
try {
Thread.sleep(100);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
break;
}
continue;
}
// Advance clock to event time
clock.advanceTo(event.getTimestamp());
// Process the event
processEvent(event);
}
eventLogger.log(EventType.SIMULATION_STOPPED, "ExitNode",
String.format("Event processor thread terminated at time %.2f", clock.getCurrentTime()));
}, "EventProcessor-ExitNode");
eventProcessorThread.start();
}
/**
* Processes a discrete event based on its type.
* Currently supports VEHICLE_EXIT and SIMULATION_END events.
*/
private void processEvent(SimulationEvent event) {
try {
switch (event.getType()) {
case VEHICLE_EXIT:
// Vehicle exits are handled via network messages in real-time
// This event type can be used for scheduled vehicle processing
break;
case SIMULATION_END:
handleSimulationEndEvent(event);
break;
default:
System.err.println("[ExitNode] Unknown event type: " + event.getType());
}
} catch (Exception e) {
System.err.println("[ExitNode] Error processing event " + event.getType() +
" at time " + event.getTimestamp() + ": " + e.getMessage());
e.printStackTrace();
}
}
/**
* Handles simulation end event.
*/
private void handleSimulationEndEvent(SimulationEvent event) {
eventLogger.log(EventType.SIMULATION_STOPPED, "ExitNode",
String.format("Simulation ended at time %.2f", event.getTimestamp()));
running = false;
// Print final statistics
printFinalStatistics();
}
/**
* Exports the complete event history for the exit node.
* This satisfies the spec requirement: "Deve ser possível verificar a lista
* completa de eventos"
*/
public void exportEventHistory(String outputPath) {
String history = eventQueue.exportEventHistory();
try (java.io.PrintWriter writer = new java.io.PrintWriter(outputPath)) {
writer.println(history);
System.out.println("[ExitNode] Event history exported to: " + outputPath);
} catch (java.io.FileNotFoundException e) {
System.err.println("[ExitNode] Failed to export event history: " + e.getMessage());
}
}
/**
* Schedules a simulation end event at the specified time.
*
* Este é o loop principal do processo que:
* 1. Cria um socket na porta definida
* 2. Aguarda pelas ligações das interseções
* 3. Delega cada ligação a uma thread da pool para processamento assíncrono
* @param endTime The simulation time when the simulation should end
*/
public void scheduleSimulationEnd(double endTime) {
SimulationEvent endEvent = new SimulationEvent(
endTime,
DESEventType.SIMULATION_END,
null);
eventQueue.schedule(endEvent);
System.out.println("[ExitNode] Simulation end scheduled at time " + endTime);
}
/**
* Abre o socket do servidor e começa a escutar por veículos.
*
* @throws IOException Se o socket não puder ser criado ou houver erro na
* aceitação
* Este é o loop principal. Aceitamos ligações das interseções (de onde vêm os
* veículos)
* e passamo-las para a nossa pool de threads para processamento.
*
* @throws IOException Se não conseguirmos fazer bind à porta.
*/
public void start() throws IOException {
start(true); // Default to DES mode
}
/**
* Starts the exit node process.
*
* @param useDES If true, starts event processor for DES mode tracking
*/
public void start(boolean useDES) throws IOException {
int port = config.getExitPort();
serverSocket = new ServerSocket(port);
running = true;
simulationStartMillis = System.currentTimeMillis();
System.out.println("Exit node started on port " + port);
if (useDES) {
// Note: ExitNode is primarily reactive (network-driven), but maintains
// event queue for simulation end events and history tracking
System.out.println("Running in DES mode (event history tracking enabled)");
}
System.out.println("Waiting for vehicles...\\n");
while (running) {
@@ -190,13 +329,12 @@ public class ExitNodeProcess {
}
/**
* Processa uma ligação recebida de uma interseção.
* Trata uma ligação de uma interseção.
*
* Mantém a ligação aberta e processa continuamente mensagens do tipo
* VEHICLE_TRANSFER. Cada mensagem representa um veículo que chegou ao nó de
* saída.
* Mantemos a ligação aberta e escutamos por mensagens `VEHICLE_TRANSFER`.
* Cada mensagem contém um veículo que acabou de terminar a sua viagem.
*
* @param clientSocket Socket da ligação estabelecida com a interseção
* @param clientSocket O socket ligado à interseção.
*/
private void handleIncomingConnection(Socket clientSocket) {
String clientAddress = clientSocket.getInetAddress().getHostAddress();
@@ -252,25 +390,24 @@ public class ExitNodeProcess {
}
/**
* Processa um veículo que chegou ao nó de saída.
* Processa um veículo que acabou de sair do sistema.
*
* Método sincronizado para garantir thread-safety ao atualizar as estatísticas.
* Calcula as métricas finais do veículo e atualiza:
* - Counters globais;
* - Estatísticas por tipo de veículo;
* - Faz update ao dashboard a cada 10 veículos.
* Calculamos quanto tempo demorou, atualizamos as nossas estatísticas globais e
* notificamos o dashboard.
* Este método é sincronizado porque múltiplos veículos podem chegar ao mesmo
* tempo.
*
* @param vehicle Veículo que completou a sua rota
* @param vehicle O veículo que completou a sua rota.
*/
private synchronized void processExitingVehicle(Vehicle vehicle) {
totalVehiclesReceived++;
// Calculate relative simulation time (seconds since simulation start)
double currentSimTime = (System.currentTimeMillis() - simulationStartMillis) / 1000.0;
// System time = time vehicle spent in system (current time - entry time)
double systemTime = currentSimTime - vehicle.getEntryTime();
// Use simulation time instead of wall-clock time
// System time = total time vehicle spent in system (wait + crossing times)
// This represents the actual simulation time elapsed, not real-time
double waitTime = vehicle.getTotalWaitingTime();
double crossingTime = vehicle.getTotalCrossingTime();
double systemTime = waitTime + crossingTime;
// Store times in seconds, will be converted to ms when sending to dashboard
totalSystemTime += systemTime;
@@ -284,18 +421,23 @@ public class ExitNodeProcess {
System.out.printf("[Exit] Vehicle %s completed (type=%s, system_time=%.2fs, wait=%.2fs, crossing=%.2fs)%n",
vehicle.getId(), vehicle.getType(), systemTime, waitTime, crossingTime);
// Log vehicle exit
EventLogger.getInstance().logVehicle(EventType.VEHICLE_EXITED, "ExitNode", vehicle.getId(),
String.format("Completed - System: %.2fs, Wait: %.2fs, Crossing: %.2fs", systemTime, waitTime,
crossingTime));
// Complete vehicle trace if tracking
VehicleTracer.getInstance().logExit(vehicle, systemTime);
// Send stats after every vehicle to ensure dashboard updates quickly
sendStatsToDashboard();
}
/**
* Envia as estatísticas para o dashboard.
*
* Prepara e envia uma mensagem STATS_UPDATE com:
* - O total de veículos processados;
* - A média dos tempos (sistema, espera, travessia);
* - As contagens e médias por cada tipo de veículo.
* Envia as estatísticas mais recentes para o dashboard.
*
* Empacotamos as contagens totais e os tempos médios num `StatsUpdatePayload`
* e enviamo-lo.
*/
private void sendStatsToDashboard() {
if (dashboardClient == null || !dashboardClient.isConnected()) {
@@ -347,14 +489,9 @@ public class ExitNodeProcess {
}
/**
* Termina o processo
* Encerra graciosamente o processo.
*
* Executa a seguinte sequência:
* Imprime as estatísticas finais no terminal;
* Envia a última atualização de estatísticas ao dashboard;
* Fecha o socket;
* Aguarda pela finalização das threads;
* Fecha a ligação com o dashboard;
* Imprimimos as estatísticas finais, fechamos ligações e limpamos threads.
*/
public void shutdown() {
System.out.println("\n[Exit] Shutting down...");
@@ -390,15 +527,9 @@ public class ExitNodeProcess {
}
/**
* Imprime as estatísticas finais detalhadas no terminal
*
* Gera um relatório com:
* Total de veículos que completaram a rota;
* Médias de tempo no sistema, espera e travessia;
* Distribuição e médias pelo tipo de veículo (BIKE, LIGHT, HEAVY);
*
* Este método é chamado durante o shutdown para fornecer um resumo
* da simulação antes de terminar o processo.
* Imprime um resumo dos resultados da simulação na consola.
* Isto dá-nos uma visão rápida de como a simulação correu (médias, contagens de
* veículos, etc.).
*/
private void printFinalStatistics() {
System.out.println("\n=== EXIT NODE STATISTICS ===");

View File

@@ -16,21 +16,36 @@ import java.util.concurrent.locks.ReentrantLock;
import sd.config.SimulationConfig;
import sd.coordinator.SocketClient;
import sd.dashboard.StatsUpdatePayload;
import sd.engine.TrafficLightThread;
import sd.des.DESEventType;
import sd.des.EventQueue;
import sd.des.SimulationClock;
import sd.des.SimulationEvent;
import sd.des.TrafficLightEvent;
import sd.logging.EventLogger;
import sd.model.Intersection;
import sd.model.Message;
import sd.model.MessageType;
import sd.model.TrafficLight;
import sd.model.TrafficLightState;
import sd.model.Vehicle;
import sd.protocol.MessageProtocol;
import sd.protocol.SocketConnection;
import sd.serialization.SerializationException;
/**
* Main class for an Intersection Process in the distributed traffic simulation.
* * Each IntersectionProcess runs as an independent Java application (JVM
* instance)
* representing one of the five intersections (Cr1-Cr5) in the network.
* Representa uma única interseção na nossa simulação de tráfego distribuída.
*
* Esta classe opera como um processo independente (uma aplicação Java autónoma)
* e é responsável por:
* 1. Gerir os semáforos e a sua temporização.
* 2. Processar as chegadas e partidas de veículos.
* 3. Comunicar com outras interseções e com o dashboard.
*
* Utiliza uma abordagem de Simulação de Eventos Discretos (DES), onde as
* mudanças de estado (como semáforos a mudar para verde)
* são agendadas como eventos numa fila de prioridade, em vez de depender de
* loops contínuos ou threads em espera.
* Isto garante uma temporização precisa e uma execução eficiente.
*/
public class IntersectionProcess {
@@ -46,25 +61,31 @@ public class IntersectionProcess {
private final ExecutorService connectionHandlerPool;
private final ExecutorService trafficLightPool;
private ScheduledExecutorService statsExecutor;
private ScheduledExecutorService departureExecutor;
private volatile boolean running; // Quando uma thread escreve um valor volatile, todas as outras
// threads veem a mudança imediatamente.
private volatile boolean running;
/** Escala temporal para visualização: tempo_real = tempo_simulado * escala */
private double timeScale;
/** Relógio central da simulação */
private final SimulationClock clock;
/** Fila de eventos discretos agendados */
private final EventQueue eventQueue;
/** Sistema de registo de eventos */
private final EventLogger eventLogger;
/** Thread dedicada ao processamento sequencial de eventos DES */
private Thread eventProcessorThread;
// Traffic Light Coordination
/**
* Lock to ensure mutual exclusion between traffic lights.
* Only one traffic light can be green at any given time within this
* intersection.
* Lock para exclusão mútua entre semáforos.
* Garante que apenas um semáforo pode estar verde de cada vez nesta interseção.
*/
private final Lock trafficCoordinationLock;
/**
* Tracks which direction currently has the green light.
* null means no direction is currently green (all are red).
* Regista qual direção tem atualmente o sinal verde.
* {@code null} significa que todos os semáforos estão vermelhos.
*/
private volatile String currentGreenDirection;
@@ -73,11 +94,11 @@ public class IntersectionProcess {
private volatile int totalDepartures = 0;
/**
* Constructs a new IntersectionProcess.
* Inicializa o processo da interseção.
*
* @param intersectionId The ID of this intersection (e.g., "Cr1").
* @param configFilePath Path to the simulation.properties file.
* @throws IOException If configuration cannot be loaded.
* @param intersectionId O identificador único para esta interseção (ex: "Cr1").
* @param configFilePath O caminho para o ficheiro de configuração.
* @throws IOException Se houver algum problema ao ler a configuração.
*/
public IntersectionProcess(String intersectionId, String configFilePath) throws IOException {
this.intersectionId = intersectionId;
@@ -85,18 +106,327 @@ public class IntersectionProcess {
this.intersection = new Intersection(intersectionId);
this.outgoingConnections = new HashMap<>();
this.connectionHandlerPool = Executors.newCachedThreadPool();
this.trafficLightPool = Executors.newFixedThreadPool(4); // Max 4 directions
this.statsExecutor = Executors.newSingleThreadScheduledExecutor();
this.departureExecutor = Executors.newScheduledThreadPool(4);
this.running = false;
this.trafficCoordinationLock = new ReentrantLock(true); // Fair lock to prevent starvation
this.currentGreenDirection = null;
this.timeScale = config.getTimeScale();
// Initialize DES components
this.clock = new SimulationClock();
this.eventQueue = new EventQueue(true); // Track history for debugging
this.eventLogger = EventLogger.getInstance();
eventLogger.log(sd.logging.EventType.PROCESS_STARTED, intersectionId,
"Intersection process initialized with DES architecture");
System.out.println("=".repeat(60));
System.out.println("INTERSECTION PROCESS: " + intersectionId);
System.out.println("INTERSECTION PROCESS: " + intersectionId + " (DES Mode)");
System.out.println("=".repeat(60));
}
/**
* Inicia o ciclo de processamento de eventos.
*
* Esta thread é o coração do modelo DES para esta interseção. Retira eventos da
* fila
* e executa-os por ordem cronológica. Enquanto a thread principal trata das
* operações de I/O de rede (receção de veículos),
* esta thread trata da lógica da simulação (semáforos, travessias de veículos).
*/
private void startEventProcessor() {
eventProcessorThread = new Thread(() -> {
eventLogger.log(sd.logging.EventType.SIMULATION_STARTED, intersectionId,
"Event processor thread started");
// Keep running while the process is active
double lastTime = 0.0;
while (running) {
SimulationEvent event = eventQueue.poll();
if (event == null) {
// No events currently, wait a bit before checking again
try {
Thread.sleep(50); // Short sleep to avoid busy-waiting
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
break;
}
continue;
}
// Apply time scaling for visualization
if (timeScale > 0) {
double simTimeDelta = event.getTimestamp() - lastTime;
long realDelayMs = (long) (simTimeDelta * timeScale * 1000);
if (realDelayMs > 0) {
try {
Thread.sleep(realDelayMs);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
break;
}
}
lastTime = event.getTimestamp();
}
// Advance clock to event time
clock.advanceTo(event.getTimestamp());
// Process the event
processEvent(event);
}
eventLogger.log(sd.logging.EventType.SIMULATION_STOPPED, intersectionId,
String.format("Event processor thread terminated at time %.2f", clock.getCurrentTime()));
}, "EventProcessor-" + intersectionId);
eventProcessorThread.start();
}
/**
* Processa um evento da fila de simulação.
* Cada tipo de evento é encaminhado para o seu tratador específico.
*
* @param event o evento a processar
*/
private void processEvent(SimulationEvent event) {
try {
switch (event.getType()) {
case TRAFFIC_LIGHT_CHANGE:
handleTrafficLightChangeEvent(event);
break;
case VEHICLE_ARRIVAL:
// Vehicle arrivals are still handled via network messages
// This event type is for internal scheduling if needed
break;
case VEHICLE_CROSSING_START:
handleVehicleCrossingStartEvent(event);
break;
case VEHICLE_CROSSING_END:
handleVehicleCrossingEndEvent(event);
break;
case SIMULATION_END:
handleSimulationEndEvent(event);
break;
default:
System.err.println("[" + intersectionId + "] Unknown event type: " + event.getType());
}
} catch (Exception e) {
System.err.println("[" + intersectionId + "] Error processing event " + event.getType() +
" at time " + event.getTimestamp() + ": " + e.getMessage());
e.printStackTrace();
}
}
/**
* Trata da mudança dos semáforos.
*
* Quando um semáforo muda de estado, registamos o evento, atualizamos o modelo
* e, se tiver mudado para VERDE,
* verificamos imediatamente se há veículos à espera para atravessar.
* Também agendamos aqui o *próximo* evento de mudança, mantendo o ciclo ativo.
*/
private void handleTrafficLightChangeEvent(SimulationEvent event) {
TrafficLightEvent tlEvent = (TrafficLightEvent) event.getPayload();
TrafficLight light = tlEvent.getLight();
String direction = tlEvent.getDirection();
// Toggle state
TrafficLightState oldState = light.getState();
TrafficLightState newState = (oldState == TrafficLightState.GREEN) ? TrafficLightState.RED
: TrafficLightState.GREEN;
light.changeState(newState);
sd.logging.EventType logEventType = (newState == TrafficLightState.GREEN)
? sd.logging.EventType.LIGHT_CHANGED_GREEN
: sd.logging.EventType.LIGHT_CHANGED_RED;
eventLogger.log(logEventType, intersectionId,
String.format("Direction %s changed to %s at time %.2f",
direction, newState, event.getTimestamp()));
// If light turned GREEN, process queued vehicles
if (newState == TrafficLightState.GREEN) {
processQueuedVehiclesForLight(light, event.getTimestamp());
}
// Schedule next state change
double nextChangeTime = event.getTimestamp() +
(newState == TrafficLightState.GREEN ? light.getGreenTime() : light.getRedTime());
SimulationEvent nextEvent = new SimulationEvent(
nextChangeTime,
DESEventType.TRAFFIC_LIGHT_CHANGE,
tlEvent);
eventQueue.schedule(nextEvent);
}
/**
* Processa a fila de veículos quando um semáforo fica verde.
*
* <p>Para cada veículo na fila:</p>
* <ol>
* <li>Calcula o tempo de travessia com base no tipo de veículo</li>
* <li>Verifica se cabe na duração restante do sinal verde</li>
* <li>Agenda o evento de partida do veículo</li>
* </ol>
*
* <p>Os veículos que não couberem no tempo verde ficam à espera do próximo ciclo.</p>
*
* @param light o semáforo que acabou de ficar verde
* @param currentTime o tempo atual da simulação em segundos
*/
private void processQueuedVehiclesForLight(TrafficLight light, double currentTime) {
double greenDuration = light.getGreenTime();
double timeOffset = 0.0;
int queueSize = light.getQueueSize();
System.out.printf("[%s] Processing queue for %s (GREEN for %.2fs, queue size: %d, currentTime=%.2f)%n",
intersectionId, light.getId(), greenDuration, queueSize, currentTime);
// Process vehicles while queue not empty and within green light duration
while (light.getQueueSize() > 0) {
// Calculate crossing time for next vehicle (peek at queue size to estimate)
// We'll use LIGHT vehicle as default for estimation
double crossingTime = config.getLightVehicleCrossingTime();
// Check if another vehicle can fit in remaining green time
if (timeOffset + crossingTime > greenDuration) {
break; // No more vehicles can cross this green phase
}
// Remove vehicle from queue
Vehicle vehicle = light.removeVehicle();
if (vehicle == null)
break;
// Get actual crossing time for this vehicle
crossingTime = getCrossingTimeForVehicle(vehicle);
// Schedule crossing
double crossingStartTime = currentTime + timeOffset;
scheduleVehicleCrossing(vehicle, crossingStartTime, crossingTime);
// Update offset for next vehicle
timeOffset += crossingTime;
System.out.printf("[%s] Scheduled vehicle %s to cross at t=%.2f (duration=%.2fs)%n",
intersectionId, vehicle.getId(), crossingStartTime, crossingTime);
}
}
/**
* Agenda a travessia e partida de um veículo.
* Cria um evento de fim de travessia agendado para o tempo correto.
*
* @param vehicle o veículo que vai atravessar
* @param startTime quando a travessia começa (segundos de simulação)
* @param crossingDuration quanto tempo demora a atravessar (segundos)
*/
private void scheduleVehicleCrossing(Vehicle vehicle, double startTime, double crossingDuration) {
// Schedule crossing end (when vehicle departs)
double departureTime = startTime + crossingDuration;
// Create event with vehicle as payload
SimulationEvent departureEvent = new SimulationEvent(
departureTime,
DESEventType.VEHICLE_CROSSING_END,
vehicle);
eventQueue.schedule(departureEvent);
eventLogger.log(sd.logging.EventType.VEHICLE_QUEUED, intersectionId,
String.format("Vehicle %s crossing scheduled: %.2fs to %.2fs",
vehicle.getId(), startTime, departureTime));
}
/**
* Calcula o tempo de travessia com base no tipo de veículo.
* Bicicletas são mais rápidas, veículos pesados mais lentos.
*
* @param vehicle o veículo para calcular o tempo
* @return tempo de travessia em segundos
*/
private double getCrossingTimeForVehicle(Vehicle vehicle) {
return switch (vehicle.getType()) {
case BIKE -> config.getBikeVehicleCrossingTime();
case LIGHT -> config.getLightVehicleCrossingTime();
case HEAVY -> config.getHeavyVehicleCrossingTime();
default -> config.getLightVehicleCrossingTime();
};
}
/**
* Trata o evento de início de travessia de um veículo.
* (Implementação futura - atualmente apenas regista o evento)
*
* @param event o evento de início de travessia
*/
private void handleVehicleCrossingStartEvent(SimulationEvent event) {
// Implementation will depend on how vehicle crossing is modeled
// For now, log the event
eventLogger.log(sd.logging.EventType.VEHICLE_DEPARTED, intersectionId,
"Vehicle crossing started at time " + event.getTimestamp());
}
/**
* Trata o fim da travessia de um veículo pela interseção.
* Atualiza estatísticas, regista o tempo de travessia e envia o veículo
* para o próximo destino na sua rota.
*
* @param event evento contendo o veículo que terminou a travessia
*/
private void handleVehicleCrossingEndEvent(SimulationEvent event) {
Vehicle vehicle = (Vehicle) event.getPayload();
// Add crossing time to vehicle stats
double crossingTime = getCrossingTimeForVehicle(vehicle);
vehicle.addCrossingTime(crossingTime);
// Update intersection statistics
intersection.incrementVehiclesSent();
// Send vehicle to next destination
sendVehicleToNextDestination(vehicle);
eventLogger.log(sd.logging.EventType.VEHICLE_DEPARTED, intersectionId,
String.format("Vehicle %s departed at time %.2f", vehicle.getId(), event.getTimestamp()));
}
/**
* Trata o evento de fim da simulação.
* Define a flag de execução como falsa para terminar o processamento.
*
* @param event o evento de fim de simulação
*/
private void handleSimulationEndEvent(SimulationEvent event) {
eventLogger.log(sd.logging.EventType.SIMULATION_STOPPED, intersectionId,
String.format("Simulation ended at time %.2f", event.getTimestamp()));
running = false;
}
/**
* Exporta o histórico completo de eventos para um ficheiro.
* Útil para análise posterior e debugging da simulação.
*
* @param outputPath caminho do ficheiro onde guardar o histórico
*/
public void exportEventHistory(String outputPath) {
String history = eventQueue.exportEventHistory();
try (java.io.PrintWriter writer = new java.io.PrintWriter(outputPath)) {
writer.println(history);
System.out.println("[" + intersectionId + "] Event history exported to: " + outputPath);
} catch (java.io.FileNotFoundException e) {
System.err.println("[" + intersectionId + "] Failed to export event history: " + e.getMessage());
}
}
// Main entry point for running an intersection process
public static void main(String[] args) {
if (args.length < 1) {
@@ -139,7 +469,7 @@ public class IntersectionProcess {
}
/**
* Establishes connection to the dashboard server for statistics reporting.
* Estabelece ligação ao servidor do dashboard para reportar estatísticas.
*/
private void connectToDashboard() {
try {
@@ -163,10 +493,9 @@ public class IntersectionProcess {
}
/**
* Creates traffic lights for this intersection based on its physical
* connections.
* Each intersection has different number and directions of traffic lights
* according to the network topology.
* Cria os semáforos para esta interseção com base nas suas ligações físicas.
* Cada interseção tem um número e direções de semáforos diferentes de acordo
* com a topologia da rede.
*/
private void createTrafficLights() {
System.out.println("\n[" + intersectionId + "] Creating traffic lights...");
@@ -226,10 +555,11 @@ public class IntersectionProcess {
}
/**
* Requests permission for a traffic light to turn green.
* Blocks until permission is granted (no other light is green).
* Solicita permissão para um semáforo ficar verde.
* Bloqueia até que a permissão seja concedida (nenhum outro semáforo está
* verde).
*
* @param direction The direction requesting green light
* @param direction A direção que solicita o sinal verde
*/
public void requestGreenLight(String direction) {
trafficCoordinationLock.lock();
@@ -237,9 +567,10 @@ public class IntersectionProcess {
}
/**
* Releases the green light permission, allowing another light to turn green.
* Liberta a permissão de sinal verde, permitindo que outro semáforo fique
* verde.
*
* @param direction The direction releasing green light
* @param direction A direção que liberta o sinal verde
*/
public void releaseGreenLight(String direction) {
if (direction.equals(currentGreenDirection)) {
@@ -249,25 +580,49 @@ public class IntersectionProcess {
}
/**
* Starts all traffic light threads.
* Modo DES: Agenda os eventos iniciais de mudança de semáforo.
* Isto substitui a antiga abordagem baseada em threads startTrafficLights().
*/
private void startTrafficLights() {
System.out.println("\n[" + intersectionId + "] Starting traffic light threads...");
private void scheduleInitialTrafficLightEvents() {
System.out.println("\n[" + intersectionId + "] Scheduling initial traffic light events (DES mode)...");
double currentTime = clock.getCurrentTime();
System.out.printf("[%s] Initial clock time: %.2f%n", intersectionId, currentTime);
for (TrafficLight light : intersection.getTrafficLights()) {
String direction = light.getDirection();
TrafficLightThread lightTask = new TrafficLightThread(light, this, config);
// Set initial state (first light starts green, others red)
boolean isFirstLight = intersection.getTrafficLights().indexOf(light) == 0;
TrafficLightState initialState = isFirstLight ? TrafficLightState.GREEN : TrafficLightState.RED;
light.changeState(initialState);
trafficLightPool.submit(lightTask);
// Schedule first state change
double firstChangeTime = currentTime +
(initialState == TrafficLightState.GREEN ? light.getGreenTime() : light.getRedTime());
System.out.println(" Started thread for: " + light.getDirection());
TrafficLightEvent tlEvent = new TrafficLightEvent(light, direction, intersectionId);
SimulationEvent event = new SimulationEvent(
firstChangeTime,
DESEventType.TRAFFIC_LIGHT_CHANGE,
tlEvent);
eventQueue.schedule(event);
System.out.println(" Scheduled first event for direction " + direction +
" (initial: " + initialState + ", change at t=" + firstChangeTime + ")");
eventLogger.log(
initialState == TrafficLightState.GREEN ? sd.logging.EventType.LIGHT_CHANGED_GREEN
: sd.logging.EventType.LIGHT_CHANGED_RED,
intersectionId,
"Direction " + direction + " initialized to " + initialState);
}
}
/**
* Sends a vehicle to its next destination via socket connection.
* Envia um veículo para o seu próximo destino via ligação socket.
*
* @param vehicle The vehicle that has crossed this intersection.
* @param vehicle O veículo que atravessou esta interseção.
*/
public void sendVehicleToNextDestination(Vehicle vehicle) {
String nextDestination = vehicle.getCurrentDestination();
@@ -281,7 +636,6 @@ public class IntersectionProcess {
default -> multiplier = 1.0;
}
double travelTime = baseTime * multiplier;
long travelTimeMs = (long) (travelTime * 1000);
System.out.printf("[%s] Vehicle %s departing to %s. Travel time: %.2fs%n",
intersectionId, vehicle.getId(), nextDestination, travelTime);
@@ -289,41 +643,46 @@ public class IntersectionProcess {
// Record departure immediately as it leaves the intersection
recordVehicleDeparture();
// Schedule the arrival at the next node
departureExecutor.schedule(() -> {
try {
// Get or create connection to next destination
SocketConnection connection = getOrCreateConnection(nextDestination);
// Create and send message using Message class
MessageProtocol message = new Message(
MessageType.VEHICLE_TRANSFER,
intersectionId,
nextDestination,
vehicle,
System.currentTimeMillis());
connection.sendMessage(message);
System.out.println("[" + intersectionId + "] Vehicle " + vehicle.getId() +
" arrived at " + nextDestination + " (msg sent)");
// Note: vehicle route is advanced when it arrives at the next intersection
} catch (IOException | InterruptedException e) {
System.err.println("[" + intersectionId + "] Failed to send vehicle " +
vehicle.getId() + " to " + nextDestination + ": " + e.getMessage());
}
}, travelTimeMs, TimeUnit.MILLISECONDS);
// In DES mode, send immediately (no real-time delay)
sendVehicleImmediately(vehicle, nextDestination);
}
/**
* Gets an existing connection to a destination or creates a new one.
* Envia imediatamente um veículo para o seu destino via rede.
*/
private void sendVehicleImmediately(Vehicle vehicle, String nextDestination) {
try {
// Get or create connection to next destination
SocketConnection connection = getOrCreateConnection(nextDestination);
// Create and send message using Message class
MessageProtocol message = new Message(
MessageType.VEHICLE_TRANSFER,
intersectionId,
nextDestination,
vehicle,
System.currentTimeMillis());
connection.sendMessage(message);
System.out.println("[" + intersectionId + "] Vehicle " + vehicle.getId() +
" arrived at " + nextDestination + " (msg sent)");
// Note: vehicle route is advanced when it arrives at the next intersection
} catch (IOException | InterruptedException e) {
System.err.println("[" + intersectionId + "] Failed to send vehicle " +
vehicle.getId() + " to " + nextDestination + ": " + e.getMessage());
}
}
/**
* Obtém uma ligação existente para um destino ou cria uma nova.
*
* @param destinationId The ID of the destination node.
* @return The SocketConnection to that destination.
* @throws IOException If connection cannot be established.
* @throws InterruptedException If connection attempt is interrupted.
* @param destinationId O ID do nó de destino.
* @return A SocketConnection para esse destino.
* @throws IOException Se a ligação não puder ser estabelecida.
* @throws InterruptedException Se a tentativa de ligação for interrompida.
*/
private synchronized SocketConnection getOrCreateConnection(String destinationId)
throws IOException, InterruptedException {
@@ -343,10 +702,10 @@ public class IntersectionProcess {
}
/**
* Gets the host address for a destination node from configuration.
* Obtém o endereço host para um nó de destino a partir da configuração.
*
* @param destinationId The destination node ID.
* @return The host address.
* @param destinationId O ID do nó de destino.
* @return O endereço host.
*/
private String getHostForDestination(String destinationId) {
if (destinationId.equals("S")) {
@@ -357,10 +716,10 @@ public class IntersectionProcess {
}
/**
* Gets the port number for a destination node from configuration.
* Obtém o número da porta para um nó de destino a partir da configuração.
*
* @param destinationId The destination node ID.
* @return The port number.
* @param destinationId O ID do nó de destino.
* @return O número da porta.
*/
private int getPortForDestination(String destinationId) {
if (destinationId.equals("S")) {
@@ -371,10 +730,10 @@ public class IntersectionProcess {
}
/**
* Starts the server socket and begins accepting incoming connections.
* This is the main listening loop of the process.
* Inicia o socket do servidor e começa a aceitar ligações recebidas.
* Este é o loop principal de escuta do processo.
*
* @throws IOException If the server socket cannot be created.
* @throws IOException Se o socket do servidor não puder ser criado.
*/
public void start() throws IOException {
int port = config.getIntersectionPort(intersectionId);
@@ -383,8 +742,10 @@ public class IntersectionProcess {
System.out.println("\n[" + intersectionId + "] Server started on port " + port);
// Start traffic light threads when running is true
startTrafficLights();
// DES Mode: Schedule initial events and start event processor
scheduleInitialTrafficLightEvents();
startEventProcessor();
System.out.println("[" + intersectionId + "] Running in DES mode");
// Start stats updater
statsExecutor.scheduleAtFixedRate(this::sendStatsToDashboard, 1, 1, TimeUnit.SECONDS);
@@ -429,10 +790,10 @@ public class IntersectionProcess {
}
/**
* Handles an incoming connection from another process.
* Continuously listens for vehicle transfer messages.
* Trata uma ligação recebida de outro processo.
* Escuta continuamente mensagens de transferência de veículos.
*
* @param clientSocket The accepted socket connection.
* @param clientSocket A ligação socket aceite.
*/
private void handleIncomingConnection(Socket clientSocket) {
try {
@@ -486,6 +847,10 @@ public class IntersectionProcess {
// Add vehicle to appropriate queue
intersection.receiveVehicle(vehicle);
// Log queue status after adding vehicle
System.out.printf("[%s] Vehicle %s queued. Total queue size: %d%n",
intersectionId, vehicle.getId(), intersection.getTotalQueueSize());
// Record arrival for statistics
recordVehicleArrival();
} else if (message.getType() == MessageType.SHUTDOWN) {
@@ -550,9 +915,7 @@ public class IntersectionProcess {
}
// 2. Shutdown thread pools with force
if (trafficLightPool != null && !trafficLightPool.isShutdown()) {
trafficLightPool.shutdownNow();
}
if (connectionHandlerPool != null && !connectionHandlerPool.isShutdown()) {
connectionHandlerPool.shutdownNow();
}
@@ -565,9 +928,7 @@ public class IntersectionProcess {
// 3. Wait briefly for termination (don't block forever)
try {
if (trafficLightPool != null) {
trafficLightPool.awaitTermination(1, TimeUnit.SECONDS);
}
if (connectionHandlerPool != null) {
connectionHandlerPool.awaitTermination(1, TimeUnit.SECONDS);
}

View File

@@ -0,0 +1,223 @@
package sd.analysis;
import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;
import java.text.SimpleDateFormat;
import java.util.*;
import sd.model.VehicleType;
/**
* Executes multiple simulation runs and aggregates results.
* Calculates statistical measures including mean, standard deviation,
* and confidence intervals across all runs.
*/
public class MultiRunAnalyzer {
private final List<SimulationRunResult> results;
private final String configurationFile;
public MultiRunAnalyzer(String configurationFile) {
this.configurationFile = configurationFile;
this.results = new ArrayList<>();
}
/**
* Adds a completed simulation run result.
*/
public void addResult(SimulationRunResult result) {
results.add(result);
}
/**
* Gets the number of completed runs.
*/
public int getRunCount() {
return results.size();
}
/**
* Generates a comprehensive statistical report.
*/
public String generateReport() {
if (results.isEmpty()) {
return "No simulation results to analyze.";
}
StringBuilder report = new StringBuilder();
// Header
report.append("=".repeat(80)).append("\n");
report.append("MULTI-RUN STATISTICAL ANALYSIS\n");
report.append("=".repeat(80)).append("\n");
report.append("Configuration: ").append(configurationFile).append("\n");
report.append("Number of Runs: ").append(results.size()).append("\n");
report.append("Analysis Date: ").append(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date())).append("\n");
report.append("\n");
// Global metrics
report.append("-".repeat(80)).append("\n");
report.append("GLOBAL METRICS\n");
report.append("-".repeat(80)).append("\n\n");
report.append(analyzeMetric("Vehicles Generated",
extractValues(r -> (double) r.getTotalVehiclesGenerated())));
report.append("\n");
report.append(analyzeMetric("Vehicles Completed",
extractValues(r -> (double) r.getTotalVehiclesCompleted())));
report.append("\n");
report.append(analyzeMetric("Completion Rate (%)",
extractValues(r -> r.getTotalVehiclesGenerated() > 0
? 100.0 * r.getTotalVehiclesCompleted() / r.getTotalVehiclesGenerated()
: 0.0)));
report.append("\n");
report.append(analyzeMetric("Average System Time (seconds)",
extractValues(r -> r.getAverageSystemTime())));
report.append("\n");
report.append(analyzeMetric("Average Waiting Time (seconds)",
extractValues(r -> r.getAverageWaitingTime())));
report.append("\n");
// Per-vehicle-type analysis
report.append("\n");
report.append("-".repeat(80)).append("\n");
report.append("PER-VEHICLE-TYPE ANALYSIS\n");
report.append("-".repeat(80)).append("\n\n");
for (VehicleType type : VehicleType.values()) {
report.append("--- ").append(type).append(" ---\n");
report.append(analyzeMetric(" Vehicle Count",
extractValues(r -> (double) r.getVehicleCountByType().getOrDefault(type, 0))));
report.append("\n");
report.append(analyzeMetric(" Avg System Time (seconds)",
extractValues(r -> r.getAvgSystemTimeByType().getOrDefault(type, 0.0))));
report.append("\n");
report.append(analyzeMetric(" Avg Waiting Time (seconds)",
extractValues(r -> r.getAvgWaitTimeByType().getOrDefault(type, 0.0))));
report.append("\n\n");
}
// Per-intersection analysis
report.append("-".repeat(80)).append("\n");
report.append("PER-INTERSECTION ANALYSIS\n");
report.append("-".repeat(80)).append("\n\n");
Set<String> allIntersections = new TreeSet<>();
for (SimulationRunResult result : results) {
allIntersections.addAll(result.getMaxQueueSizeByIntersection().keySet());
}
for (String intersection : allIntersections) {
report.append("--- ").append(intersection).append(" ---\n");
report.append(analyzeMetric(" Max Queue Size",
extractValues(r -> (double) r.getMaxQueueSizeByIntersection().getOrDefault(intersection, 0))));
report.append("\n");
report.append(analyzeMetric(" Avg Queue Size",
extractValues(r -> r.getAvgQueueSizeByIntersection().getOrDefault(intersection, 0.0))));
report.append("\n");
report.append(analyzeMetric(" Vehicles Processed",
extractValues(r -> (double) r.getVehiclesProcessedByIntersection().getOrDefault(intersection, 0))));
report.append("\n\n");
}
// Individual run summaries
report.append("-".repeat(80)).append("\n");
report.append("INDIVIDUAL RUN SUMMARIES\n");
report.append("-".repeat(80)).append("\n\n");
for (SimulationRunResult result : results) {
report.append(result.toString()).append("\n\n");
}
report.append("=".repeat(80)).append("\n");
report.append("END OF REPORT\n");
report.append("=".repeat(80)).append("\n");
return report.toString();
}
/**
* Analyzes a single metric and returns formatted statistics.
*/
private String analyzeMetric(String metricName, List<Double> values) {
if (values.isEmpty() || values.stream().allMatch(v -> v == 0.0)) {
return metricName + ": No data\n";
}
double mean = StatisticalAnalysis.mean(values);
double stdDev = StatisticalAnalysis.standardDeviation(values);
double[] ci = StatisticalAnalysis.confidenceInterval95(values);
double min = StatisticalAnalysis.min(values);
double max = StatisticalAnalysis.max(values);
double median = StatisticalAnalysis.median(values);
return String.format(
"%s:\n" +
" Mean: %10.2f Std Dev: %10.2f\n" +
" Median: %10.2f 95%% CI: [%.2f, %.2f]\n" +
" Min: %10.2f Max: %10.2f\n",
metricName, mean, stdDev, median, ci[0], ci[1], min, max
);
}
/**
* Extracts values using a lambda function.
*/
private List<Double> extractValues(java.util.function.Function<SimulationRunResult, Double> extractor) {
List<Double> values = new ArrayList<>();
for (SimulationRunResult result : results) {
values.add(extractor.apply(result));
}
return values;
}
/**
* Saves the report to a file.
*/
public void saveReport(String filename) throws IOException {
try (PrintWriter writer = new PrintWriter(new BufferedWriter(new FileWriter(filename)))) {
writer.print(generateReport());
}
}
/**
* Generates a CSV summary for easy import into spreadsheet tools.
*/
public void saveCSVSummary(String filename) throws IOException {
try (PrintWriter writer = new PrintWriter(new BufferedWriter(new FileWriter(filename)))) {
// Header
writer.println("Run,VehiclesGenerated,VehiclesCompleted,CompletionRate," +
"AvgSystemTime,AvgWaitingTime,MinSystemTime,MaxSystemTime");
// Data rows
for (SimulationRunResult result : results) {
double completionRate = result.getTotalVehiclesGenerated() > 0
? 100.0 * result.getTotalVehiclesCompleted() / result.getTotalVehiclesGenerated()
: 0.0;
writer.printf("%d,%d,%d,%.2f,%.2f,%.2f,%.2f,%.2f\n",
result.getRunNumber(),
result.getTotalVehiclesGenerated(),
result.getTotalVehiclesCompleted(),
completionRate,
result.getAverageSystemTime(),
result.getAverageWaitingTime(),
result.getMinSystemTime(),
result.getMaxSystemTime()
);
}
}
}
}

View File

@@ -0,0 +1,172 @@
package sd.analysis;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.text.SimpleDateFormat;
import java.util.Date;
/**
* Orquestra múltiplas execuções de simulação para análise estatística.
*
* Em vez de correr uma única simulação manualmente, esta ferramenta permite
* correr um "lote"
* de N simulações consecutivas. Isto é essencial para recolher dados
* estatisticamente significativos
* (calcular intervalos de confiança, etc.) conforme exigido pelas
* especificações do projeto.
*
* Utilização:
* java sd.analysis.SimulationBatchRunner <ficheiro-config> <num-execucoes>
* <dir-saida>
*/
public class SimulationBatchRunner {
public static void main(String[] args) {
if (args.length < 3) {
System.err.println("Usage: SimulationBatchRunner <config-file> <num-runs> <output-dir>");
System.err.println("Example: SimulationBatchRunner simulation-medium.properties 10 results/medium");
System.exit(1);
}
String configFile = args[0];
int numRuns;
String outputDir = args[2];
try {
numRuns = Integer.parseInt(args[1]);
if (numRuns < 1 || numRuns > 100) {
throw new IllegalArgumentException("Number of runs must be between 1 and 100");
}
} catch (NumberFormatException e) {
System.err.println("Error: Invalid number of runs: " + args[1]);
System.exit(1);
return;
}
System.out.println("=".repeat(80));
System.out.println("SIMULATION BATCH RUNNER");
System.out.println("=".repeat(80));
System.out.println("Configuration: " + configFile);
System.out.println("Number of Runs: " + numRuns);
System.out.println("Output Directory: " + outputDir);
System.out.println("=".repeat(80));
System.out.println();
// Create output directory
try {
Files.createDirectories(Paths.get(outputDir));
} catch (IOException e) {
System.err.println("Failed to create output directory: " + e.getMessage());
System.exit(1);
}
MultiRunAnalyzer analyzer = new MultiRunAnalyzer(configFile);
// Execute runs
for (int i = 1; i <= numRuns; i++) {
System.out.println("\n" + "=".repeat(80));
System.out.println("STARTING RUN " + i + " OF " + numRuns);
System.out.println("=".repeat(80));
SimulationRunResult result = executeSimulationRun(i, configFile, outputDir);
if (result != null) {
analyzer.addResult(result);
System.out.println("\n" + result);
} else {
System.err.println("Run " + i + " failed!");
}
// Pause between runs
if (i < numRuns) {
System.out.println("\nWaiting 10 seconds before next run...");
try {
Thread.sleep(10000);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
break;
}
}
}
// Generate reports
System.out.println("\n\n" + "=".repeat(80));
System.out.println("ALL RUNS COMPLETE - GENERATING REPORTS");
System.out.println("=".repeat(80));
try {
String timestamp = new SimpleDateFormat("yyyyMMdd-HHmmss").format(new Date());
String reportFile = outputDir + "/analysis-report-" + timestamp + ".txt";
String csvFile = outputDir + "/summary-" + timestamp + ".csv";
analyzer.saveReport(reportFile);
analyzer.saveCSVSummary(csvFile);
System.out.println("\nReports generated:");
System.out.println(" - Analysis Report: " + reportFile);
System.out.println(" - CSV Summary: " + csvFile);
System.out.println();
// Print report to console
System.out.println(analyzer.generateReport());
} catch (IOException e) {
System.err.println("Failed to generate reports: " + e.getMessage());
e.printStackTrace();
}
}
/**
* Executa uma única instância da simulação.
*
* Idealmente, este método iniciaria todos os processos necessários
* (Interseções, Nó de Saída, Coordenador),
* esperaria que terminassem e depois recolheria os resultados.
*
* Atualmente, serve como um espaço reservado estrutural para demonstrar como
* funciona o pipeline de análise.
* Para correr uma simulação real, deve iniciar os componentes manualmente ou
* usar um script shell.
*/
private static SimulationRunResult executeSimulationRun(int runNumber, String configFile, String outputDir) {
SimulationRunResult result = new SimulationRunResult(runNumber, configFile);
try {
// TODO: Implement actual simulation execution
// This would involve:
// 1. Starting intersection processes
// 2. Starting exit node process
// 3. Starting dashboard process
// 4. Running coordinator
// 5. Collecting results from dashboard/exit node
// 6. Shutting down all processes
System.out.println("NOTE: Actual simulation execution not yet implemented.");
System.out.println("This batch runner demonstrates the framework structure.");
System.out.println("To run actual simulations, you need to:");
System.out.println(" 1. Start all intersection processes manually");
System.out.println(" 2. Start exit node process");
System.out.println(" 3. Start dashboard process");
System.out.println(" 4. Run coordinator with the configuration file");
System.out.println(" 5. Results will be collected automatically");
// Placeholder: simulate some results
// In real implementation, these would be collected from the actual simulation
result.setTotalVehiclesGenerated(100);
result.setTotalVehiclesCompleted(85);
result.setAverageSystemTime(120.5);
result.setMinSystemTime(45.2);
result.setMaxSystemTime(250.8);
result.setAverageWaitingTime(45.3);
return result;
} catch (Exception e) {
System.err.println("Error executing run " + runNumber + ": " + e.getMessage());
e.printStackTrace();
return null;
}
}
}

View File

@@ -0,0 +1,143 @@
package sd.analysis;
import java.util.HashMap;
import java.util.Map;
import sd.model.VehicleType;
/**
* Stores the results of a single simulation run.
* Contains all key metrics for post-simulation analysis.
*/
public class SimulationRunResult {
private final int runNumber;
private final String configurationFile;
private final long startTimeMillis;
private final long endTimeMillis;
// Global metrics
private int totalVehiclesGenerated;
private int totalVehiclesCompleted;
private double averageSystemTime; // seconds
private double minSystemTime; // seconds
private double maxSystemTime; // seconds
private double averageWaitingTime; // seconds
// Per-type metrics
private final Map<VehicleType, Integer> vehicleCountByType;
private final Map<VehicleType, Double> avgSystemTimeByType;
private final Map<VehicleType, Double> avgWaitTimeByType;
// Per-intersection metrics
private final Map<String, Integer> maxQueueSizeByIntersection;
private final Map<String, Double> avgQueueSizeByIntersection;
private final Map<String, Integer> vehiclesProcessedByIntersection;
public SimulationRunResult(int runNumber, String configurationFile) {
this.runNumber = runNumber;
this.configurationFile = configurationFile;
this.startTimeMillis = System.currentTimeMillis();
this.endTimeMillis = 0;
this.vehicleCountByType = new HashMap<>();
this.avgSystemTimeByType = new HashMap<>();
this.avgWaitTimeByType = new HashMap<>();
this.maxQueueSizeByIntersection = new HashMap<>();
this.avgQueueSizeByIntersection = new HashMap<>();
this.vehiclesProcessedByIntersection = new HashMap<>();
}
public void markCompleted() {
// This will be called when the run finishes
}
// Getters
public int getRunNumber() { return runNumber; }
public String getConfigurationFile() { return configurationFile; }
public long getStartTimeMillis() { return startTimeMillis; }
public long getEndTimeMillis() { return endTimeMillis; }
public long getDurationMillis() { return endTimeMillis - startTimeMillis; }
public int getTotalVehiclesGenerated() { return totalVehiclesGenerated; }
public int getTotalVehiclesCompleted() { return totalVehiclesCompleted; }
public double getAverageSystemTime() { return averageSystemTime; }
public double getMinSystemTime() { return minSystemTime; }
public double getMaxSystemTime() { return maxSystemTime; }
public double getAverageWaitingTime() { return averageWaitingTime; }
public Map<VehicleType, Integer> getVehicleCountByType() {
return new HashMap<>(vehicleCountByType);
}
public Map<VehicleType, Double> getAvgSystemTimeByType() {
return new HashMap<>(avgSystemTimeByType);
}
public Map<VehicleType, Double> getAvgWaitTimeByType() {
return new HashMap<>(avgWaitTimeByType);
}
public Map<String, Integer> getMaxQueueSizeByIntersection() {
return new HashMap<>(maxQueueSizeByIntersection);
}
public Map<String, Double> getAvgQueueSizeByIntersection() {
return new HashMap<>(avgQueueSizeByIntersection);
}
public Map<String, Integer> getVehiclesProcessedByIntersection() {
return new HashMap<>(vehiclesProcessedByIntersection);
}
// Setters
public void setTotalVehiclesGenerated(int count) {
this.totalVehiclesGenerated = count;
}
public void setTotalVehiclesCompleted(int count) {
this.totalVehiclesCompleted = count;
}
public void setAverageSystemTime(double time) {
this.averageSystemTime = time;
}
public void setMinSystemTime(double time) {
this.minSystemTime = time;
}
public void setMaxSystemTime(double time) {
this.maxSystemTime = time;
}
public void setAverageWaitingTime(double time) {
this.averageWaitingTime = time;
}
public void setVehicleCountByType(VehicleType type, int count) {
vehicleCountByType.put(type, count);
}
public void setAvgSystemTimeByType(VehicleType type, double time) {
avgSystemTimeByType.put(type, time);
}
public void setAvgWaitTimeByType(VehicleType type, double time) {
avgWaitTimeByType.put(type, time);
}
public void setMaxQueueSize(String intersection, int size) {
maxQueueSizeByIntersection.put(intersection, size);
}
public void setAvgQueueSize(String intersection, double size) {
avgQueueSizeByIntersection.put(intersection, size);
}
public void setVehiclesProcessed(String intersection, int count) {
vehiclesProcessedByIntersection.put(intersection, count);
}
@Override
public String toString() {
return String.format(
"Run #%d [%s]:\n" +
" Generated: %d, Completed: %d (%.1f%%)\n" +
" Avg System Time: %.2fs\n" +
" Avg Waiting Time: %.2fs",
runNumber,
configurationFile,
totalVehiclesGenerated,
totalVehiclesCompleted,
totalVehiclesGenerated > 0 ? 100.0 * totalVehiclesCompleted / totalVehiclesGenerated : 0.0,
averageSystemTime,
averageWaitingTime
);
}
}

View File

@@ -0,0 +1,160 @@
package sd.analysis;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
/**
* Statistical analysis utilities for simulation results.
* Calculates mean, standard deviation, and confidence intervals.
*/
public class StatisticalAnalysis {
/**
* Calculates the mean (average) of a list of values.
*/
public static double mean(List<Double> values) {
if (values == null || values.isEmpty()) {
return 0.0;
}
double sum = 0.0;
for (double value : values) {
sum += value;
}
return sum / values.size();
}
/**
* Calculates the sample standard deviation.
*/
public static double standardDeviation(List<Double> values) {
if (values == null || values.size() < 2) {
return 0.0;
}
double mean = mean(values);
double sumSquaredDiff = 0.0;
for (double value : values) {
double diff = value - mean;
sumSquaredDiff += diff * diff;
}
// Sample standard deviation (n-1 denominator)
return Math.sqrt(sumSquaredDiff / (values.size() - 1));
}
/**
* Calculates the 95% confidence interval for the mean.
* Uses t-distribution for small samples (n < 30).
*
* @return Array of [lowerBound, upperBound]
*/
public static double[] confidenceInterval95(List<Double> values) {
if (values == null || values.size() < 2) {
double m = mean(values);
return new double[]{m, m};
}
double mean = mean(values);
double stdDev = standardDeviation(values);
int n = values.size();
// Critical value from t-distribution (approximation for common sample sizes)
double tCritical = getTCriticalValue(n);
// Standard error of the mean
double standardError = stdDev / Math.sqrt(n);
// Margin of error
double marginOfError = tCritical * standardError;
return new double[]{
mean - marginOfError, // Lower bound
mean + marginOfError // Upper bound
};
}
/**
* Returns the t-critical value for 95% confidence interval.
* Approximations for common degrees of freedom (n-1).
*/
private static double getTCriticalValue(int sampleSize) {
int df = sampleSize - 1; // degrees of freedom
// t-critical values for 95% confidence (two-tailed)
if (df >= 30) return 1.96; // z-score for large samples
if (df >= 20) return 2.086;
if (df >= 15) return 2.131;
if (df >= 10) return 2.228;
if (df >= 5) return 2.571;
if (df >= 3) return 3.182;
if (df >= 2) return 4.303;
return 12.706; // df = 1
}
/**
* Calculates the minimum value.
*/
public static double min(List<Double> values) {
if (values == null || values.isEmpty()) {
return 0.0;
}
return Collections.min(values);
}
/**
* Calculates the maximum value.
*/
public static double max(List<Double> values) {
if (values == null || values.isEmpty()) {
return 0.0;
}
return Collections.max(values);
}
/**
* Calculates the median value.
*/
public static double median(List<Double> values) {
if (values == null || values.isEmpty()) {
return 0.0;
}
List<Double> sorted = new ArrayList<>(values);
Collections.sort(sorted);
int size = sorted.size();
if (size % 2 == 0) {
return (sorted.get(size / 2 - 1) + sorted.get(size / 2)) / 2.0;
} else {
return sorted.get(size / 2);
}
}
/**
* Formats a statistical summary as a string.
*/
public static String formatSummary(String metricName, List<Double> values) {
if (values == null || values.isEmpty()) {
return metricName + ": No data";
}
double mean = mean(values);
double stdDev = standardDeviation(values);
double[] ci = confidenceInterval95(values);
double min = min(values);
double max = max(values);
return String.format(
"%s:\n" +
" Mean: %.2f\n" +
" Std Dev: %.2f\n" +
" 95%% CI: [%.2f, %.2f]\n" +
" Min: %.2f\n" +
" Max: %.2f\n" +
" Samples: %d",
metricName, mean, stdDev, ci[0], ci[1], min, max, values.size()
);
}
}

View File

@@ -14,16 +14,14 @@ import java.util.Properties;
import com.google.gson.Gson;
/**
* Class to load and manage simulation configurations.
* Configurations are read from a .properties file. This class provides
* type-safe getter methods for all expected configuration parameters,
* with default values to ensure robustness.
* Carrega e gere configurações da simulação.
*
* <p>Lê propriedades de um ficheiro .properties e fornece getters
* type-safe com valores padrão para robustez.
*/
public class SimulationConfig {
/**
* Holds all properties loaded from the file.
*/
/** Propriedades carregadas do ficheiro */
private final Properties properties;
private NetworkConfig networkConfig;
@@ -54,18 +52,17 @@ public class SimulationConfig {
}
/**
* Constructs a new SimulationConfig object by loading properties
* from the specified file path.
* Carrega propriedades do ficheiro especificado.
*
* This constructor attempts to load the configuration file using multiple
* strategies:
* 1. Direct file system path
* 2. Classpath resource (with automatic path normalization)
* 3. Classpath resource with leading slash
* <p>Tenta múltiplas estratégias:
* <ol>
* <li>Caminho direto no sistema de ficheiros
* <li>Recurso no classpath (com normalização automática)
* <li>Recurso no classpath com barra inicial
* </ol>
*
* @param filePath The path to the .properties file (e.g.,
* "src/main/resources/simulation.properties").
* @throws IOException If the file cannot be found or read from any location.
* @param filePath caminho do ficheiro .properties
* @throws IOException se o ficheiro não for encontrado
*/
public SimulationConfig(String filePath) throws IOException {
properties = new Properties();
@@ -224,7 +221,15 @@ public class SimulationConfig {
* @return The simulation duration.
*/
public double getSimulationDuration() {
return Double.parseDouble(properties.getProperty("simulation.duration", "3600.0"));
return Double.parseDouble(properties.getProperty("simulation.duration", "3600"));
}
/**
* Get time scaling factor for visualization.
* 0 = instant (pure DES), 0.01 = 100x speed, 0.1 = 10x speed, 1.0 = real-time
*/
public double getTimeScale() {
return Double.parseDouble(properties.getProperty("simulation.time.scale", "0"));
}
/**

View File

@@ -6,6 +6,11 @@ import java.util.Map;
import sd.config.SimulationConfig;
import sd.dashboard.StatsUpdatePayload;
import sd.des.DESEventType;
import sd.des.EventQueue;
import sd.des.SimulationClock;
import sd.des.SimulationEvent;
import sd.logging.EventLogger;
import sd.model.Message;
import sd.model.MessageType;
import sd.model.Vehicle;
@@ -13,12 +18,17 @@ import sd.serialization.SerializationException;
import sd.util.VehicleGenerator;
/**
* Coordinator process responsible for:
* 1. Vehicle generation (using VehicleGenerator)
* 2. Distributing vehicles to intersection processes via sockets
* 3. Managing simulation timing and shutdown
* Coordenador central da simulação distribuída.
*
* This is the main entry point for the distributed simulation architecture.
* <p>Responsabilidades:
* <ol>
* <li>Gerar veículos segundo modelo configurado (Poisson/Fixed)
* <li>Injetar veículos nas interseções de entrada
* <li>Gerir relógio global e sincronizar componentes
* </ol>
*
* <p>Usa motor DES para agendar eventos de geração com precisão.
* Mantém fila de prioridade e processa eventos em ordem cronológica.
*/
public class CoordinatorProcess {
@@ -26,10 +36,14 @@ public class CoordinatorProcess {
private final VehicleGenerator vehicleGenerator;
private final Map<String, SocketClient> intersectionClients;
private SocketClient dashboardClient;
private double currentTime;
private final SimulationClock clock;
private final EventQueue eventQueue;
private final EventLogger eventLogger;
private int vehicleCounter;
private boolean running;
private double nextGenerationTime;
private double timeScale;
public static void main(String[] args) {
System.out.println("=".repeat(60));
@@ -65,15 +79,22 @@ public class CoordinatorProcess {
this.config = config;
this.vehicleGenerator = new VehicleGenerator(config);
this.intersectionClients = new HashMap<>();
this.currentTime = 0.0;
this.vehicleCounter = 0;
this.running = false;
this.nextGenerationTime = 0.0;
this.timeScale = config.getTimeScale();
this.clock = new SimulationClock();
this.eventQueue = new EventQueue(true);
this.eventLogger = EventLogger.getInstance();
eventLogger.log(sd.logging.EventType.PROCESS_STARTED, "Coordinator",
"Coordinator process initialized with DES architecture");
System.out.println("Coordinator initialized with configuration:");
System.out.println(" - Simulation duration: " + config.getSimulationDuration() + "s");
System.out.println(" - Arrival model: " + config.getArrivalModel());
System.out.println(" - Arrival rate: " + config.getArrivalRate() + " vehicles/s");
System.out.println(" - DES Mode: ENABLED (Event-driven, no time-stepping)");
}
public void initialize() {
@@ -107,58 +128,151 @@ public class CoordinatorProcess {
public void run() {
double duration = config.getSimulationDuration();
double drainTime = config.getDrainTime();
double totalDuration = duration + drainTime;
running = true;
System.out.println("Starting vehicle generation simulation...");
System.out.println("Duration: " + duration + " seconds");
System.out.println("Starting DES-based vehicle generation simulation...");
System.out.println("Duration: " + duration + "s (+ " + drainTime + "s drain)");
System.out.println();
// Log simulation start
eventLogger.log(sd.logging.EventType.SIMULATION_STARTED, "Coordinator",
String.format("Starting simulation - Duration: %.1fs", duration));
// Send simulation start time to all processes for synchronization
sendSimulationStartTime();
nextGenerationTime = vehicleGenerator.getNextArrivalTime(currentTime);
final double TIME_STEP = 0.1;
// Schedule first vehicle generation event
double firstArrivalTime = vehicleGenerator.getNextArrivalTime(clock.getCurrentTime());
eventQueue.schedule(new SimulationEvent(
firstArrivalTime,
DESEventType.VEHICLE_GENERATION,
null,
"Coordinator"));
double drainTime = config.getDrainTime();
double totalDuration = duration + drainTime;
boolean draining = false;
// Schedule simulation end event
eventQueue.schedule(new SimulationEvent(
totalDuration,
DESEventType.SIMULATION_END,
null,
"Coordinator"));
while (running && currentTime < totalDuration) {
// Only generate vehicles during the main duration
if (currentTime < duration) {
if (currentTime >= nextGenerationTime) {
generateAndSendVehicle();
nextGenerationTime = vehicleGenerator.getNextArrivalTime(currentTime);
System.out.printf("Initial event scheduled at t=%.3fs\n", firstArrivalTime);
System.out.println("Entering DES event loop...\n");
// Main DES loop - process events in chronological order
double lastTime = 0.0;
while (running && !eventQueue.isEmpty()) {
SimulationEvent event = eventQueue.poll();
// Apply time scaling for visualization
if (timeScale > 0) {
double simTimeDelta = event.getTimestamp() - lastTime;
long realDelayMs = (long) (simTimeDelta * timeScale * 1000);
if (realDelayMs > 0) {
try {
Thread.sleep(realDelayMs);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
break;
}
}
} else if (!draining) {
draining = true;
System.out.println("\n[t=" + String.format("%.2f", currentTime)
+ "] Generation complete. Entering DRAIN MODE for " + drainTime + "s...");
lastTime = event.getTimestamp();
}
try {
Thread.sleep((long) (TIME_STEP * 1000));
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
break;
}
// Advance simulation time to event time
clock.advanceTo(event.getTimestamp());
currentTime += TIME_STEP;
// Process the event
processEvent(event, duration);
}
System.out.println();
System.out.println("Simulation complete at t=" + String.format("%.2f", currentTime) + "s");
System.out.printf("Simulation complete at t=%.2fs\n", clock.getCurrentTime());
System.out.println("Total vehicles generated: " + vehicleCounter);
System.out.println("Total events processed: " + eventQueue.getProcessedCount());
// Log simulation end
eventLogger.log(sd.logging.EventType.SIMULATION_STOPPED, "Coordinator",
String.format("Simulation ended - Vehicles: %d, Events: %d",
vehicleCounter, eventQueue.getProcessedCount()));
// Export event history (spec requirement: view complete event list)
exportEventHistory();
shutdown();
}
/**
* Trata um único evento de simulação.
*
* É aqui que a magia acontece. Dependendo do tipo de evento (como
* VEHICLE_GENERATION),
* atualizamos o estado do mundo. Para a geração de veículos, criamos um novo
* veículo,
* enviamo-lo para uma interseção e depois agendamos o *próximo* evento de
* geração.
*/
private void processEvent(SimulationEvent event, double generationDuration) {
double currentTime = clock.getCurrentTime();
switch (event.getType()) {
case VEHICLE_GENERATION:
// Only generate if we're still in the generation phase
if (currentTime < generationDuration) {
generateAndSendVehicle();
// Schedule next vehicle generation
double nextArrivalTime = vehicleGenerator.getNextArrivalTime(currentTime);
eventQueue.schedule(new SimulationEvent(
nextArrivalTime,
DESEventType.VEHICLE_GENERATION,
null,
"Coordinator"));
} else if (currentTime == generationDuration) {
System.out.printf("\n[t=%.2f] Generation phase complete. Entering DRAIN MODE...\n",
currentTime);
}
break;
case SIMULATION_END:
System.out.printf("[t=%.2f] Simulation end event reached\n", currentTime);
running = false;
break;
default:
System.err.println("WARNING: Unknown event type: " + event.getType());
}
}
/**
* Guarda o histórico completo de eventos de simulação num ficheiro de texto.
* Isto permite-nos auditar exatamente o que aconteceu e quando, o que é crucial
* para depuração e verificação.
*/
private void exportEventHistory() {
try (java.io.PrintWriter writer = new java.io.PrintWriter(
new java.io.FileWriter("logs/coordinator-event-history.txt"))) {
String history = eventQueue.exportEventHistory();
writer.println(history);
System.out.println("\nEvent history exported to: logs/coordinator-event-history.txt");
} catch (IOException e) {
System.err.println("Failed to export event history: " + e.getMessage());
}
}
private void generateAndSendVehicle() {
double currentTime = clock.getCurrentTime();
Vehicle vehicle = vehicleGenerator.generateVehicle("V" + (++vehicleCounter), currentTime);
System.out.printf("[t=%.2f] Vehicle %s generated (type=%s, route=%s)%n",
currentTime, vehicle.getId(), vehicle.getType(), vehicle.getRoute());
// Log to event logger
eventLogger.log(sd.logging.EventType.VEHICLE_GENERATED, "Coordinator",
String.format("[%s] Type: %s, Route: %s", vehicle.getId(), vehicle.getType(), vehicle.getRoute()));
// Send generation count to dashboard
sendGenerationStatsToDashboard();

View File

@@ -10,10 +10,10 @@ import sd.serialization.SerializationException;
import sd.serialization.SerializerFactory;
/**
* Socket client for communication with a single intersection process.
* Cliente socket para comunicação com um processo de interseção.
*
* Handles a persistent TCP connection to one intersection,
* providing a simple way to send serialized messages.
* <p>Gere uma ligação TCP persistente para uma interseção,
* fornecendo uma forma simples de enviar mensagens serializadas.</p>
*/
public class SocketClient {
@@ -25,11 +25,11 @@ public class SocketClient {
private MessageSerializer serializer;
/**
* Creates a new SocketClient for a given intersection.
* Cria um novo cliente socket para uma interseção.
*
* @param intersectionId Intersection ID (ex. "Cr1")
* @param host Host address (ex. "localhost")
* @param port Port number
* @param intersectionId ID da interseção (ex: "Cr1")
* @param host endereço do host (ex: "localhost")
* @param port número da porta
*/
public SocketClient(String intersectionId, String host, int port) {
this.intersectionId = intersectionId;
@@ -39,11 +39,10 @@ public class SocketClient {
}
/**
* Connects to the intersection process via TCP.
* Liga-se ao processo da interseção via TCP.
*
* @throws IOException if the connection cannot be established
* @throws IOException se a ligação não puder ser estabelecida
*/
public void connect() throws IOException {
try {
socket = new Socket(host, port);
@@ -56,12 +55,12 @@ public class SocketClient {
}
/**
* Sends a message to the connected intersection.
* The message is serialized and written over the socket.
* Envia uma mensagem para a interseção ligada.
* A mensagem é serializada e enviada pelo socket.
*
* @param message The message to send
* @throws SerializationException if serialization fails
* @throws IOException if the socket write fails
* @param message mensagem a enviar
* @throws SerializationException se a serialização falhar
* @throws IOException se a escrita no socket falhar
*/
public void send(Message message) throws SerializationException, IOException {
if (socket == null || socket.isClosed()) {
@@ -71,7 +70,6 @@ public class SocketClient {
try {
byte[] data = serializer.serialize(message);
// Prefix with message length (so receiver knows how much to read)
int length = data.length;
outputStream.write((length >> 24) & 0xFF);
outputStream.write((length >> 16) & 0xFF);

View File

@@ -0,0 +1,167 @@
package sd.dashboard;
import javafx.geometry.Insets;
import javafx.scene.control.ButtonType;
import javafx.scene.control.ComboBox;
import javafx.scene.control.Dialog;
import javafx.scene.control.Label;
import javafx.scene.control.Separator;
import javafx.scene.control.Spinner;
import javafx.scene.layout.GridPane;
import javafx.scene.layout.VBox;
import javafx.stage.Modality;
import javafx.stage.Stage;
/**
* Diálogo para configuração avançada de parâmetros da simulação.
* Permite ajustar parâmetros em runtime antes de iniciar a simulação.
*/
public class ConfigurationDialog {
/**
* Mostra um diálogo com opções avançadas de configuração.
*
* @param owner janela pai
* @return true se o utilizador confirmar, false se cancelar
*/
public static boolean showAdvancedConfig(Stage owner) {
Dialog<ButtonType> dialog = new Dialog<>();
dialog.initOwner(owner);
dialog.initModality(Modality.APPLICATION_MODAL);
dialog.setTitle("Configuração Avançada da Simulação");
dialog.setHeaderText("Ajustar parâmetros da simulação");
// Criar painel de configuração
VBox content = new VBox(15);
content.setPadding(new Insets(20));
// Seção 1: Parâmetros de Chegada
Label arrivalHeader = new Label("Parâmetros de Chegada de Veículos");
arrivalHeader.setStyle("-fx-font-weight: bold; -fx-font-size: 14px;");
GridPane arrivalGrid = new GridPane();
arrivalGrid.setHgap(10);
arrivalGrid.setVgap(10);
arrivalGrid.setPadding(new Insets(10));
// Modelo de chegada
Label modelLabel = new Label("Modelo de chegada:");
ComboBox<String> modelCombo = new ComboBox<>();
modelCombo.getItems().addAll("POISSON", "FIXED");
modelCombo.setValue("POISSON");
arrivalGrid.add(modelLabel, 0, 0);
arrivalGrid.add(modelCombo, 1, 0);
// Taxa de chegada (λ)
Label rateLabel = new Label("Taxa de chegada (λ) [veículos/s]:");
Spinner<Double> rateSpinner = new Spinner<>(0.1, 2.0, 0.5, 0.1);
rateSpinner.setEditable(true);
rateSpinner.setPrefWidth(100);
arrivalGrid.add(rateLabel, 0, 1);
arrivalGrid.add(rateSpinner, 1, 1);
// Intervalo fixo (se aplicável)
Label intervalLabel = new Label("Intervalo fixo [s]:");
Spinner<Double> intervalSpinner = new Spinner<>(0.5, 10.0, 2.0, 0.5);
intervalSpinner.setEditable(true);
intervalSpinner.setPrefWidth(100);
intervalSpinner.setDisable(true);
arrivalGrid.add(intervalLabel, 0, 2);
arrivalGrid.add(intervalSpinner, 1, 2);
// Habilitar/desabilitar intervalo baseado no modelo
modelCombo.setOnAction(e -> {
boolean isFixed = "FIXED".equals(modelCombo.getValue());
intervalSpinner.setDisable(!isFixed);
rateSpinner.setDisable(isFixed);
});
// Seção 2: Parâmetros de Tempo
Label timeHeader = new Label("Parâmetros de Tempo");
timeHeader.setStyle("-fx-font-weight: bold; -fx-font-size: 14px;");
GridPane timeGrid = new GridPane();
timeGrid.setHgap(10);
timeGrid.setVgap(10);
timeGrid.setPadding(new Insets(10));
// Duração da simulação
Label durationLabel = new Label("Duração da simulação [s]:");
Spinner<Integer> durationSpinner = new Spinner<>(60, 7200, 300, 60);
durationSpinner.setEditable(true);
durationSpinner.setPrefWidth(100);
timeGrid.add(durationLabel, 0, 0);
timeGrid.add(durationSpinner, 1, 0);
// Escala temporal (para visualização)
Label scaleLabel = new Label("Escala temporal (0=instantâneo, 1=tempo real):");
Spinner<Double> scaleSpinner = new Spinner<>(0.0, 1.0, 0.01, 0.01);
scaleSpinner.setEditable(true);
scaleSpinner.setPrefWidth(100);
timeGrid.add(scaleLabel, 0, 1);
timeGrid.add(scaleSpinner, 1, 1);
// Tempo de drenagem
Label drainLabel = new Label("Tempo de drenagem [s]:");
Spinner<Integer> drainSpinner = new Spinner<>(0, 300, 60, 10);
drainSpinner.setEditable(true);
drainSpinner.setPrefWidth(100);
timeGrid.add(drainLabel, 0, 2);
timeGrid.add(drainSpinner, 1, 2);
// Seção 3: Distribuição de Tipos de Veículos
Label vehicleHeader = new Label("Distribuição de Tipos de Veículos");
vehicleHeader.setStyle("-fx-font-weight: bold; -fx-font-size: 14px;");
GridPane vehicleGrid = new GridPane();
vehicleGrid.setHgap(10);
vehicleGrid.setVgap(10);
vehicleGrid.setPadding(new Insets(10));
Label bikeLabel = new Label("Bicicletas/Motos [%]:");
Spinner<Integer> bikeSpinner = new Spinner<>(0, 100, 10, 5);
bikeSpinner.setEditable(true);
bikeSpinner.setPrefWidth(100);
vehicleGrid.add(bikeLabel, 0, 0);
vehicleGrid.add(bikeSpinner, 1, 0);
Label lightLabel = new Label("Veículos Ligeiros [%]:");
Spinner<Integer> lightSpinner = new Spinner<>(0, 100, 70, 5);
lightSpinner.setEditable(true);
lightSpinner.setPrefWidth(100);
vehicleGrid.add(lightLabel, 0, 1);
vehicleGrid.add(lightSpinner, 1, 1);
Label heavyLabel = new Label("Veículos Pesados [%]:");
Spinner<Integer> heavySpinner = new Spinner<>(0, 100, 20, 5);
heavySpinner.setEditable(true);
heavySpinner.setPrefWidth(100);
vehicleGrid.add(heavyLabel, 0, 2);
vehicleGrid.add(heavySpinner, 1, 2);
// Nota informativa
Label noteLabel = new Label("Nota: Estes parâmetros sobrepõem os valores do ficheiro .properties selecionado.\n" +
"Para usar os valores padrão do ficheiro, deixe em branco ou cancele.");
noteLabel.setWrapText(true);
noteLabel.setStyle("-fx-font-size: 11px; -fx-text-fill: #666666;");
// Adicionar tudo ao conteúdo
content.getChildren().addAll(
arrivalHeader, arrivalGrid,
new Separator(),
timeHeader, timeGrid,
new Separator(),
vehicleHeader, vehicleGrid,
new Separator(),
noteLabel
);
dialog.getDialogPane().setContent(content);
dialog.getDialogPane().getButtonTypes().addAll(ButtonType.OK, ButtonType.CANCEL);
// Mostrar diálogo e processar resultado
return dialog.showAndWait()
.map(buttonType -> buttonType == ButtonType.OK)
.orElse(false);
}
}

View File

@@ -10,8 +10,8 @@ import java.util.concurrent.atomic.AtomicBoolean;
import sd.config.SimulationConfig;
/**
* Aggregates and displays real-time statistics from all simulation processes.
* Uses a thread pool to handle concurrent client connections.
* Agrega e apresenta estatísticas em tempo real de todos os processos da simulação.
* Usa um thread pool para gerir ligações concorrentes de clientes.
*/
public class DashboardServer {

View File

@@ -9,8 +9,8 @@ import java.util.concurrent.atomic.AtomicLong;
import sd.model.VehicleType;
/**
* Thread-safe storage for aggregated simulation statistics.
* Uses atomic types and concurrent collections for lock-free updates.
* Armazenamento thread-safe de estatísticas agregadas da simulação.
* Usa tipos atómicos e coleções concorrentes para atualizações sem locks.
*/
public class DashboardStatistics {

View File

@@ -13,6 +13,7 @@ import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Alert;
import javafx.scene.control.Button;
import javafx.scene.control.ComboBox;
import javafx.scene.control.Label;
import javafx.scene.control.TableColumn;
import javafx.scene.control.TableView;
@@ -54,6 +55,11 @@ public class DashboardUI extends Application {
// Update scheduler
private ScheduledExecutorService updateScheduler;
// Configuration controls
private ComboBox<String> configFileSelector;
private String selectedConfigFile = "simulation.properties";
private Label configInfoLabel;
@Override
public void start(Stage primaryStage) {
try {
@@ -122,6 +128,9 @@ public class DashboardUI extends Application {
Label subtitle = new Label("Real-time Statistics and Monitoring");
subtitle.getStyleClass().add("header-subtitle");
// Configuration Panel
VBox configPanel = createConfigurationPanel();
// Control Buttons
HBox controls = new HBox(15);
controls.setAlignment(Pos.CENTER);
@@ -137,9 +146,12 @@ public class DashboardUI extends Application {
btnStart.setOnAction(e -> {
try {
// Passar o ficheiro de configuração selecionado
processManager.setConfigFile(selectedConfigFile);
processManager.startSimulation();
btnStart.setDisable(true);
btnStop.setDisable(false);
configFileSelector.setDisable(true); // Bloquear mudanças durante simulação
} catch (IOException ex) {
showErrorAlert("Start Failed", "Could not start simulation processes: " + ex.getMessage());
}
@@ -149,15 +161,74 @@ public class DashboardUI extends Application {
processManager.stopSimulation();
btnStart.setDisable(false);
btnStop.setDisable(true);
configFileSelector.setDisable(false); // Desbloquear para nova simulação
});
controls.getChildren().addAll(btnStart, btnStop);
header.getChildren().addAll(title, subtitle, controls);
header.getChildren().addAll(title, subtitle, configPanel, controls);
return header;
}
/**
* Cria o painel de configuração com seleção de cenário e parâmetros.
*/
private VBox createConfigurationPanel() {
VBox configBox = new VBox(10);
configBox.setAlignment(Pos.CENTER);
configBox.setPadding(new Insets(10));
configBox.setStyle("-fx-background-color: rgba(255, 255, 255, 0.05); -fx-background-radius: 5;");
Label configLabel = new Label("Configuração da Simulação");
configLabel.setStyle("-fx-font-size: 14px; -fx-font-weight: bold;");
HBox configControls = new HBox(20);
configControls.setAlignment(Pos.CENTER);
// Scenario selector
VBox scenarioBox = new VBox(5);
scenarioBox.setAlignment(Pos.CENTER);
Label scenarioLabel = new Label("Cenário:");
scenarioLabel.setStyle("-fx-font-size: 12px;");
configFileSelector = new ComboBox<>();
configFileSelector.getItems().addAll(
"simulation.properties",
"simulation-low.properties",
"simulation-medium.properties",
"simulation-high.properties"
);
configFileSelector.setValue("simulation.properties");
configFileSelector.setOnAction(e -> {
selectedConfigFile = configFileSelector.getValue();
updateConfigInfo();
System.out.println("Configuração selecionada: " + selectedConfigFile);
});
scenarioBox.getChildren().addAll(scenarioLabel, configFileSelector);
configControls.getChildren().add(scenarioBox);
// Advanced configuration button
Button btnAdvancedConfig = new Button("Configuração Avançada...");
btnAdvancedConfig.setStyle("-fx-font-size: 11px;");
btnAdvancedConfig.setOnAction(e -> {
ConfigurationDialog.showAdvancedConfig((Stage) configBox.getScene().getWindow());
});
configControls.getChildren().add(btnAdvancedConfig);
// Configuration info display
configInfoLabel = new Label();
configInfoLabel.setStyle("-fx-font-size: 11px; -fx-text-fill: #aaaaaa;");
configInfoLabel.setWrapText(true);
configInfoLabel.setMaxWidth(800);
configInfoLabel.setAlignment(Pos.CENTER);
updateConfigInfo();
configBox.getChildren().addAll(configLabel, configControls, configInfoLabel);
return configBox;
}
private VBox createMainContent() {
VBox mainContent = new VBox(20);
mainContent.setPadding(new Insets(20));
@@ -367,6 +438,28 @@ public class DashboardUI extends Application {
}
}
/**
* Atualiza a informação exibida sobre a configuração selecionada.
*/
private void updateConfigInfo() {
String info = "";
switch (selectedConfigFile) {
case "simulation-low.properties":
info = "🟢 CARGA BAIXA: 0.2 veículos/s (~720/hora) | Sem congestionamento esperado";
break;
case "simulation-medium.properties":
info = "🟡 CARGA MÉDIA: 0.5 veículos/s (~1800/hora) | Algum congestionamento esperado";
break;
case "simulation-high.properties":
info = "🔴 CARGA ALTA: 1.0 veículo/s (~3600/hora) | Congestionamento significativo esperado";
break;
default:
info = "⚙️ CONFIGURAÇÃO PADRÃO: Verificar ficheiro para parâmetros";
break;
}
configInfoLabel.setText(info);
}
private void shutdown() {
System.out.println("Shutting down Dashboard UI...");

View File

@@ -6,25 +6,36 @@ import java.util.ArrayList;
import java.util.List;
/**
* Manages the lifecycle of simulation processes (Intersections, Exit Node,
* Gere o ciclo de vida dos processos de simulação (Intersections, Exit Node,
* Coordinator).
* Allows starting and stopping the distributed simulation from within the Java
* application.
* Permite iniciar e parar a simulação distribuída dentro da aplicação Java.
*/
public class SimulationProcessManager {
private final List<Process> runningProcesses;
private final String classpath;
private String configFile;
public SimulationProcessManager() {
this.runningProcesses = new ArrayList<>();
this.classpath = System.getProperty("java.class.path");
this.configFile = "src/main/resources/simulation.properties";
}
/**
* Starts the full simulation: 5 Intersections, 1 Exit Node, and 1 Coordinator.
* Define o ficheiro de configuração a usar.
*
* @throws IOException If a process fails to start.
* @param configFile nome do ficheiro (ex: "simulation-low.properties")
*/
public void setConfigFile(String configFile) {
this.configFile = "src/main/resources/" + configFile;
System.out.println("Configuration file set to: " + this.configFile);
}
/**
* Inicia a simulação completa: 5 Intersections, 1 Exit Node, e 1 Coordinator.
*
* @throws IOException se um processo falhar ao iniciar
*/
public void startSimulation() throws IOException {
if (!runningProcesses.isEmpty()) {
@@ -83,16 +94,16 @@ public class SimulationProcessManager {
}
/**
* Helper to start a single Java process.
* Helper para iniciar um único processo Java.
*/
private void startProcess(String className, String arg) throws IOException {
String javaBin = System.getProperty("java.home") + File.separator + "bin" + File.separator + "java";
ProcessBuilder builder;
if (arg != null) {
builder = new ProcessBuilder(javaBin, "-cp", classpath, className, arg);
builder = new ProcessBuilder(javaBin, "-cp", classpath, className, arg, configFile);
} else {
builder = new ProcessBuilder(javaBin, "-cp", classpath, className);
builder = new ProcessBuilder(javaBin, "-cp", classpath, className, configFile);
}
// get the OS temp folder

View File

@@ -7,8 +7,8 @@ import java.util.Map;
import sd.model.VehicleType;
/**
* Data transfer object for statistics updates to the dashboard.
* Use -1 for fields not being updated in this message.
* DTO para atualizações de estatísticas ao dashboard.
* Campos com valor -1 não são atualizados nesta mensagem.
*/
public class StatsUpdatePayload implements Serializable {

View File

@@ -0,0 +1,39 @@
package sd.des;
/**
* Tipos de eventos discretos da simulação.
*
* <p>Representa os eventos DES que avançam o estado da simulação,
* não categorias de logging (EventType está noutro package).
*/
public enum DESEventType {
/** Gerar novo veículo num ponto de entrada */
VEHICLE_GENERATION,
/** Veículo chega a uma interseção */
VEHICLE_ARRIVAL,
/** Veículo começa a atravessar o semáforo */
VEHICLE_CROSSING_START,
/** Veículo termina a travessia */
VEHICLE_CROSSING_END,
/** Veículo parte para o próximo destino */
VEHICLE_DEPARTURE,
/** Veículo sai do sistema no nó de saída */
VEHICLE_EXIT,
/** Semáforo muda de estado (VERMELHO para VERDE ou vice-versa) */
TRAFFIC_LIGHT_CHANGE,
/** Processar veículos que esperam num semáforo recém-verde */
PROCESS_GREEN_LIGHT,
/** Atualização periódica de estatísticas */
STATISTICS_UPDATE,
/** Terminação da simulação */
SIMULATION_END
}

View File

@@ -0,0 +1,137 @@
package sd.des;
import java.util.ArrayList;
import java.util.List;
import java.util.PriorityQueue;
/**
* Gere a Lista de Eventos Futuros (FEL) para Simulação de Eventos Discretos.
*
* <p>A FEL é uma fila de prioridade que mantém todos os eventos futuros agendados,
* ordenados por timestamp. Este é o coração do paradigma DES - a simulação avança
* processando eventos em ordem cronológica.</p>
*/
public class EventQueue {
private final PriorityQueue<SimulationEvent> queue;
private final List<SimulationEvent> processedEvents; // For logging and analysis
private final boolean trackHistory;
public EventQueue() {
this(true);
}
public EventQueue(boolean trackHistory) {
this.queue = new PriorityQueue<>();
this.processedEvents = trackHistory ? new ArrayList<>() : null;
this.trackHistory = trackHistory;
}
/**
* Agenda um novo evento.
*
* @param event evento a agendar
*/
public void schedule(SimulationEvent event) {
queue.offer(event);
}
/**
* Agenda um evento com um atraso relativo ao tempo atual.
*
* @param currentTime tempo atual da simulação
* @param delay atraso em segundos
* @param type tipo de evento
* @param payload dados do evento
* @param location localização do evento
*/
public void scheduleIn(double currentTime, double delay, DESEventType type,
Object payload, String location) {
double eventTime = currentTime + delay;
schedule(new SimulationEvent(eventTime, type, payload, location));
}
/** Obtém o próximo evento sem o remover */
public SimulationEvent peek() {
return queue.peek();
}
/**
* Obtém e remove o próximo evento.
* Se o rastreamento de histórico estiver ativo, adiciona-o aos eventos processados.
*/
public SimulationEvent poll() {
SimulationEvent event = queue.poll();
if (event != null && trackHistory) {
processedEvents.add(event);
}
return event;
}
/** Verifica se existem eventos pendentes */
public boolean isEmpty() {
return queue.isEmpty();
}
/** @return número de eventos pendentes */
public int size() {
return queue.size();
}
/** Limpa todos os eventos pendentes */
public void clear() {
queue.clear();
}
/**
* Obtém todos os eventos processados (se o rastreamento estiver ativo).
* Retorna uma cópia para evitar modificações.
*/
public List<SimulationEvent> getProcessedEvents() {
if (!trackHistory) {
throw new UnsupportedOperationException("History tracking is disabled");
}
return new ArrayList<>(processedEvents);
}
/** @return número de eventos processados */
public int getProcessedCount() {
return trackHistory ? processedEvents.size() : 0;
}
/**
* Exporta o histórico de eventos para uma string formatada.
* Útil para debugging e visualização da lista completa de eventos.
*/
public String exportEventHistory() {
if (!trackHistory) {
return "Event history tracking is disabled";
}
StringBuilder sb = new StringBuilder();
sb.append("=".repeat(80)).append("\n");
sb.append("SIMULATION EVENT HISTORY\n");
sb.append("Total Events Processed: ").append(processedEvents.size()).append("\n");
sb.append("=".repeat(80)).append("\n");
sb.append(String.format("%-10s | %-25s | %-20s | %s\n",
"Time", "Event Type", "Location", "Details"));
sb.append("-".repeat(80)).append("\n");
for (SimulationEvent event : processedEvents) {
String details = event.getPayload() != null ?
event.getPayload().getClass().getSimpleName() : "null";
sb.append(String.format("%-10.3f | %-25s | %-20s | %s\n",
event.getTimestamp(),
event.getType(),
event.getLocation() != null ? event.getLocation() : "N/A",
details));
}
return sb.toString();
}
@Override
public String toString() {
return String.format("EventQueue[pending=%d, processed=%d]",
queue.size(), getProcessedCount());
}
}

View File

@@ -0,0 +1,67 @@
package sd.des;
/**
* Gere o tempo de simulação para Simulação de Eventos Discretos.
*
* <p>No DES, o tempo avança em saltos discretos de evento para evento,
* não de forma contínua como o tempo real.</p>
*
* <p>Esta classe garante que todos os processos no sistema distribuído
* mantêm uma visão sincronizada do tempo de simulação.</p>
*/
public class SimulationClock {
private double currentTime;
private final double startTime;
private final long wallClockStart;
public SimulationClock() {
this(0.0);
}
public SimulationClock(double startTime) {
this.currentTime = startTime;
this.startTime = startTime;
this.wallClockStart = System.currentTimeMillis();
}
/**
* Avança o tempo de simulação para o timestamp dado.
* O tempo só pode avançar, nunca recuar.
*
* @param newTime novo tempo de simulação
* @throws IllegalArgumentException se newTime for anterior ao tempo atual
*/
public void advanceTo(double newTime) {
if (newTime < currentTime) {
throw new IllegalArgumentException(
String.format("Cannot move time backwards: %.3f -> %.3f", currentTime, newTime));
}
this.currentTime = newTime;
}
/** @return tempo atual da simulação */
public double getCurrentTime() {
return currentTime;
}
/** @return tempo de simulação decorrido desde o início */
public double getElapsedTime() {
return currentTime - startTime;
}
/** @return tempo real decorrido em milissegundos */
public long getWallClockElapsed() {
return System.currentTimeMillis() - wallClockStart;
}
/** Reinicia o relógio para o tempo inicial */
public void reset() {
this.currentTime = startTime;
}
@Override
public String toString() {
return String.format("SimulationClock[time=%.3fs, elapsed=%.3fs]",
currentTime, getElapsedTime());
}
}

View File

@@ -0,0 +1,98 @@
package sd.des;
import java.io.Serializable;
/**
* Evento discreto da simulação.
*
* <p>Unidade fundamental de execução num sistema DES:
* <ul>
* <li>timestamp - quando ocorre
* <li>type - o que acontece
* <li>payload - dados associados
* <li>location - qual processo o trata
* </ul>
*/
public class SimulationEvent implements Comparable<SimulationEvent>, Serializable {
private static final long serialVersionUID = 1L;
private final double timestamp;
private final DESEventType type;
private final Object payload;
private final String location; // Process ID (e.g., "Cr1", "Coordinator", "Exit")
/**
* Cria um novo evento de simulação.
*
* @param timestamp instante do evento (tempo de simulação em segundos)
* @param type tipo de evento
* @param payload dados associados (ex: objeto Vehicle)
* @param location processo que trata o evento
*/
public SimulationEvent(double timestamp, DESEventType type, Object payload, String location) {
this.timestamp = timestamp;
this.type = type;
this.payload = payload;
this.location = location;
}
/** Cria evento sem localização (para eventos locais) */
public SimulationEvent(double timestamp, DESEventType type, Object payload) {
this(timestamp, type, payload, null);
}
public double getTimestamp() {
return timestamp;
}
public DESEventType getType() {
return type;
}
public Object getPayload() {
return payload;
}
public String getLocation() {
return location;
}
/**
* Ordena eventos por timestamp (mais cedo primeiro).
* Em caso de empate, ordena por tipo para determinismo.
*/
@Override
public int compareTo(SimulationEvent other) {
int timeComparison = Double.compare(this.timestamp, other.timestamp);
if (timeComparison != 0) {
return timeComparison;
}
// Tie-breaker: order by event type name
return this.type.name().compareTo(other.type.name());
}
@Override
public String toString() {
return String.format("Event[t=%.3f, type=%s, location=%s]",
timestamp, type, location);
}
@Override
public boolean equals(Object obj) {
if (this == obj) return true;
if (!(obj instanceof SimulationEvent)) return false;
SimulationEvent other = (SimulationEvent) obj;
return Double.compare(timestamp, other.timestamp) == 0 &&
type == other.type &&
(location == null ? other.location == null : location.equals(other.location));
}
@Override
public int hashCode() {
int result = 17;
result = 31 * result + Double.hashCode(timestamp);
result = 31 * result + type.hashCode();
result = 31 * result + (location != null ? location.hashCode() : 0);
return result;
}
}

View File

@@ -0,0 +1,36 @@
package sd.des;
import sd.model.TrafficLight;
/**
* Payload for traffic light change events.
* Contains the traffic light and its direction.
*/
public class TrafficLightEvent {
private final TrafficLight light;
private final String direction;
private final String intersectionId;
public TrafficLightEvent(TrafficLight light, String direction, String intersectionId) {
this.light = light;
this.direction = direction;
this.intersectionId = intersectionId;
}
public TrafficLight getLight() {
return light;
}
public String getDirection() {
return direction;
}
public String getIntersectionId() {
return intersectionId;
}
@Override
public String toString() {
return String.format("TrafficLightEvent[%s-%s]", intersectionId, direction);
}
}

View File

@@ -1,126 +0,0 @@
package sd.engine;
import sd.IntersectionProcess;
import sd.config.SimulationConfig;
import sd.model.TrafficLight;
import sd.model.TrafficLightState;
import sd.model.Vehicle;
/**
* Implements the control logic for a single TrafficLight
* as a Runnable task that runs in its own Thread.
*/
public class TrafficLightThread implements Runnable {
private final TrafficLight light;
private final IntersectionProcess process;
private final SimulationConfig config;
private volatile boolean running;
// Store the thread reference for proper interruption
private Thread currentThread;
public TrafficLightThread(TrafficLight light, IntersectionProcess process, SimulationConfig config) {
this.light = light;
this.process = process;
this.config = config;
this.running = false;
}
@Override
public void run() {
this.currentThread = Thread.currentThread();
this.running = true;
System.out.println("[" + light.getId() + "] Traffic light thread started.");
try {
while (running && !Thread.currentThread().isInterrupted()) {
// Request permission to turn green (blocks until granted)
process.requestGreenLight(light.getDirection());
try {
// --- GREEN Phase ---
light.changeState(TrafficLightState.GREEN);
System.out.println("[" + light.getId() + "] State: GREEN");
// Process queue for the duration of the green light
long greenDurationMs = (long) (light.getGreenTime() * 1000);
processGreenLightQueue(greenDurationMs);
if (!running || Thread.currentThread().isInterrupted())
break;
// --- RED Phase ---
light.changeState(TrafficLightState.RED);
System.out.println("[" + light.getId() + "] State: RED");
} finally {
// Always release the green light permission
process.releaseGreenLight(light.getDirection());
}
// Wait for red duration
Thread.sleep((long) (light.getRedTime() * 1000));
}
} catch (InterruptedException e) {
System.out.println("[" + light.getId() + "] Traffic light thread interrupted.");
Thread.currentThread().interrupt();
} finally {
this.running = false;
System.out.println("[" + light.getId() + "] Traffic light thread stopped.");
}
}
private void processGreenLightQueue(long greenDurationMs) throws InterruptedException {
long startTime = System.currentTimeMillis();
while (running && !Thread.currentThread().isInterrupted()
&& light.getState() == TrafficLightState.GREEN) {
// Check if green time has expired
long elapsed = System.currentTimeMillis() - startTime;
if (elapsed >= greenDurationMs) {
break;
}
if (light.getQueueSize() > 0) {
Vehicle vehicle = light.removeVehicle();
if (vehicle != null) {
double crossingTime = getCrossingTimeForVehicle(vehicle);
long crossingTimeMs = (long) (crossingTime * 1000);
Thread.sleep(crossingTimeMs);
vehicle.addCrossingTime(crossingTime);
process.getIntersection().incrementVehiclesSent();
process.sendVehicleToNextDestination(vehicle);
}
} else {
// Queue is empty, wait briefly for new vehicles or until time expires
Thread.sleep(50);
}
}
}
private double getCrossingTimeForVehicle(Vehicle vehicle) {
return switch (vehicle.getType()) {
case BIKE -> config.getBikeVehicleCrossingTime();
case LIGHT -> config.getLightVehicleCrossingTime();
case HEAVY -> config.getHeavyVehicleCrossingTime();
default -> config.getLightVehicleCrossingTime();
};
}
/**
* Requests the thread to stop gracefully.
* Sets the running flag and interrupts the thread to unblock any sleep() calls.
*/
public void shutdown() {
this.running = false;
if (currentThread != null && currentThread.isAlive()) {
currentThread.interrupt();
}
}
}

View File

@@ -0,0 +1,213 @@
package sd.logging;
import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.atomic.AtomicBoolean;
/**
* Sistema de registo centralizado de eventos para a simulação distribuída.
*
* <p>Regista todos os eventos da simulação num ficheiro com timestamps e categorização.
* Thread-safe e não-bloqueante para impacto mínimo na performance.</p>
*/
public class EventLogger {
private static EventLogger instance;
private static final Object instanceLock = new Object();
private final PrintWriter writer;
private final BlockingQueue<LogEntry> logQueue;
private final Thread writerThread;
private final AtomicBoolean running;
private final SimpleDateFormat timestampFormat;
private final long simulationStartMillis;
/** Construtor privado para padrão singleton */
private EventLogger(String logFilePath) throws IOException {
this.writer = new PrintWriter(new BufferedWriter(new FileWriter(logFilePath, false)), true);
this.logQueue = new LinkedBlockingQueue<>(10000);
this.running = new AtomicBoolean(true);
this.timestampFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
this.simulationStartMillis = System.currentTimeMillis();
writer.println("=".repeat(80));
writer.println("SIMULATION EVENT LOG");
writer.println("Started: " + timestampFormat.format(new Date()));
writer.println("=".repeat(80));
writer.println();
writer.printf("%-23s | %-8s | %-20s | %-15s | %s\n",
"TIMESTAMP", "REL_TIME", "EVENT_TYPE", "COMPONENT", "DESCRIPTION");
writer.println("-".repeat(80));
writer.flush();
this.writerThread = new Thread(this::processLogQueue, "EventLogger-Writer");
this.writerThread.setDaemon(true);
this.writerThread.start();
}
/** Obtém ou cria a instância singleton */
public static EventLogger getInstance() {
if (instance == null) {
synchronized (instanceLock) {
if (instance == null) {
try {
String logFile = "logs/simulation-events.log";
java.nio.file.Files.createDirectories(
java.nio.file.Paths.get("logs"));
instance = new EventLogger(logFile);
} catch (IOException e) {
System.err.println("Failed to initialize EventLogger: " + e.getMessage());
e.printStackTrace();
}
}
}
}
return instance;
}
/**
* Initialize with custom log file path.
*/
public static void initialize(String logFilePath) throws IOException {
synchronized (instanceLock) {
if (instance != null) {
instance.shutdown();
}
instance = new EventLogger(logFilePath);
}
}
/**
* Logs an event (non-blocking).
*/
public void log(EventType eventType, String component, String description) {
if (!running.get()) return;
LogEntry entry = new LogEntry(
System.currentTimeMillis(),
eventType,
component,
description
);
// Non-blocking offer - if queue is full, drop oldest
if (!logQueue.offer(entry)) {
// Queue full - this shouldn't happen with 10k buffer, but handle gracefully
System.err.println("EventLogger queue full - dropping event: " + eventType);
}
}
/**
* Logs an event with vehicle context.
*/
public void logVehicle(EventType eventType, String component, String vehicleId, String description) {
log(eventType, component, "[" + vehicleId + "] " + description);
}
/**
* Logs an error event.
*/
public void logError(String component, String description, Exception e) {
String fullDescription = description + (e != null ? ": " + e.getMessage() : "");
log(EventType.ERROR, component, fullDescription);
}
/**
* Background thread that writes log entries to file.
*/
private void processLogQueue() {
while (running.get() || !logQueue.isEmpty()) {
try {
LogEntry entry = logQueue.poll(100, java.util.concurrent.TimeUnit.MILLISECONDS);
if (entry != null) {
writeEntry(entry);
}
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
break;
}
}
// Flush remaining entries
while (!logQueue.isEmpty()) {
LogEntry entry = logQueue.poll();
if (entry != null) {
writeEntry(entry);
}
}
}
/**
* Writes a single log entry to file.
*/
private void writeEntry(LogEntry entry) {
String timestamp = timestampFormat.format(new Date(entry.timestampMillis));
double relativeTime = (entry.timestampMillis - simulationStartMillis) / 1000.0;
writer.printf("%-23s | %8.3fs | %-20s | %-15s | %s\n",
timestamp,
relativeTime,
entry.eventType.toString(),
truncate(entry.component, 15),
entry.description
);
// Flush periodically for real-time viewing
if (logQueue.size() < 10) {
writer.flush();
}
}
private String truncate(String str, int maxLength) {
if (str == null) return "";
return str.length() <= maxLength ? str : str.substring(0, maxLength);
}
/**
* Shuts down the logger and flushes all pending entries.
*/
public void shutdown() {
if (!running.compareAndSet(true, false)) {
return; // Already shut down
}
try {
// Wait for writer thread to finish
writerThread.join(5000); // Wait up to 5 seconds
// Write footer
writer.println();
writer.println("-".repeat(80));
writer.println("SIMULATION ENDED");
writer.println("Ended: " + timestampFormat.format(new Date()));
writer.println("=".repeat(80));
writer.close();
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
/**
* Internal class to represent a log entry.
*/
private static class LogEntry {
final long timestampMillis;
final EventType eventType;
final String component;
final String description;
LogEntry(long timestampMillis, EventType eventType, String component, String description) {
this.timestampMillis = timestampMillis;
this.eventType = eventType;
this.component = component;
this.description = description;
}
}
}

View File

@@ -0,0 +1,47 @@
package sd.logging;
/**
* Tipos de eventos que podem ocorrer na simulação.
* Usados para categorizar e filtrar logs.
*/
public enum EventType {
VEHICLE_GENERATED("Vehicle Generated"),
VEHICLE_ARRIVED("Vehicle Arrived"),
VEHICLE_QUEUED("Vehicle Queued"),
VEHICLE_DEPARTED("Vehicle Departed"),
VEHICLE_EXITED("Vehicle Exited"),
LIGHT_CHANGED_GREEN("Light Changed to Green"),
LIGHT_CHANGED_RED("Light Changed to Red"),
LIGHT_REQUEST_GREEN("Light Requested Green"),
LIGHT_RELEASE_GREEN("Light Released Green"),
SIMULATION_STARTED("Simulation Started"),
SIMULATION_STOPPED("Simulation Stopped"),
PROCESS_STARTED("Process Started"),
PROCESS_STOPPED("Process Stopped"),
STATS_UPDATE("Statistics Update"),
CONNECTION_ESTABLISHED("Connection Established"),
CONNECTION_LOST("Connection Lost"),
MESSAGE_SENT("Message Sent"),
MESSAGE_RECEIVED("Message Received"),
ERROR("Error");
private final String displayName;
EventType(String displayName) {
this.displayName = displayName;
}
public String getDisplayName() {
return displayName;
}
@Override
public String toString() {
return displayName;
}
}

View File

@@ -0,0 +1,331 @@
package sd.logging;
import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import sd.model.Vehicle;
/**
* Rastreia e regista a viagem completa de veículos individuais.
*
* <p>Cria ficheiros de trace detalhados com:
* <ul>
* <li>Timestamps de todos os eventos
* <li>Localizações (interseções)
* <li>Tempos de espera em cada semáforo
* <li>Tempos de travessia
* <li>Tempo total no sistema
* </ul>
*/
public class VehicleTracer {
private static VehicleTracer instance;
private static final Object instanceLock = new Object();
private final Map<String, VehicleTrace> trackedVehicles;
private final SimpleDateFormat timestampFormat;
private final long simulationStartMillis;
private final String traceDirectory;
/** Construtor privado (singleton) */
private VehicleTracer(String traceDirectory) {
this.trackedVehicles = new ConcurrentHashMap<>();
this.timestampFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
this.simulationStartMillis = System.currentTimeMillis();
this.traceDirectory = traceDirectory;
try {
java.nio.file.Files.createDirectories(java.nio.file.Paths.get(traceDirectory));
} catch (IOException e) {
System.err.println("Failed to create trace directory: " + e.getMessage());
}
}
/** Obtém ou cria a instância singleton */
public static VehicleTracer getInstance() {
if (instance == null) {
synchronized (instanceLock) {
if (instance == null) {
instance = new VehicleTracer("logs/traces");
}
}
}
return instance;
}
/** Inicializa com diretório de trace customizado */
public static void initialize(String traceDirectory) {
synchronized (instanceLock) {
if (instance != null) {
instance.shutdown();
}
instance = new VehicleTracer(traceDirectory);
}
}
/**
* Começa a rastrear um veículo específico.
* Cria ficheiro de trace para este veículo.
*/
public void startTracking(String vehicleId) {
if (trackedVehicles.containsKey(vehicleId)) {
return; // Already tracking
}
VehicleTrace trace = new VehicleTrace(vehicleId, traceDirectory);
trackedVehicles.put(vehicleId, trace);
trace.logEvent("TRACKING_STARTED", "", "Started tracking vehicle " + vehicleId);
}
/**
* Stops tracking a vehicle and closes its trace file.
*/
public void stopTracking(String vehicleId) {
VehicleTrace trace = trackedVehicles.remove(vehicleId);
if (trace != null) {
trace.logEvent("TRACKING_STOPPED", "", "Stopped tracking vehicle " + vehicleId);
trace.close();
}
}
/**
* Checks if a vehicle is being tracked.
*/
public boolean isTracking(String vehicleId) {
return trackedVehicles.containsKey(vehicleId);
}
/**
* Logs when a vehicle is generated.
*/
public void logGenerated(Vehicle vehicle) {
if (!isTracking(vehicle.getId())) return;
VehicleTrace trace = trackedVehicles.get(vehicle.getId());
if (trace != null) {
trace.logEvent("GENERATED", "Coordinator",
String.format("Type: %s, Entry Time: %.2fs, Route: %s",
vehicle.getType(), vehicle.getEntryTime(), vehicle.getRoute()));
}
}
/**
* Logs when a vehicle arrives at an intersection.
*/
public void logArrival(String vehicleId, String intersection, double simulationTime) {
if (!isTracking(vehicleId)) return;
VehicleTrace trace = trackedVehicles.get(vehicleId);
if (trace != null) {
trace.logEvent("ARRIVED", intersection,
String.format("Arrived at %s (sim time: %.2fs)", intersection, simulationTime));
}
}
/**
* Logs when a vehicle is queued at a traffic light.
*/
public void logQueued(String vehicleId, String intersection, String direction, int queuePosition) {
if (!isTracking(vehicleId)) return;
VehicleTrace trace = trackedVehicles.get(vehicleId);
if (trace != null) {
trace.logEvent("QUEUED", intersection,
String.format("Queued at %s-%s (position: %d)", intersection, direction, queuePosition));
}
}
/**
* Logs when a vehicle starts waiting at a red light.
*/
public void logWaitingStart(String vehicleId, String intersection, String direction) {
if (!isTracking(vehicleId)) return;
VehicleTrace trace = trackedVehicles.get(vehicleId);
if (trace != null) {
trace.logEvent("WAITING_START", intersection,
String.format("Started waiting at %s-%s (light is RED)", intersection, direction));
}
}
/**
* Logs when a vehicle finishes waiting (light turns green).
*/
public void logWaitingEnd(String vehicleId, String intersection, String direction, double waitTime) {
if (!isTracking(vehicleId)) return;
VehicleTrace trace = trackedVehicles.get(vehicleId);
if (trace != null) {
trace.logEvent("WAITING_END", intersection,
String.format("Finished waiting at %s-%s (waited %.2fs)", intersection, direction, waitTime));
}
}
/**
* Logs when a vehicle starts crossing an intersection.
*/
public void logCrossingStart(String vehicleId, String intersection, String direction) {
if (!isTracking(vehicleId)) return;
VehicleTrace trace = trackedVehicles.get(vehicleId);
if (trace != null) {
trace.logEvent("CROSSING_START", intersection,
String.format("Started crossing %s-%s (light is GREEN)", intersection, direction));
}
}
/**
* Logs when a vehicle finishes crossing an intersection.
*/
public void logCrossingEnd(String vehicleId, String intersection, double crossingTime) {
if (!isTracking(vehicleId)) return;
VehicleTrace trace = trackedVehicles.get(vehicleId);
if (trace != null) {
trace.logEvent("CROSSING_END", intersection,
String.format("Finished crossing %s (took %.2fs)", intersection, crossingTime));
}
}
/**
* Logs when a vehicle departs from an intersection.
*/
public void logDeparture(String vehicleId, String intersection, String nextDestination) {
if (!isTracking(vehicleId)) return;
VehicleTrace trace = trackedVehicles.get(vehicleId);
if (trace != null) {
trace.logEvent("DEPARTED", intersection,
String.format("Departed from %s toward %s", intersection, nextDestination));
}
}
/**
* Logs when a vehicle exits the system.
*/
public void logExit(Vehicle vehicle, double systemTime) {
if (!isTracking(vehicle.getId())) return;
VehicleTrace trace = trackedVehicles.get(vehicle.getId());
if (trace != null) {
trace.logEvent("EXITED", "Exit Node",
String.format("Exited system - Total time: %.2fs, Waiting: %.2fs, Crossing: %.2fs",
systemTime, vehicle.getTotalWaitingTime(), vehicle.getTotalCrossingTime()));
// Write summary
trace.writeSummary(vehicle, systemTime);
// Stop tracking and close file
stopTracking(vehicle.getId());
}
}
/**
* Shuts down the tracer and closes all trace files.
*/
public void shutdown() {
for (VehicleTrace trace : trackedVehicles.values()) {
trace.close();
}
trackedVehicles.clear();
}
/**
* Internal class to handle tracing for a single vehicle.
*/
private class VehicleTrace {
private final String vehicleId;
private final PrintWriter writer;
private final long traceStartMillis;
VehicleTrace(String vehicleId, String directory) {
this.vehicleId = vehicleId;
this.traceStartMillis = System.currentTimeMillis();
PrintWriter w = null;
try {
String filename = String.format("%s/vehicle-%s.trace", directory, vehicleId);
w = new PrintWriter(new BufferedWriter(new FileWriter(filename, false)), true);
// Write header
w.println("=".repeat(80));
w.println("VEHICLE TRACE: " + vehicleId);
w.println("Trace Started: " + timestampFormat.format(new Date()));
w.println("=".repeat(80));
w.println();
w.printf("%-23s | %-8s | %-15s | %-15s | %s\n",
"TIMESTAMP", "REL_TIME", "EVENT", "LOCATION", "DESCRIPTION");
w.println("-".repeat(80));
} catch (IOException e) {
System.err.println("Failed to create trace file for " + vehicleId + ": " + e.getMessage());
}
this.writer = w;
}
void logEvent(String eventType, String location, String description) {
if (writer == null) return;
long now = System.currentTimeMillis();
String timestamp = timestampFormat.format(new Date(now));
double relativeTime = (now - traceStartMillis) / 1000.0;
writer.printf("%-23s | %8.3fs | %-15s | %-15s | %s\n",
timestamp,
relativeTime,
truncate(eventType, 15),
truncate(location, 15),
description
);
writer.flush();
}
void writeSummary(Vehicle vehicle, double systemTime) {
if (writer == null) return;
writer.println();
writer.println("=".repeat(80));
writer.println("JOURNEY SUMMARY");
writer.println("=".repeat(80));
writer.println("Vehicle ID: " + vehicle.getId());
writer.println("Vehicle Type: " + vehicle.getType());
writer.println("Route: " + vehicle.getRoute());
writer.println();
writer.printf("Entry Time: %.2f seconds\n", vehicle.getEntryTime());
writer.printf("Total System Time: %.2f seconds\n", systemTime);
writer.printf("Total Waiting Time: %.2f seconds (%.1f%%)\n",
vehicle.getTotalWaitingTime(),
100.0 * vehicle.getTotalWaitingTime() / systemTime);
writer.printf("Total Crossing Time: %.2f seconds (%.1f%%)\n",
vehicle.getTotalCrossingTime(),
100.0 * vehicle.getTotalCrossingTime() / systemTime);
writer.printf("Travel Time: %.2f seconds (%.1f%%)\n",
systemTime - vehicle.getTotalWaitingTime() - vehicle.getTotalCrossingTime(),
100.0 * (systemTime - vehicle.getTotalWaitingTime() - vehicle.getTotalCrossingTime()) / systemTime);
writer.println("=".repeat(80));
}
void close() {
if (writer != null) {
writer.println();
writer.println("-".repeat(80));
writer.println("END OF TRACE");
writer.println("=".repeat(80));
writer.close();
}
}
private String truncate(String str, int maxLength) {
if (str == null) return "";
return str.length() <= maxLength ? str : str.substring(0, maxLength);
}
}
}

View File

@@ -6,65 +6,51 @@ import java.util.List;
import java.util.Map;
/**
* Represents an intersection in the traffic simulation.
* * An Intersection acts as a central hub. It does not control logic itself,
* but it *owns* and *manages* a set of {@link TrafficLight} objects.
* * Its primary responsibilities are:
* 1. Holding a {@link TrafficLight} for each direction ("North", "East", etc.).
* 2. Maintaining a {@code routing} table that maps a vehicle's *next*
* destination (e.g., "Cr3") to a specific *direction* at *this*
* intersection (e.g., "East").
* 3. Receiving incoming vehicles and placing them in the correct
* traffic light's queue based on the routing table.
* 4. Tracking aggregate statistics for all traffic passing through it.
* Representa uma interseção na simulação de tráfego.
*
* <p>Uma interseção funciona como um nó central da rede. Não controla lógica diretamente,
* mas gere um conjunto de semáforos ({@link TrafficLight}).</p>
*
* <p>Responsabilidades principais:</p>
* <ul>
* <li>Manter um {@link TrafficLight} para cada direção (Norte, Este, etc.)</li>
* <li>Gerir uma tabela de encaminhamento que mapeia destinos para direções</li>
* <li>Receber veículos e colocá-los na fila do semáforo correto</li>
* <li>Acompanhar estatísticas agregadas do tráfego</li>
* </ul>
*/
public class Intersection {
// --- Identity and configuration ---
/**
* Unique identifier for the intersection (e.g., "Cr1", "Cr2").
*/
/** Identificador único da interseção (ex: "Cr1", "Cr2") */
private final String id;
/**
* A map holding all traffic lights managed by this intersection.
* Key: Direction (String, e.g., "North", "East").
* Value: The {@link TrafficLight} object for that direction.
* Mapa com todos os semáforos desta interseção.
* Chave: Direção (String, ex: "Norte", "Este")
* Valor: Objeto {@link TrafficLight} correspondente
*/
private final Map<String, TrafficLight> trafficLights;
/**
* The routing table for this intersection.
* Key: The *next* destination ID (String, e.g., "Cr3", "S" for exit).
* Value: The *direction* (String, e.g., "East") a vehicle must take
* at *this* intersection to reach that destination.
* Tabela de encaminhamento da interseção.
* Chave: Próximo destino (String, ex: "Cr3", "S" para saída)
* Valor: Direção que o veículo deve tomar nesta interseção
*/
private final Map<String, String> routing;
// --- Statistics ---
/**
* Total number of vehicles that have been received by this intersection.
*/
/** Número total de veículos recebidos por esta interseção */
private int totalVehiclesReceived;
/**
* Total number of vehicles that have successfully passed through (sent from) this intersection.
*/
/** Número total de veículos que partiram desta interseção */
private int totalVehiclesSent;
/**
* A running average of the waiting time for vehicles at this intersection.
* Note: This calculation might be simplified.
*/
/** Média acumulada do tempo de espera dos veículos nesta interseção */
private double averageWaitingTime;
/**
* Constructs a new Intersection with a given ID.
* Initializes empty maps for traffic lights and routing.
* Cria uma nova interseção.
* Inicializa mapas vazios para semáforos e encaminhamento.
*
* @param id The unique identifier for this intersection (e.g., "Cr1").
* @param id identificador único da interseção (ex: "Cr1")
*/
public Intersection(String id) {
this.id = id;
@@ -76,40 +62,41 @@ public class Intersection {
}
/**
* Registers a new {@link TrafficLight} with this intersection.
* The light is mapped by its direction.
* Regista um novo semáforo nesta interseção.
* O semáforo é mapeado pela sua direção.
*
* @param trafficLight The {@link TrafficLight} object to add.
* @param trafficLight o semáforo a adicionar
*/
public void addTrafficLight(TrafficLight trafficLight) {
trafficLights.put(trafficLight.getDirection(), trafficLight);
}
/**
* Defines a routing rule for this intersection.
* * This method builds the routing table. For example, calling
* {@code configureRoute("Cr3", "East")} means "Any vehicle
* arriving here whose next destination is 'Cr3' should be sent to
* the 'East' traffic light queue."
* Define uma regra de encaminhamento para esta interseção.
*
* @param nextDestination The ID of the *next* intersection or exit (e.g., "Cr3", "S").
* @param direction The direction (and thus, the traffic light)
* at *this* intersection to use (e.g., "East").
* <p>Por exemplo, {@code configureRoute("Cr3", "Este")} significa:
* "Qualquer veículo que chegue aqui com destino 'Cr3' deve ser enviado
* para a fila do semáforo da direção Este."</p>
*
* @param nextDestination ID da próxima interseção ou saída (ex: "Cr3", "S")
* @param direction direção (e respetivo semáforo) a usar nesta interseção
*/
public void configureRoute(String nextDestination, String direction) {
routing.put(nextDestination, direction);
}
/**
* Accepts an incoming vehicle and places it in the correct queue.
* * This method:
* 1. Increments the {@link #totalVehiclesReceived} counter.
* 2. Advances the vehicle's route (since it just arrived here)
* 3. Gets the vehicle's *next* destination (from {@link Vehicle#getCurrentDestination()}).
* 4. Uses the {@link #routing} map to find the correct *direction* for that destination.
* 5. Adds the vehicle to the queue of the {@link TrafficLight} for that direction.
* Recebe um veículo e coloca-o na fila correta.
*
* @param vehicle The {@link Vehicle} arriving at the intersection.
* <p>Passos executados:</p>
* <ol>
* <li>Incrementa o contador de veículos recebidos</li>
* <li>Obtém o próximo destino do veículo</li>
* <li>Consulta a tabela de encaminhamento para encontrar a direção</li>
* <li>Adiciona o veículo à fila do semáforo apropriado</li>
* </ol>
*
* @param vehicle o veículo que chega à interseção
*/
public void receiveVehicle(Vehicle vehicle) {
totalVehiclesReceived++;
@@ -141,115 +128,99 @@ public class Intersection {
}
/**
* Returns the direction a vehicle should take to reach a given destination.
* Retorna a direção que um veículo deve tomar para alcançar um destino.
*
* @param destination The next destination (e.g., "Cr3", "S").
* @return The direction (e.g., "East"), or null if no route is configured.
* @param destination o próximo destino (ex: "Cr3", "S")
* @return a direção (ex: "Este"), ou null se não houver rota configurada
*/
public String getDirectionForDestination(String destination) {
return routing.get(destination);
}
/**
* Returns the traffic light controlling the given direction.
* Retorna o semáforo que controla uma determinada direção.
*
* @param direction The direction (e.g., "North").
* @return The {@link TrafficLight} object, or null if no light exists
* for that direction.
* @param direction a direção (ex: "Norte")
* @return o objeto {@link TrafficLight}, ou null se não existir
*/
public TrafficLight getTrafficLight(String direction) {
return trafficLights.get(direction);
}
/**
* Returns a list of all traffic lights managed by this intersection.
* Retorna uma lista com todos os semáforos desta interseção.
*
* @return A new {@link List} containing all {@link TrafficLight} objects.
* @return uma nova {@link List} com todos os semáforos
*/
public List<TrafficLight> getTrafficLights() {
// Return a copy to prevent external modification of the internal map's values
return new ArrayList<>(trafficLights.values());
}
/**
* Returns the total number of vehicles currently queued across *all*
* traffic lights at this intersection.
* Retorna o número total de veículos em fila em todos os semáforos.
* Usa Java Stream API para somar os tamanhos de todas as filas.
*
* @return The sum of all queue sizes.
* @return a soma dos tamanhos de todas as filas
*/
public int getTotalQueueSize() {
// Uses Java Stream API:
// 1. trafficLights.values().stream() - Get a stream of TrafficLight objects
// 2. .mapToInt(TrafficLight::getQueueSize) - Convert each light to its queue size (an int)
// 3. .sum() - Sum all the integers
return trafficLights.values().stream()
.mapToInt(TrafficLight::getQueueSize)
.sum();
}
// --- Stats and getters ---
/**
* @return The unique ID of this intersection.
* @return o identificador único desta interseção
*/
public String getId() {
return id;
}
/**
* @return The total number of vehicles that have arrived at this intersection.
* @return o número total de veículos que chegaram a esta interseção
*/
public int getTotalVehiclesReceived() {
return totalVehiclesReceived;
}
/**
* @return The total number of vehicles that have successfully
* departed from this intersection.
* @return o número total de veículos que partiram desta interseção
*/
public int getTotalVehiclesSent() {
return totalVehiclesSent;
}
/**
* Increments the counter for vehicles that have successfully departed.
* This is typically called by the {@link sd.engine.SimulationEngine}
* after a vehicle finishes crossing.
* Incrementa o contador de veículos que partiram com sucesso.
* Tipicamente chamado após um veículo completar a travessia.
*/
public void incrementVehiclesSent() {
totalVehiclesSent++;
}
/**
* @return The running average of vehicle waiting time at this intersection.
* @return a média do tempo de espera dos veículos nesta interseção
*/
public double getAverageWaitingTime() {
return averageWaitingTime;
}
/**
* Updates the running average waiting time with a new sample (a new
* vehicle's wait time).
* * Uses an incremental/weighted average formula:
* NewAvg = (OldAvg * (N-1) + NewValue) / N
* where N is the total number of vehicles sent.
* Atualiza a média do tempo de espera com uma nova amostra.
* Usa a fórmula: Nova Média = (Média Antiga * (N-1) + Novo Valor) / N
*
* @param newTime The waiting time (in seconds) of the vehicle that just
* departed.
* @param newTime tempo de espera (em segundos) do veículo que acabou de partir
*/
public void updateAverageWaitingTime(double newTime) {
// Avoid division by zero if this is called before any vehicle is sent
if (totalVehiclesSent > 0) {
averageWaitingTime = (averageWaitingTime * (totalVehiclesSent - 1) + newTime)
/ totalVehiclesSent;
} else if (totalVehiclesSent == 1) {
// This is the first vehicle
averageWaitingTime = newTime;
}
}
/**
* @return A string summary of the intersection's current state.
* @return representação textual do estado atual da interseção
*/
@Override
public String toString() {

View File

@@ -5,52 +5,41 @@ import java.util.UUID;
import sd.protocol.MessageProtocol;
/**
* Represents a message exchanged between processes in the distributed simulation.
* Each message has a unique ID, a type, a sender, a destination, and a payload.
* This class implements {@link MessageProtocol} which extends Serializable for network transmission.
* Representa uma mensagem trocada entre processos na simulação distribuída.
*
* <p>Cada mensagem tem um ID único, tipo, remetente, destino e payload.
* Implementa {@link MessageProtocol} que estende Serializable para transmissão pela rede.</p>
*/
public class Message implements MessageProtocol {
private static final long serialVersionUID = 1L;
/**
* Unique identifier for this message.
*/
/** Identificador único desta mensagem */
private final String messageId;
/**
* The type of this message (e.g., VEHICLE_TRANSFER, STATS_UPDATE).
*/
/** Tipo desta mensagem (ex: VEHICLE_TRANSFER, STATS_UPDATE) */
private final MessageType type;
/**
* Identifier of the process that sent this message.
*/
/** Identificador do processo que enviou esta mensagem */
private final String senderId;
/**
* Identifier of the destination process. Can be null for broadcast messages.
*/
/** Identificador do processo de destino (pode ser null para broadcast) */
private final String destinationId;
/**
* The actual data being transmitted. Type depends on the message type.
*/
/** Dados a serem transmitidos (o tipo depende do tipo de mensagem) */
private final Object payload;
/**
* Timestamp when this message was created (simulation time or real time).
*/
/** Timestamp de criação da mensagem (tempo de simulação ou real) */
private final long timestamp;
/**
* Creates a new message with all parameters.
* Cria uma nova mensagem com todos os parâmetros.
*
* @param type The message type
* @param senderId The ID of the sending process
* @param destinationId The ID of the destination process (null for broadcast)
* @param payload The message payload
* @param timestamp The timestamp of message creation
* @param type tipo da mensagem
* @param senderId ID do processo remetente
* @param destinationId ID do processo de destino (null para broadcast)
* @param payload conteúdo da mensagem
* @param timestamp timestamp de criação da mensagem
*/
public Message(MessageType type, String senderId, String destinationId,
Object payload, long timestamp) {
@@ -63,23 +52,23 @@ public class Message implements MessageProtocol {
}
/**
* Creates a new message with current system time as timestamp.
* Cria uma nova mensagem usando o tempo atual do sistema como timestamp.
*
* @param type The message type
* @param senderId The ID of the sending process
* @param destinationId The ID of the destination process
* @param payload The message payload
* @param type tipo da mensagem
* @param senderId ID do processo remetente
* @param destinationId ID do processo de destino
* @param payload conteúdo da mensagem
*/
public Message(MessageType type, String senderId, String destinationId, Object payload) {
this(type, senderId, destinationId, payload, System.currentTimeMillis());
}
/**
* Creates a broadcast message (no specific destination).
* Cria uma mensagem de broadcast (sem destino específico).
*
* @param type The message type
* @param senderId The ID of the sending process
* @param payload The message payload
* @param type tipo da mensagem
* @param senderId ID do processo remetente
* @param payload conteúdo da mensagem
*/
public Message(MessageType type, String senderId, Object payload) {
this(type, senderId, null, payload, System.currentTimeMillis());

View File

@@ -1,87 +1,43 @@
package sd.model;
/**
* Enumeration representing all possible message types for distributed communication.
* These types are used for inter-process communication between different components
* of the distributed traffic simulation system.
* Enumeração que representa todos os tipos de mensagens possíveis para
* comunicação distribuída.
* Estes tipos são usados para a comunicação entre processos dos diferentes
* componentes
* do sistema de simulação de tráfego distribuído.
*/
public enum MessageType {
/**
* Message to transfer a vehicle between intersections or processes.
* Payload: Vehicle object with current state
* Mensagem para transferir um veículo entre interseções ou processos.
* Payload: Objeto Vehicle com o estado atual
*/
VEHICLE_TRANSFER,
/**
* Message to update statistics across the distributed system.
* Payload: Statistics data (waiting times, queue sizes, etc.)
* Mensagem para atualizar estatísticas em todo o sistema distribuído.
* Payload: Dados estatísticos (tempos de espera, tamanhos de fila, etc.)
*/
STATS_UPDATE,
/**
* Message to synchronize simulation start time across all processes.
* Payload: Start timestamp (long milliseconds)
* Mensagem para sincronizar a hora de início da simulação em todos os
* processos.
* Payload: Timestamp de início (long milissegundos)
*/
SIMULATION_START,
/**
* Message to synchronize traffic light states between processes.
* Payload: TrafficLight state and timing information
*/
TRAFFIC_LIGHT_SYNC,
/**
* Heartbeat message to check if a process is alive.
* Payload: Process ID and timestamp
*/
HEARTBEAT,
/**
* Request to join the distributed simulation.
* Payload: Process information and capabilities
*/
JOIN_REQUEST,
/**
* Response to a join request.
* Payload: Acceptance status and configuration
*/
JOIN_RESPONSE,
/**
* Message to notify about a new vehicle generation.
* Payload: Vehicle generation parameters
* Mensagem para notificar sobre a geração de um novo veículo.
* Payload: Parâmetros de geração do veículo
*/
VEHICLE_SPAWN,
/**
* Message to request the current state of an intersection.
* Payload: Intersection ID
*/
STATE_REQUEST,
/**
* Response containing the current state of an intersection.
* Payload: Complete intersection state
*/
STATE_RESPONSE,
/**
* Message to signal shutdown of a process.
* Payload: Process ID and reason
* Mensagem para sinalizar o encerramento de um processo.
* Payload: ID do processo e motivo
*/
SHUTDOWN,
/**
* Acknowledgment message for reliable communication.
* Payload: Message ID being acknowledged
*/
ACK,
/**
* Error message to report problems in the distributed system.
* Payload: Error description and context
*/
ERROR
}

View File

@@ -9,114 +9,69 @@ import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
/**
* Represents a single traffic light controlling one direction at an intersection.
* * Each light maintains its own queue of {@link Vehicle} objects and
* alternates between {@link TrafficLightState#GREEN} and
* {@link TrafficLightState#RED} states.
* * This class is designed to be thread-safe for a potential concurrent
* simulation (though the current engine {@link sd.engine.SimulationEngine}
* is single-threaded). It uses a {@link ReentrantLock} to protect its
* internal state (the queue and the light state) from simultaneous access.
* * The {@link Condition} variables ({@code vehicleAdded}, {@code lightGreen})
* are included for a concurrent model where:
* - A "vehicle" thread might wait on {@code lightGreen} until the light changes.
* - A "controller" thread might wait on {@code vehicleAdded} to know when to
* process a queue.
* (Note: These Conditions are *not* used by the current discrete-event engine).
* Representa um semáforo numa interseção.
*
* <p>Cada semáforo controla uma direção específica e mantém uma fila de veículos à espera.
* Alterna entre os estados VERDE e VERMELHO de acordo com a temporização configurada.</p>
*
* <p><strong>Thread-safety:</strong> Usa locks para permitir acesso concorrente seguro entre
* a thread de processamento de eventos e as threads de I/O de rede.</p>
*/
public class TrafficLight {
// --- Identity and configuration ---
/**
* Unique identifier for the light (e.g., "Cr1-N").
*/
/** Identificador único do semáforo (ex: "Cr1-N") */
private final String id;
/**
* The direction this light controls (e.g., "North", "South").
*/
/** Direção que este semáforo controla (ex: "Norte", "Sul") */
private final String direction;
/**
* The current state of the light (GREEN or RED).
*/
/** Estado atual do semáforo (VERDE ou VERMELHO) */
private TrafficLightState state;
// --- Vehicle management ---
/**
* The queue of vehicles waiting at this light.
* {@link LinkedList} is used as it's a standard {@link Queue} implementation.
*/
/** Fila de veículos à espera neste semáforo */
private final Queue<Vehicle> queue;
// --- Synchronization primitives (for thread-safety) ---
/**
* A lock to protect all mutable state ({@link #queue} and {@link #state})
* from concurrent access. Any method reading or writing these fields
* *must* acquire this lock first.
* Lock para proteger o estado mutável ({@link #queue} e {@link #state})
* de acesso concorrente.
*/
private final Lock lock;
/**
* A condition variable for a potential concurrent model.
* It could be used to signal threads (e.g., a controller) that
* a new vehicle has been added to the queue.
* (Not used in the current discrete-event engine).
*/
/** Variável de condição para sinalizar adição de veículos (uso futuro) */
private final Condition vehicleAdded;
/**
* A condition variable for a potential concurrent model.
* It could be used to signal waiting vehicle threads that the
* light has just turned GREEN.
* (Not used in the current discrete-event engine).
*/
/** Variável de condição para sinalizar que o semáforo ficou verde (uso futuro) */
private final Condition lightGreen;
// --- Timing configuration ---
/**
* The duration (in seconds) this light stays GREEN.
*/
/** Duração (segundos) que o semáforo permanece VERDE */
private double greenTime;
/**
* The duration (in seconds) this light stays RED.
*/
/** Duração (segundos) que o semáforo permanece VERMELHO */
private double redTime;
// --- Statistics ---
/**
* Counter for the total number of vehicles that have
* been dequeued (processed) by this light.
*/
/** Número total de veículos processados por este semáforo */
private int totalVehiclesProcessed;
/**
* Track when vehicles arrive at this light for wait time calculation.
* Maps vehicle ID to arrival timestamp (milliseconds).
* Regista quando os veículos chegam ao semáforo para cálculo do tempo de espera.
* Mapeia ID do veículo para timestamp de chegada (milissegundos).
*/
private final Map<String, Long> vehicleArrivalTimes;
/**
* Constructs a new TrafficLight.
* Cria um novo semáforo.
*
* @param id The unique ID (e.g., "Cr1-N").
* @param direction The direction (e.g., "North").
* @param greenTime The duration of the GREEN state in seconds.
* @param redTime The duration of the RED state in seconds.
* @param id identificador único (ex: "Cr1-N")
* @param direction direção controlada (ex: "Norte")
* @param greenTime duração do estado VERDE em segundos
* @param redTime duração do estado VERMELHO em segundos
*/
public TrafficLight(String id, String direction, double greenTime, double redTime) {
this.id = id;
this.direction = direction;
this.state = TrafficLightState.RED; // All lights start RED
this.state = TrafficLightState.RED;
this.queue = new LinkedList<>();
// Initialize synchronization objects
this.lock = new ReentrantLock();
this.vehicleAdded = lock.newCondition();
this.lightGreen = lock.newCondition();
@@ -128,42 +83,45 @@ public class TrafficLight {
}
/**
* Adds a vehicle to the *end* of the waiting queue.
* This method is thread-safe.
* Coloca um veículo na fila deste semáforo.
*
* @param vehicle The {@link Vehicle} to add.
* Registamos a hora de chegada para podermos calcular mais tarde quanto tempo o
* veículo esperou.
*
* @param vehicle O veículo que chega ao semáforo.
*/
public void addVehicle(Vehicle vehicle) {
lock.lock(); // Acquire the lock
lock.lock();
try {
queue.offer(vehicle); // Add vehicle to queue
queue.offer(vehicle);
vehicleArrivalTimes.put(vehicle.getId(), System.currentTimeMillis());
vehicleAdded.signalAll(); // Signal (for concurrent models)
vehicleAdded.signalAll();
} finally {
lock.unlock(); // Always release the lock
lock.unlock();
}
}
/**
* Removes and returns the {@link Vehicle} from the *front* of the queue.
* * This only succeeds if:
* 1. The light's state is {@link TrafficLightState#GREEN}.
* 2. The queue is not empty.
* * If these conditions are not met, it returns {@code null}.
* This method is thread-safe.
* Remove um veículo da fila para travessia.
*
* @return The {@link Vehicle} at the front of the queue, or {@code null}
* if the light is RED or the queue is empty.
* <p>Só remove se:</p>
* <ul>
* <li>O semáforo estiver VERDE</li>
* <li>Existir pelo menos um veículo na fila</li>
* </ul>
*
* <p>Atualiza automaticamente as estatísticas de tempo de espera do veículo.</p>
*
* @return o veículo que vai atravessar, ou null se não for possível
*/
public Vehicle removeVehicle() {
lock.lock(); // Acquire the lock
lock.lock();
try {
if (state == TrafficLightState.GREEN && !queue.isEmpty()) {
Vehicle vehicle = queue.poll(); // Remove vehicle from queue
Vehicle vehicle = queue.poll();
if (vehicle != null) {
totalVehiclesProcessed++;
// Calculate wait time (time spent in queue)
Long arrivalTime = vehicleArrivalTimes.remove(vehicle.getId());
if (arrivalTime != null) {
double waitTimeSeconds = (System.currentTimeMillis() - arrivalTime) / 1000.0;
@@ -172,161 +130,138 @@ public class TrafficLight {
}
return vehicle;
}
return null; // Light is RED or queue is empty
return null;
} finally {
lock.unlock(); // Always release the lock
lock.unlock();
}
}
/**
* Changes the lights state (e.g., RED -> GREEN).
* If the new state is GREEN, it signals any waiting threads
* (for a potential concurrent model).
* This method is thread-safe.
* Muda o estado do semáforo.
*
* @param newState The {@link TrafficLightState} to set.
* @param newState novo estado (VERDE ou VERMELHO)
*/
public void changeState(TrafficLightState newState) {
lock.lock(); // Acquire the lock
lock.lock();
try {
this.state = newState;
if (newState == TrafficLightState.GREEN) {
lightGreen.signalAll(); // Signal (for concurrent models)
lightGreen.signalAll();
}
} finally {
lock.unlock(); // Always release the lock
lock.unlock();
}
}
/**
* Returns how many vehicles are currently in the queue.
* This method is thread-safe.
* * @return The size of the queue.
* Retorna quantos veículos estão atualmente na fila.
* Método thread-safe.
*
* @return tamanho da fila
*/
public int getQueueSize() {
lock.lock(); // Acquire the lock
lock.lock();
try {
return queue.size();
} finally {
lock.unlock(); // Always release the lock
lock.unlock();
}
}
/**
* Checks whether the queue is empty.
* This method is thread-safe.
* Verifica se a fila está vazia.
* Método thread-safe.
*
* @return {@code true} if the queue has no vehicles, {@code false} otherwise.
* @return {@code true} se não houver veículos, {@code false} caso contrário
*/
public boolean isQueueEmpty() {
lock.lock(); // Acquire the lock
lock.lock();
try {
return queue.isEmpty();
} finally {
lock.unlock(); // Always release the lock
lock.unlock();
}
}
// --- Getters & Setters ---
/**
* @return The unique ID of this light (e.g., "Cr1-N").
*/
/** @return identificador único do semáforo */
public String getId() {
return id;
}
/**
* @return The direction this light controls (e.g., "North").
*/
/** @return direção controlada por este semáforo */
public String getDirection() {
return direction;
}
/**
* Gets the current state of the light (GREEN or RED).
* This method is thread-safe.
* Obtém o estado atual do semáforo.
* Método thread-safe.
*
* @return The current {@link TrafficLightState}.
* @return estado atual (VERDE ou VERMELHO)
*/
public TrafficLightState getState() {
lock.lock(); // Acquire the lock
lock.lock();
try {
return state;
} finally {
lock.unlock(); // Always release the lock
lock.unlock();
}
}
/**
* @return The configured GREEN light duration in seconds.
*/
/** @return duração configurada do sinal verde em segundos */
public double getGreenTime() {
return greenTime;
}
/**
* Sets the GREEN light duration.
* @param greenTime The new duration in seconds.
* Define a duração do sinal verde.
*
* @param greenTime nova duração em segundos
*/
public void setGreenTime(double greenTime) {
this.greenTime = greenTime;
}
/**
* @return The configured RED light duration in seconds.
*/
/** @return duração configurada do sinal vermelho em segundos */
public double getRedTime() {
return redTime;
}
/**
* Sets the RED light duration.
* @param redTime The new duration in seconds.
* Define a duração do sinal vermelho.
*
* @param redTime nova duração em segundos
*/
public void setRedTime(double redTime) {
this.redTime = redTime;
}
/**
* @return The total number of vehicles processed (dequeued) by this light.
*/
/** @return número total de veículos processados por este semáforo */
public int getTotalVehiclesProcessed() {
// Note: This read is not locked, assuming it's okay
// for it to be "eventually consistent" for stats.
// For strict accuracy, it should also be locked.
return totalVehiclesProcessed;
}
/**
* @return The {@link Lock} object for advanced synchronization.
*/
/** @return objeto {@link Lock} para sincronização avançada */
public Lock getLock() {
return lock;
}
/**
* @return The {@link Condition} for vehicle additions.
*/
/** @return condição para adição de veículos */
public Condition getVehicleAdded() {
return vehicleAdded;
}
/**
* @return The {@link Condition} for the light turning green.
*/
/** @return condição para semáforo ficar verde */
public Condition getLightGreen() {
return lightGreen;
}
/**
* @return A string summary of the light's current state.
*/
/** @return representação textual do estado atual do semáforo */
@Override
public String toString() {
return String.format(
"TrafficLight{id='%s', direction='%s', state=%s, queueSize=%d}",
id, direction, getState(), getQueueSize() // Use getters for thread-safety
"TrafficLight{id='%s', direction='%s', state=%s, queueSize=%d}",
id, direction, getState(), getQueueSize()
);
}
}

View File

@@ -1,17 +1,13 @@
package sd.model;
/**
* Enumeration representing the two possible states of a {@link TrafficLight}.
* Estados possíveis de um semáforo ({@link TrafficLight}).
*/
public enum TrafficLightState {
/**
* The light is GREEN, allowing vehicles to pass (be dequeued).
*/
/** Sinal verde - veículos podem passar */
GREEN,
/**
* The light is RED, blocking vehicles (they remain in the queue).
*/
/** Sinal vermelho - veículos aguardam na fila */
RED
}

View File

@@ -5,94 +5,74 @@ import java.util.ArrayList;
import java.util.List;
/**
* Represents a single vehicle moving through the simulation.
* Representa um veículo que se move pela rede de interseções.
*
* This class is a data object that holds the state of a vehicle, including:
* - Its unique ID, type, and entry time.
* - Its complete, pre-determined {@code route} (a list of intersection IDs).
* - Its current position in the route ({@code currentRouteIndex}).
* - Metrics for total time spent waiting at red lights and time spent crossing.
* * This object is passed around the simulation, primarily inside message
* payloads and stored in {@link TrafficLight} queues.
* * Implements {@link Serializable} so it can be sent between processes
* or nodes (e.g., over a socket in a distributed version of the simulation).
* <p>Esta classe é o "gémeo digital" de um carro, mota ou camião.
* Mantém toda a informação necessária:</p>
* <ul>
* <li>Identificação e tipo do veículo</li>
* <li>Rota completa a percorrer</li>
* <li>Métricas de tempo (espera, travessia, total)</li>
* </ul>
*
* <p>O objeto é serializado e enviado pela rede à medida que o veículo
* se move entre processos distribuídos.</p>
*/
public class Vehicle implements Serializable {
private static final long serialVersionUID = 1L;
// --- Identity and configuration ---
/**
* Unique identifier for the vehicle (e.g., "V1", "V2").
*/
/** Identificador único do veículo (ex: "V1", "V2") */
private final String id;
/**
* The type of vehicle (BIKE, LIGHT, HEAVY).
*/
/** Tipo de veículo (BIKE, LIGHT, HEAVY) */
private final VehicleType type;
/**
* The simulation time (in seconds) when the vehicle was generated.
*/
/** Tempo de simulação (em segundos) em que o veículo foi gerado */
private final double entryTime;
/**
* The complete, ordered list of destinations (intersection IDs and the
* final exit "S"). Example: ["Cr1", "Cr3", "S"].
* Lista ordenada completa de destinos (IDs de interseções e saída "S").
* Exemplo: ["Cr1", "Cr3", "S"]
*/
private final List<String> route;
/**
* An index that tracks the vehicle's progress along its {@link #route}.
* {@code route.get(currentRouteIndex)} is the vehicle's *current*
* destination (i.e., the one it is traveling *towards* or *arriving at*).
* Índice que acompanha o progresso do veículo ao longo da {@link #route}.
* {@code route.get(currentRouteIndex)} é o destino *atual* do veículo.
*/
private int currentRouteIndex;
// --- Metrics ---
/**
* The total accumulated time (in seconds) this vehicle has spent
* waiting at red lights.
*/
/** Tempo total acumulado (segundos) que o veículo passou à espera em semáforos vermelhos */
private double totalWaitingTime;
/**
* The total accumulated time (in seconds) this vehicle has spent
* actively crossing intersections.
*/
/** Tempo total acumulado (segundos) que o veículo passou a atravessar interseções */
private double totalCrossingTime;
/**
* Constructs a new Vehicle.
* Cria um novo veículo pronto para se fazer à estrada.
*
* @param id The unique ID for the vehicle.
* @param type The {@link VehicleType}.
* @param entryTime The simulation time when the vehicle is created.
* @param route The complete list of destination IDs (e.t., ["Cr1", "Cr2",
* "S"]).
* @param id Identificador único (ex: "V1").
* @param type O tipo de veículo (determina velocidade/tamanho).
* @param entryTime Quando este veículo entrou na simulação (segundos).
* @param route A lista ordenada de paragens (Interseções -> Saída).
*/
public Vehicle(String id, VehicleType type, double entryTime, List<String> route) {
this.id = id;
this.type = type;
this.entryTime = entryTime;
// Create a copy of the route list to ensure immutability
this.route = new ArrayList<>(route);
this.currentRouteIndex = 0; // Starts at the first destination
this.currentRouteIndex = 0;
this.totalWaitingTime = 0.0;
this.totalCrossingTime = 0.0;
}
/**
* Advances the vehicle to the next stop in its route by
* incrementing the {@link #currentRouteIndex}.
* * This is typically called *after* a vehicle *arrives* at an intersection,
* to set its *next* destination before it is queued.
* Move o GPS interno do veículo para o próximo destino.
*
* @return {@code true} if there is still at least one more destination
* in the route, {@code false} if the vehicle has passed its
* final destination.
* Chame isto quando um veículo chega a uma interseção para atualizar para onde
* deve ir a seguir.
*
* @return true se houver mais paragens, false se a viagem terminou.
*/
public boolean advanceRoute() {
currentRouteIndex++;
@@ -100,116 +80,89 @@ public class Vehicle implements Serializable {
}
/**
* Gets the current destination (the next intersection or exit) that
* the vehicle is heading towards.
* Obtém o destino atual (próxima interseção ou saída) para onde o veículo se dirige.
*
* @return The ID of the current destination (e.g., "Cr1"), or
* {@code null} if the route is complete.
* @return ID do destino atual (ex: "Cr1"), ou {@code null} se a rota terminou
*/
public String getCurrentDestination() {
return (currentRouteIndex < route.size()) ? route.get(currentRouteIndex) : null;
}
/**
* Checks if the vehicle has completed its entire route.
* Verifica se o veículo completou toda a sua rota.
*
* @return {@code true} if the route index is at or past the end
* of the route list, {@code false} otherwise.
* @return {@code true} se chegou ao fim da rota, {@code false} caso contrário
*/
public boolean hasReachedEnd() {
return currentRouteIndex >= route.size();
}
// --- Getters and metrics management ---
/**
* @return The vehicle's unique ID.
*/
/** @return identificador único do veículo */
public String getId() {
return id;
}
/**
* @return The vehicle's {@link VehicleType}.
*/
/** @return tipo do veículo */
public VehicleType getType() {
return type;
}
/**
* @return The simulation time when the vehicle entered the system.
*/
/** @return tempo de simulação em que o veículo entrou no sistema */
public double getEntryTime() {
return entryTime;
}
/**
* @return A *copy* of the vehicle's complete route.
*/
/** @return cópia da rota completa do veículo */
public List<String> getRoute() {
// Return a copy to prevent external modification
return new ArrayList<>(route);
}
/**
* @return The current index pointing to the vehicle's destination in its route
* list.
*/
/** @return índice atual apontando para o destino do veículo na sua rota */
public int getCurrentRouteIndex() {
return currentRouteIndex;
}
/**
* @return The total accumulated waiting time in seconds.
*/
/** @return tempo total acumulado de espera em segundos */
public double getTotalWaitingTime() {
return totalWaitingTime;
}
/**
* Adds a duration to the vehicle's total waiting time.
* This is called by the simulation engine when a vehicle
* starts crossing an intersection.
* Adiciona uma duração ao tempo total de espera do veículo.
* Chamado quando um veículo começa a atravessar uma interseção.
*
* @param time The duration (in seconds) to add.
* @param time duração (em segundos) a adicionar
*/
public void addWaitingTime(double time) {
totalWaitingTime += time;
}
/**
* @return The total accumulated crossing time in seconds.
*/
/** @return tempo total acumulado de travessia em segundos */
public double getTotalCrossingTime() {
return totalCrossingTime;
}
/**
* Adds a duration to the vehicle's total crossing time.
* This is called by the simulation engine when a vehicle
* finishes crossing an intersection.
* Adiciona uma duração ao tempo total de travessia do veículo.
* Chamado quando um veículo termina de atravessar uma interseção.
*
* @param time The duration (in seconds) to add.
* @param time duração (em segundos) a adicionar
*/
public void addCrossingTime(double time) {
totalCrossingTime += time;
}
/**
* Calculates the vehicle's total time spent in the system so far.
* This is a "live" calculation.
* Calcula o tempo total que o veículo passou no sistema até agora.
*
* @param currentTime The current simulation time.
* @return The total elapsed time (in seconds) since the vehicle
* was generated ({@code currentTime - entryTime}).
* @param currentTime tempo atual da simulação
* @return tempo total decorrido (em segundos) desde que o veículo foi gerado
*/
public double getTotalTravelTime(double currentTime) {
return currentTime - entryTime;
}
/**
* @return A string summary of the vehicle's current state.
*/
/** @return representação textual do estado atual do veículo */
@Override
public String toString() {
return String.format(

View File

@@ -1,27 +1,19 @@
package sd.model;
/**
* Enumeration representing the different types of vehicles in the simulation.
* Each type can have different properties, such as crossing time
* and generation probability, defined in {@link sd.config.SimulationConfig}.
* Enumeração dos diferentes tipos de veículos na simulação.
*
* <p>Cada tipo pode ter propriedades diferentes como tempo de travessia
* e probabilidade de geração, definidas na {@link sd.config.SimulationConfig}.</p>
*/
public enum VehicleType {
/**
* A bike or motorcycle.
* Typically has a short crossing time.
*/
/** Bicicleta ou motocicleta - tempo de travessia curto */
BIKE,
/**
* A standard light vehicle, such as a car.
* This is usually the most common type.
*/
/** Veículo ligeiro padrão (carro) - tipo mais comum */
LIGHT,
/**
* A heavy vehicle, such as a truck or bus.
* Typically has a long crossing time.
*/
/** Veículo pesado (camião ou autocarro) - tempo de travessia longo */
HEAVY
}

View File

@@ -1,41 +1,45 @@
package sd.protocol;
import java.io.Serializable;
import sd.model.MessageType; // Assuming MessageType is in sd.model or sd.protocol
/**
* Interface defining the contract for all messages exchanged in the simulator.
* Ensures that any message can be identified and routed.
* * This interface extends Serializable to allow objects that implement it
* to be sent over Sockets (ObjectOutputStream).
* Contrato para todas as mensagens trocadas no simulador.
*
* <p>Garante que mensagens podem ser identificadas e encaminhadas.
* Extende Serializable para permitir envio via sockets.
*/
public interface MessageProtocol extends Serializable {
/**
* Returns the type of the message, indicating its purpose.
* @return The MessageType (e.g., VEHICLE_TRANSFER, STATS_UPDATE).
* Tipo da mensagem, indicando o seu propósito.
* @return tipo (ex: VEHICLE_TRANSFER, STATS_UPDATE)
*/
MessageType getType();
/**
* Returns the data object (payload) that this message carries.
* The type of object will depend on the MessageType.
* * - If getType() == VEHICLE_TRANSFER, the payload will be a {@link sd.model.Vehicle} object.
* - If getType() == STATS_UPDATE, the payload will be a statistics object.
* * @return The data object (payload), which must also be Serializable.
* Dados (payload) que esta mensagem transporta.
*
* <p>Tipo depende do MessageType:
* <ul>
* <li>VEHICLE_TRANSFER → objeto Vehicle
* <li>STATS_UPDATE → objeto de estatísticas
* </ul>
*
* @return payload (deve ser Serializable)
*/
Object getPayload();
/**
* Returns the ID of the node (Process) that sent this message.
* @return String (e.g., "Cr1", "Cr5", "S").
* ID do nó (processo) que enviou a mensagem.
* @return ID de origem (ex: "Cr1", "Cr5", "S")
*/
String getSourceNode();
/**
* Returns the ID of the destination node (Process) for this message.
* @return String (e.g., "Cr2", "DashboardServer").
* ID do nó de destino.
* @return ID de destino (ex: "Cr2", "DashboardServer")
*/
String getDestinationNode();
}

View File

@@ -18,8 +18,8 @@ import sd.serialization.SerializerFactory;
/**
* Wrapper class that simplifies communication via Sockets.
* Includes connection retry logic for robustness.
* Simplifica comunicação via sockets.
* Inclui lógica de retry para robustez.
*/
public class SocketConnection implements Closeable {
@@ -28,22 +28,20 @@ public class SocketConnection implements Closeable {
private final InputStream inputStream;
private final MessageSerializer serializer;
// --- Configuration for Retry Logic ---
/** Maximum number of connection attempts. */
/** Número máximo de tentativas de ligação */
private static final int MAX_RETRIES = 5;
/** Delay between retry attempts in milliseconds. */
/** Atraso entre tentativas (milissegundos) */
private static final long RETRY_DELAY_MS = 1000;
/**
* Constructor for the "Client" (who initiates the connection).
* Tries to connect to a process that is already listening (Server).
* Includes retry logic in case of initial connection failure.
* Construtor do cliente que inicia a ligação.
* Tenta ligar a um servidor já em escuta, com retry.
*
* @param host The host address (e.g., "localhost" from your simulation.properties)
* @param port The port (e.g., 8001 from your simulation.properties)
* @throws IOException If connection fails after all retries.
* @throws UnknownHostException If the host is not found (this error usually doesn't need retry).
* @throws InterruptedException If the thread is interrupted while waiting between retries.
* @param host endereço do host (ex: "localhost")
* @param port número da porta
* @throws IOException se falhar após todas as tentativas
* @throws UnknownHostException se o host não for encontrado
* @throws InterruptedException se a thread for interrompida
*/
public SocketConnection(String host, int port) throws IOException, UnknownHostException, InterruptedException {
Socket tempSocket = null;

View File

@@ -3,84 +3,82 @@ package sd.util;
import java.util.Random;
/**
* Utility class for generating random values used throughout the simulation.
* * Provides static methods for:
* - Generating exponentially distributed intervals (for Poisson processes).
* - Generating random integers and doubles in a range.
* - Making decisions based on probability.
* - Choosing random elements from an array.
* * It uses a single, static {@link Random} instance.
* Utilitário para gerar valores aleatórios usados na simulação.
*
* <p>Fornece métodos estáticos para:</p>
* <ul>
* <li>Gerar intervalos exponencialmente distribuídos (processos de Poisson)</li>
* <li>Gerar inteiros e doubles aleatórios num intervalo</li>
* <li>Tomar decisões baseadas em probabilidade</li>
* <li>Escolher elementos aleatórios de um array</li>
* </ul>
*
* <p>Usa uma única instância estática de {@link Random}.</p>
*/
public class RandomGenerator {
/**
* The single, shared Random instance for the entire simulation.
*/
/** Instância partilhada de Random para toda a simulação */
private static final Random random = new Random();
/**
* Returns a random time interval that follows an exponential distribution.
* * This is a key component for modeling a Poisson process, where the
* *inter-arrival times* (time between events) are exponentially distributed.
* The formula used is the inverse transform sampling method:
* {@code Time = -ln(1 - U) / λ}
* where U is a uniform random number [0, 1) and λ (lambda) is the
* average arrival rate.
* Retorna um intervalo de tempo que segue uma distribuição exponencial.
*
* @param lambda The average arrival rate (λ) (e.g., 0.5 vehicles per second).
* @return The time interval (in seconds) until the next arrival.
* <p>Componente essencial para modelar processos de Poisson, onde os
* tempos entre chegadas seguem uma distribuição exponencial.</p>
*
* <p>Fórmula: {@code Time = -ln(1 - U) / λ}<br>
* onde U é um número aleatório uniforme [0, 1) e λ (lambda) é a taxa média de chegada.</p>
*
* @param lambda taxa média de chegada λ (ex: 0.5 veículos por segundo)
* @return intervalo de tempo (segundos) até à próxima chegada
*/
public static double generateExponentialInterval(double lambda) {
// Math.log is the natural logarithm (ln)
// random.nextDouble() returns a value in [0.0, 1.0)
return Math.log(1 - random.nextDouble()) / -lambda;
}
/**
* Returns a random integer between {@code min} and {@code max}, inclusive.
* Retorna um inteiro aleatório entre {@code min} e {@code max}, inclusive.
*
* @param min The minimum possible value.
* @param max The maximum possible value.
* @return A random integer in the range [min, max].
* @param min valor mínimo possível
* @param max valor máximo possível
* @return inteiro aleatório no intervalo [min, max]
*/
public static int generateRandomInt(int min, int max) {
// random.nextInt(N) returns a value from 0 to N-1
// (max - min + 1) is the total number of integers in the range
// + min offsets the range
return random.nextInt(max - min + 1) + min;
}
/**
* Returns a random double between {@code min} (inclusive) and {@code max} (exclusive).
* Retorna um double aleatório entre {@code min} (inclusive) e {@code max} (exclusivo).
*
* @param min The minimum possible value.
* @param max The maximum possible value.
* @return A random double in the range [min, max).
* @param min valor mínimo possível
* @param max valor máximo possível
* @return double aleatório no intervalo [min, max)
*/
public static double generateRandomDouble(double min, double max) {
return min + (max - min) * random.nextDouble();
}
/**
* Returns {@code true} with a given probability.
* * This is useful for making weighted decisions. For example,
* {@code occursWithProbability(0.3)} will return {@code true}
* approximately 30% of the time.
* Retorna {@code true} com uma dada probabilidade.
*
* @param probability A value between 0.0 (never) and 1.0 (always).
* @return {@code true} or {@code false}, based on the probability.
* <p>Útil para tomar decisões ponderadas. Por exemplo,
* {@code occursWithProbability(0.3)} retorna {@code true}
* aproximadamente 30% das vezes.</p>
*
* @param probability valor entre 0.0 (nunca) e 1.0 (sempre)
* @return {@code true} ou {@code false}, baseado na probabilidade
*/
public static boolean occursWithProbability(double probability) {
return random.nextDouble() < probability;
}
/**
* Picks a random element from the given array.
* Escolhe um elemento aleatório do array fornecido.
*
* @param <T> The generic type of the array.
* @param array The array to choose from.
* @return A randomly selected element from the array.
* @throws IllegalArgumentException if the array is null or empty.
* @param <T> tipo genérico do array
* @param array array de onde escolher
* @return elemento selecionado aleatoriamente
* @throws IllegalArgumentException se o array for null ou vazio
*/
public static <T> T chooseRandom(T[] array) {
if (array == null || array.length == 0) {
@@ -90,12 +88,13 @@ public class RandomGenerator {
}
/**
* Sets the seed of the shared random number generator.
* This is extremely useful for debugging and testing, as it allows
* the simulation to be run multiple times with the *exact same*
* sequence of "random" events, making the results reproducible.
* Define a seed do gerador de números aleatórios partilhado.
*
* @param seed The seed to use.
* <p>Extremamente útil para debugging e testes, pois permite executar
* a simulação múltiplas vezes com a mesma sequência de eventos "aleatórios",
* tornando os resultados reproduzíveis.</p>
*
* @param seed seed a usar
*/
public static void setSeed(long seed) {
random.setSeed(seed);

View File

@@ -9,37 +9,38 @@ import sd.model.Vehicle;
import sd.model.VehicleType;
/**
* Generates vehicles for the simulation.
* * This class is responsible for two key tasks:
* 1. Determining *when* the next vehicle should arrive, based on the
* arrival model (POISSON or FIXED) from the {@link SimulationConfig}.
* 2. Creating a new {@link Vehicle} object with a randomly selected
* type (e.g., BIKE, LIGHT) and a randomly selected route.
* * Routes are predefined and organized by entry point (E1, E2, E3).
* Gera veículos para a simulação.
*
* <p>Esta classe é responsável por duas tarefas principais:</p>
* <ol>
* <li>Determinar <em>quando</em> o próximo veículo deve chegar, baseado no
* modelo de chegada (POISSON ou FIXED) da {@link SimulationConfig}</li>
* <li>Criar um novo objeto {@link Vehicle} com tipo e rota selecionados aleatoriamente</li>
* </ol>
*
* <p>As rotas são predefinidas e organizadas por ponto de entrada (E1, E2, E3).</p>
*/
public class VehicleGenerator {
private final SimulationConfig config;
private final String arrivalModel;
private final double arrivalRate; // Lambda (λ) for POISSON
private final double fixedInterval; // Interval for FIXED
/** Lambda (λ) para modelo POISSON */
private final double arrivalRate;
/** Intervalo para modelo FIXED */
private final double fixedInterval;
// --- Predefined Routes ---
// These lists store all possible routes, grouped by where they start.
/** Routes starting from entry point E1. */
/** Rotas possíveis a partir do ponto de entrada E1 */
private final List<RouteWithProbability> e1Routes;
/** Routes starting from entry point E2. */
/** Rotas possíveis a partir do ponto de entrada E2 */
private final List<RouteWithProbability> e2Routes;
/** Routes starting from entry point E3. */
/** Rotas possíveis a partir do ponto de entrada E3 */
private final List<RouteWithProbability> e3Routes;
/**
* Constructs a new VehicleGenerator.
* It reads the necessary configuration and initializes the
* predefined routes.
* Cria um novo gerador de veículos.
* Lê a configuração necessária e inicializa as rotas predefinidas.
*
* @param config The {@link SimulationConfig} object.
* @param config objeto de {@link SimulationConfig}
*/
public VehicleGenerator(SimulationConfig config) {
this.config = config;
@@ -57,64 +58,62 @@ public class VehicleGenerator {
}
/**
* Defines all possible routes that vehicles can take, organized by
* their entry point (E1, E2, E3). Each route is given a
* probability, which determines how often it's chosen.
* Define todas as rotas possíveis que os veículos podem tomar.
* As rotas são organizadas por ponto de entrada (E1, E2, E3).
* Cada rota tem uma probabilidade que determina a frequência com que é escolhida.
*/
private void initializePossibleRoutes() {
// E1 routes (Starts at Cr1)
e1Routes.add(new RouteWithProbability(
Arrays.asList("Cr1", "Cr4", "Cr5", "S"), 0.34)); // E1 -> Cr1 -> Cr4 -> Cr5 -> Exit
Arrays.asList("Cr1", "Cr4", "Cr5", "S"), 0.34));
e1Routes.add(new RouteWithProbability(
Arrays.asList("Cr1", "Cr2", "Cr5", "S"), 0.33)); // E1 -> Cr1 -> Cr2 -> Cr5 -> Exit
Arrays.asList("Cr1", "Cr2", "Cr5", "S"), 0.33));
e1Routes.add(new RouteWithProbability(
Arrays.asList("Cr1", "Cr2", "Cr3", "S"), 0.33)); // E1 -> Cr1 -> Cr2 -> Cr3 -> Exit
Arrays.asList("Cr1", "Cr2", "Cr3", "S"), 0.33));
// E2 routes (Starts at Cr2)
e2Routes.add(new RouteWithProbability(
Arrays.asList("Cr2", "Cr5", "S"), 0.34)); // E2 -> Cr2 -> Cr5 -> Exit
Arrays.asList("Cr2", "Cr5", "S"), 0.34));
e2Routes.add(new RouteWithProbability(
Arrays.asList("Cr2", "Cr3", "S"), 0.33)); // E2 -> Cr2 -> Cr3 -> Exit
Arrays.asList("Cr2", "Cr3", "S"), 0.33));
e2Routes.add(new RouteWithProbability(
Arrays.asList("Cr2", "Cr1", "Cr4", "Cr5", "S"), 0.33)); // E2 -> Cr2 -> ... -> Exit
Arrays.asList("Cr2", "Cr1", "Cr4", "Cr5", "S"), 0.33));
// E3 routes (Starts at Cr3)
e3Routes.add(new RouteWithProbability(
Arrays.asList("Cr3", "S"), 0.34)); // E3 -> Cr3 -> Exit
Arrays.asList("Cr3", "S"), 0.34));
e3Routes.add(new RouteWithProbability(
Arrays.asList("Cr3", "Cr2", "Cr5", "S"), 0.33)); // E3 -> Cr3 -> Cr2 -> Cr5 -> Exit
Arrays.asList("Cr3", "Cr2", "Cr5", "S"), 0.33));
e3Routes.add(new RouteWithProbability(
Arrays.asList("Cr3", "Cr2", "Cr1", "Cr4", "Cr5", "S"), 0.33)); // E3 -> Cr3 -> ... -> Exit
Arrays.asList("Cr3", "Cr2", "Cr1", "Cr4", "Cr5", "S"), 0.33));
}
/**
* Calculates the *absolute* time of the next vehicle arrival
* based on the configured model.
* * @param currentTime The current simulation time, used as the base.
* @return The absolute time (e.g., {@code currentTime + interval})
* when the next vehicle should be generated.
* Calcula o tempo <em>absoluto</em> da próxima chegada de veículo
* baseado no modelo configurado.
*
* @param currentTime tempo atual da simulação, usado como base
* @return tempo absoluto (ex: {@code currentTime + intervalo})
* em que o próximo veículo deve ser gerado
*/
public double getNextArrivalTime(double currentTime) {
if ("POISSON".equalsIgnoreCase(arrivalModel)) {
// For a Poisson process, the time *between* arrivals
// follows an exponential distribution.
double interval = RandomGenerator.generateExponentialInterval(arrivalRate);
return currentTime + interval;
} else {
// For a Fixed model, the interval is constant.
return currentTime + fixedInterval;
}
}
/**
* Generates a new {@link Vehicle} object.
* This involves:
* 1. Selecting a random {@link VehicleType} based on probabilities.
* 2. Selecting a random route (entry point + path) based on probabilities.
* Gera um novo objeto {@link Vehicle}.
*
* @param vehicleId The unique identifier for the new vehicle (e.g., "V123").
* @param entryTime The simulation time when this vehicle is being created.
* @return A new, configured {@link Vehicle} object.
* <p>Passos executados:</p>
* <ol>
* <li>Seleciona um {@link VehicleType} aleatório baseado em probabilidades</li>
* <li>Seleciona uma rota aleatória (ponto de entrada + caminho)</li>
* </ol>
*
* @param vehicleId identificador único do novo veículo (ex: "V123")
* @param entryTime tempo de simulação em que o veículo é criado
* @return novo objeto {@link Vehicle} configurado
*/
public Vehicle generateVehicle(String vehicleId, double entryTime) {
VehicleType type = selectVehicleType();
@@ -124,22 +123,24 @@ public class VehicleGenerator {
}
/**
* Selects a {@link VehicleType} (BIKE, LIGHT, HEAVY) based on the
* probabilities defined in the {@link SimulationConfig}.
* * Uses a standard "cumulative probability" technique:
* 1. Get a random number {@code rand} from [0, 1).
* 2. If {@code rand < P(Bike)}, return BIKE.
* 3. Else if {@code rand < P(Bike) + P(Light)}, return LIGHT.
* 4. Else, return HEAVY.
* Seleciona um {@link VehicleType} (BIKE, LIGHT, HEAVY) baseado nas
* probabilidades definidas na {@link SimulationConfig}.
*
* @return The selected {@link VehicleType}.
* <p>Usa técnica de "probabilidade cumulativa":</p>
* <ol>
* <li>Obtém número aleatório {@code rand} de [0, 1)</li>
* <li>Se {@code rand < P(Bike)}, retorna BIKE</li>
* <li>Senão se {@code rand < P(Bike) + P(Light)}, retorna LIGHT</li>
* <li>Caso contrário, retorna HEAVY</li>
* </ol>
*
* @return tipo de veículo selecionado
*/
private VehicleType selectVehicleType() {
double bikeProbability = config.getBikeVehicleProbability();
double lightProbability = config.getLightVehicleProbability();
double heavyProbability = config.getHeavyVehicleProbability();
// Normalize probabilities in case they don't sum to exactly 1.0
double total = bikeProbability + lightProbability + heavyProbability;
if (total == 0) return VehicleType.LIGHT; // Avoid division by zero
bikeProbability /= total;

View File

@@ -27,15 +27,18 @@
},
{
"id": "Cr4",
"lights": ["East"],
"lights": ["East", "West"],
"routes": {
"Cr1": "North",
"Cr5": "East"
}
},
{
"id": "Cr5",
"lights": ["East"],
"lights": ["East", "West", "North"],
"routes": {
"Cr2": "North",
"Cr4": "West",
"S": "East"
}
}

View File

@@ -0,0 +1,117 @@
# =========================================================
# Traffic Simulation Configuration - HIGH LOAD SCENARIO
# ---------------------------------------------------------
# High traffic scenario for testing system under heavy load.
# Expected: Significant congestion, large queues, system stress test
# =========================================================
# === NETWORK CONFIGURATION ===
# Intersections (each with its host and port)
intersection.Cr1.host=localhost
intersection.Cr1.port=8001
intersection.Cr2.host=localhost
intersection.Cr2.port=8002
intersection.Cr3.host=localhost
intersection.Cr3.port=8003
intersection.Cr4.host=localhost
intersection.Cr4.port=8004
intersection.Cr5.host=localhost
intersection.Cr5.port=8005
# Exit node
exit.host=localhost
exit.port=9001
# Dashboard server
dashboard.host=localhost
dashboard.port=9000
# === SIMULATION CONFIGURATION ===
# Total duration in seconds (1800 = 30 minutes)
simulation.duration=1800
# Vehicle arrival model: FIXED or POISSON
simulation.arrival.model=POISSON
# λ (lambda): HIGH LOAD = 1.0 vehicle per second (60 vehicles/minute, 3600 vehicles/hour)
# This is 2x medium load - tests system capacity limits
simulation.arrival.rate=1.0
# Fixed interval between arrivals (only used if model=FIXED)
simulation.arrival.fixed.interval=1.0
# === TRAFFIC LIGHT TIMINGS ===
# Format: trafficlight.<intersection>.<direction>.<state>=<seconds>
# Aggressive timings to maximize throughput under high load
# Intersection 1 (Entry point - longer greens to prevent early backup)
trafficlight.Cr1.South.green=60.0
trafficlight.Cr1.South.red=3.0
trafficlight.Cr1.East.green=60.0
trafficlight.Cr1.East.red=3.0
# Intersection 2 (Main hub - CRITICAL BOTTLENECK, maximum green times)
# This is the most critical intersection - all routes converge here
trafficlight.Cr2.South.green=70.0
trafficlight.Cr2.South.red=3.0
trafficlight.Cr2.East.green=80.0
trafficlight.Cr2.East.red=3.0
trafficlight.Cr2.West.green=70.0
trafficlight.Cr2.West.red=3.0
# Intersection 3 (Path to exit - maximize East throughput to exit)
trafficlight.Cr3.South.green=50.0
trafficlight.Cr3.South.red=3.0
trafficlight.Cr3.West.green=40.0
trafficlight.Cr3.West.red=3.0
# Intersection 4 (High throughput needed toward Cr5)
trafficlight.Cr4.East.green=70.0
trafficlight.Cr4.East.red=3.0
# Intersection 5 (Near exit - MAJOR BOTTLENECK, longest green time)
# All routes funnel through here before exit
trafficlight.Cr5.East.green=90.0
trafficlight.Cr5.East.red=3.0
# === VEHICLE CONFIGURATION ===
# Probability distribution for vehicle types (must sum to 1.0)
vehicle.probability.bike=0.2
vehicle.probability.light=0.6
vehicle.probability.heavy=0.2
# Average crossing times (in seconds)
vehicle.crossing.time.bike=1.0
vehicle.crossing.time.light=2.0
vehicle.crossing.time.heavy=4.0
# Travel times between intersections (in seconds)
# Base time for light vehicles (cars)
vehicle.travel.time.base=1.0
# Bike travel time = 0.5 × car travel time
vehicle.travel.time.bike.multiplier=0.5
# Heavy vehicle travel time = 4.0 x base travel time
vehicle.travel.time.heavy.multiplier=4.0
# === STATISTICS ===
# Interval between dashboard updates (seconds)
statistics.update.interval=10.0
# === EXPECTED BEHAVIOR - HIGH LOAD ===
# - Average system time: 200-400+ seconds (3-7+ minutes)
# - Maximum queue sizes: 15-30+ vehicles at Cr2 and Cr5
# - Average queue sizes: 8-15+ vehicles
# - Severe congestion at Cr2 (main convergence point)
# - Severe congestion at Cr5 (pre-exit bottleneck)
# - System utilization: ~80-95%
# - Many vehicles will remain in system at simulation end
# - Queue growth may be unbounded if arrival rate exceeds service rate
# - Primary bottlenecks: Cr2 (3-way convergence) and Cr5 (final funnel)
# - This scenario tests maximum system capacity and traffic light optimization
# - Expected to demonstrate need for adaptive traffic light policies

View File

@@ -0,0 +1,111 @@
# =========================================================
# Traffic Simulation Configuration - LOW LOAD SCENARIO
# ---------------------------------------------------------
# Low traffic scenario for testing system under light load.
# Expected: No congestion, minimal queues, fast vehicle throughput
# =========================================================
# === NETWORK CONFIGURATION ===
# Intersections (each with its host and port)
intersection.Cr1.host=localhost
intersection.Cr1.port=8001
intersection.Cr2.host=localhost
intersection.Cr2.port=8002
intersection.Cr3.host=localhost
intersection.Cr3.port=8003
intersection.Cr4.host=localhost
intersection.Cr4.port=8004
intersection.Cr5.host=localhost
intersection.Cr5.port=8005
# Exit node
exit.host=localhost
exit.port=9001
# Dashboard server
dashboard.host=localhost
dashboard.port=9000
# === SIMULATION CONFIGURATION ===
# Total duration in seconds (1800 = 30 minutes)
simulation.duration=1800
# Vehicle arrival model: FIXED or POISSON
simulation.arrival.model=POISSON
# λ (lambda): LOW LOAD = 0.2 vehicles per second (12 vehicles/minute, 720 vehicles/hour)
# This is approximately 40% of medium load
simulation.arrival.rate=0.2
# Fixed interval between arrivals (only used if model=FIXED)
simulation.arrival.fixed.interval=5.0
# === TRAFFIC LIGHT TIMINGS ===
# Format: trafficlight.<intersection>.<direction>.<state>=<seconds>
# Standard timings - should be more than adequate for low load
# Intersection 1 (Entry point - balanced)
trafficlight.Cr1.South.green=30.0
trafficlight.Cr1.South.red=5.0
trafficlight.Cr1.East.green=30.0
trafficlight.Cr1.East.red=5.0
# Intersection 2 (Main hub - shorter cycles, favor East-West)
trafficlight.Cr2.South.green=30.0
trafficlight.Cr2.South.red=5.0
trafficlight.Cr2.East.green=30.0
trafficlight.Cr2.East.red=5.0
trafficlight.Cr2.West.green=30.0
trafficlight.Cr2.West.red=5.0
# Intersection 3 (Path to exit - favor East)
trafficlight.Cr3.South.green=30.0
trafficlight.Cr3.South.red=5.0
trafficlight.Cr3.West.green=30.0
trafficlight.Cr3.West.red=5.0
# Intersection 4 (Favor East toward Cr5)
trafficlight.Cr4.East.green=30.0
trafficlight.Cr4.East.red=5.0
# Intersection 5 (Near exit - favor East)
trafficlight.Cr5.East.green=30.0
trafficlight.Cr5.East.red=5.0
# === VEHICLE CONFIGURATION ===
# Probability distribution for vehicle types (must sum to 1.0)
vehicle.probability.bike=0.2
vehicle.probability.light=0.6
vehicle.probability.heavy=0.2
# Average crossing times (in seconds)
vehicle.crossing.time.bike=1.0
vehicle.crossing.time.light=2.0
vehicle.crossing.time.heavy=4.0
# Travel times between intersections (in seconds)
# Base time for light vehicles (cars)
vehicle.travel.time.base=1.0
# Bike travel time = 0.5 × car travel time
vehicle.travel.time.bike.multiplier=0.5
# Heavy vehicle travel time = 4.0 x base travel time
vehicle.travel.time.heavy.multiplier=4.0
# === STATISTICS ===
# Interval between dashboard updates (seconds)
statistics.update.interval=10.0
# === EXPECTED BEHAVIOR - LOW LOAD ===
# - Average system time: 40-80 seconds
# - Maximum queue sizes: 1-3 vehicles
# - Average queue sizes: < 1 vehicle
# - Vehicles should flow smoothly through the system
# - Minimal waiting at traffic lights (mostly travel time)
# - System utilization: ~20-30%
# - All vehicles should exit within simulation time

View File

@@ -0,0 +1,112 @@
# =========================================================
# Traffic Simulation Configuration - MEDIUM LOAD SCENARIO
# ---------------------------------------------------------
# Medium traffic scenario for testing system under normal load.
# Expected: Moderate queues, some congestion at peak intersections
# =========================================================
# === NETWORK CONFIGURATION ===
# Intersections (each with its host and port)
intersection.Cr1.host=localhost
intersection.Cr1.port=8001
intersection.Cr2.host=localhost
intersection.Cr2.port=8002
intersection.Cr3.host=localhost
intersection.Cr3.port=8003
intersection.Cr4.host=localhost
intersection.Cr4.port=8004
intersection.Cr5.host=localhost
intersection.Cr5.port=8005
# Exit node
exit.host=localhost
exit.port=9001
# Dashboard server
dashboard.host=localhost
dashboard.port=9000
# === SIMULATION CONFIGURATION ===
# Total duration in seconds (1800 = 30 minutes)
simulation.duration=1800
# Vehicle arrival model: FIXED or POISSON
simulation.arrival.model=POISSON
# λ (lambda): MEDIUM LOAD = 0.5 vehicles per second (30 vehicles/minute, 1800 vehicles/hour)
# This represents normal traffic conditions
simulation.arrival.rate=0.5
# Fixed interval between arrivals (only used if model=FIXED)
simulation.arrival.fixed.interval=2.0
# === TRAFFIC LIGHT TIMINGS ===
# Format: trafficlight.<intersection>.<direction>.<state>=<seconds>
# Optimized timings for medium load
# Intersection 1 (Entry point - balanced)
trafficlight.Cr1.South.green=40.0
trafficlight.Cr1.South.red=5.0
trafficlight.Cr1.East.green=40.0
trafficlight.Cr1.East.red=5.0
# Intersection 2 (Main hub - CRITICAL BOTTLENECK, longer green times)
trafficlight.Cr2.South.green=45.0
trafficlight.Cr2.South.red=5.0
trafficlight.Cr2.East.green=50.0
trafficlight.Cr2.East.red=5.0
trafficlight.Cr2.West.green=45.0
trafficlight.Cr2.West.red=5.0
# Intersection 3 (Path to exit - favor East toward exit)
trafficlight.Cr3.South.green=40.0
trafficlight.Cr3.South.red=5.0
trafficlight.Cr3.West.green=35.0
trafficlight.Cr3.West.red=5.0
# Intersection 4 (Favor East toward Cr5)
trafficlight.Cr4.East.green=40.0
trafficlight.Cr4.East.red=5.0
# Intersection 5 (Near exit - POTENTIAL BOTTLENECK, longer green)
trafficlight.Cr5.East.green=50.0
trafficlight.Cr5.East.red=5.0
# === VEHICLE CONFIGURATION ===
# Probability distribution for vehicle types (must sum to 1.0)
vehicle.probability.bike=0.2
vehicle.probability.light=0.6
vehicle.probability.heavy=0.2
# Average crossing times (in seconds)
vehicle.crossing.time.bike=1.0
vehicle.crossing.time.light=2.0
vehicle.crossing.time.heavy=4.0
# Travel times between intersections (in seconds)
# Base time for light vehicles (cars)
vehicle.travel.time.base=1.0
# Bike travel time = 0.5 × car travel time
vehicle.travel.time.bike.multiplier=0.5
# Heavy vehicle travel time = 4.0 x base travel time
vehicle.travel.time.heavy.multiplier=4.0
# === STATISTICS ===
# Interval between dashboard updates (seconds)
statistics.update.interval=10.0
# === EXPECTED BEHAVIOR - MEDIUM LOAD ===
# - Average system time: 80-150 seconds
# - Maximum queue sizes: 5-10 vehicles at Cr2 and Cr5
# - Average queue sizes: 2-5 vehicles
# - Moderate congestion at Cr2 (main hub) and Cr5 (pre-exit)
# - System utilization: ~50-60%
# - Most vehicles should exit, some may remain at simulation end
# - Cr2 is the primary bottleneck (3 directions converge)
# - Cr5 is secondary bottleneck (all routes pass through)

View File

@@ -31,7 +31,11 @@ dashboard.port=9000
# === SIMULATION CONFIGURATION ===
# Total duration in seconds (3600 = 1 hour)
simulation.duration=3600
simulation.duration=300
# Time scaling factor for visualization (real_seconds = sim_seconds * scale)
# 0 = instant (pure DES), 0.01 = 100x speed, 0.1 = 10x speed, 1.0 = real-time
simulation.time.scale=0.01
# Vehicle arrival model: FIXED or POISSON
simulation.arrival.model=POISSON

View File

@@ -0,0 +1,174 @@
package sd.des;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.BeforeEach;
import static org.junit.jupiter.api.Assertions.*;
import sd.model.TrafficLight;
import sd.model.TrafficLightState;
/**
* Unit tests for DES (Discrete Event Simulation) components.
* Tests the core infrastructure: SimulationClock, EventQueue, SimulationEvent.
*/
public class DESComponentsTest {
private SimulationClock clock;
private EventQueue eventQueue;
@BeforeEach
public void setUp() {
clock = new SimulationClock();
eventQueue = new EventQueue(false); // Don't track history for basic tests
}
@Test
public void testSimulationClockInitialization() {
assertEquals(0.0, clock.getCurrentTime(), 0.001, "Clock should start at time 0");
assertEquals(0.0, clock.getElapsedTime(), 0.001, "Elapsed time should be 0 initially");
}
@Test
public void testSimulationClockAdvancement() {
clock.advanceTo(10.0);
assertEquals(10.0, clock.getCurrentTime(), 0.001, "Clock should advance to 10.0");
clock.advanceTo(25.5);
assertEquals(25.5, clock.getCurrentTime(), 0.001, "Clock should advance to 25.5");
assertEquals(25.5, clock.getElapsedTime(), 0.001, "Elapsed time should be 25.5");
}
@Test
public void testSimulationClockBackwardTimePrevention() {
clock.advanceTo(20.0);
// Attempting to go backward should throw an exception
assertThrows(IllegalArgumentException.class, () -> {
clock.advanceTo(15.0);
}, "Clock should throw exception when trying to go backward");
// Clock should still be at 20.0
assertEquals(20.0, clock.getCurrentTime(), 0.001, "Clock should remain at 20.0");
}
@Test
public void testEventQueueOrdering() {
// Schedule events out of order
SimulationEvent event3 = new SimulationEvent(30.0, DESEventType.VEHICLE_ARRIVAL, null);
SimulationEvent event1 = new SimulationEvent(10.0, DESEventType.VEHICLE_GENERATION, null);
SimulationEvent event2 = new SimulationEvent(20.0, DESEventType.TRAFFIC_LIGHT_CHANGE, null);
eventQueue.schedule(event3);
eventQueue.schedule(event1);
eventQueue.schedule(event2);
// Events should come out in chronological order
SimulationEvent first = eventQueue.poll();
assertEquals(10.0, first.getTimestamp(), 0.001, "First event should be at time 10.0");
assertEquals(DESEventType.VEHICLE_GENERATION, first.getType());
SimulationEvent second = eventQueue.poll();
assertEquals(20.0, second.getTimestamp(), 0.001, "Second event should be at time 20.0");
assertEquals(DESEventType.TRAFFIC_LIGHT_CHANGE, second.getType());
SimulationEvent third = eventQueue.poll();
assertEquals(30.0, third.getTimestamp(), 0.001, "Third event should be at time 30.0");
assertEquals(DESEventType.VEHICLE_ARRIVAL, third.getType());
}
@Test
public void testEventQueueEmpty() {
assertTrue(eventQueue.isEmpty(), "New queue should be empty");
eventQueue.schedule(new SimulationEvent(5.0, DESEventType.VEHICLE_GENERATION, null));
assertFalse(eventQueue.isEmpty(), "Queue should not be empty after scheduling");
eventQueue.poll();
assertTrue(eventQueue.isEmpty(), "Queue should be empty after polling all events");
}
@Test
public void testEventQueueSize() {
assertEquals(0, eventQueue.size(), "New queue should have size 0");
eventQueue.schedule(new SimulationEvent(5.0, DESEventType.VEHICLE_GENERATION, null));
eventQueue.schedule(new SimulationEvent(10.0, DESEventType.VEHICLE_ARRIVAL, null));
assertEquals(2, eventQueue.size(), "Queue should have size 2");
eventQueue.poll();
assertEquals(1, eventQueue.size(), "Queue should have size 1 after polling");
}
@Test
public void testSimulationEventComparison() {
SimulationEvent early = new SimulationEvent(5.0, DESEventType.VEHICLE_GENERATION, null);
SimulationEvent late = new SimulationEvent(10.0, DESEventType.VEHICLE_ARRIVAL, null);
assertTrue(early.compareTo(late) < 0, "Earlier event should compare less than later event");
assertTrue(late.compareTo(early) > 0, "Later event should compare greater than earlier event");
assertEquals(0, early.compareTo(early), "Event should compare equal to itself");
}
@Test
public void testSimulationEventEqualTimestamp() {
// When timestamps are equal, events are ordered by type name
SimulationEvent event1 = new SimulationEvent(5.0, DESEventType.TRAFFIC_LIGHT_CHANGE, null);
SimulationEvent event2 = new SimulationEvent(5.0, DESEventType.VEHICLE_ARRIVAL, null);
int comparison = event1.compareTo(event2);
// TRAFFIC_LIGHT_CHANGE comes before VEHICLE_ARRIVAL alphabetically
assertTrue(comparison < 0, "When equal timestamp, should order by type name alphabetically");
}
@Test
public void testTrafficLightEvent() {
TrafficLight light = new TrafficLight("Cr1-N", "North", 10.0, 15.0);
light.changeState(TrafficLightState.RED);
TrafficLightEvent tlEvent = new TrafficLightEvent(light, "North", "Cr1");
assertEquals(light, tlEvent.getLight(), "Should return correct traffic light");
assertEquals("North", tlEvent.getDirection(), "Should return correct direction");
assertEquals("Cr1", tlEvent.getIntersectionId(), "Should return correct intersection ID");
}
@Test
public void testEventHistoryTracking() {
EventQueue historyQueue = new EventQueue(true); // Enable history tracking
SimulationEvent event1 = new SimulationEvent(5.0, DESEventType.VEHICLE_GENERATION, null);
SimulationEvent event2 = new SimulationEvent(10.0, DESEventType.VEHICLE_ARRIVAL, null);
historyQueue.schedule(event1);
historyQueue.schedule(event2);
historyQueue.poll();
historyQueue.poll();
String history = historyQueue.exportEventHistory();
assertNotNull(history, "Event history should not be null");
assertTrue(history.contains("VEHICLE_GENERATION"), "History should contain first event type");
assertTrue(history.contains("VEHICLE_ARRIVAL"), "History should contain second event type");
}
@Test
public void testEventQueuePeek() {
SimulationEvent event = new SimulationEvent(5.0, DESEventType.VEHICLE_GENERATION, null);
eventQueue.schedule(event);
SimulationEvent peeked = eventQueue.peek();
assertNotNull(peeked, "Peek should return event");
assertEquals(5.0, peeked.getTimestamp(), 0.001, "Peeked event should have correct timestamp");
// Queue should still have the event
assertEquals(1, eventQueue.size(), "Peek should not remove event from queue");
}
@Test
public void testSimulationEndEvent() {
SimulationEvent endEvent = new SimulationEvent(100.0, DESEventType.SIMULATION_END, null);
assertEquals(100.0, endEvent.getTimestamp(), 0.001);
assertEquals(DESEventType.SIMULATION_END, endEvent.getType());
assertNull(endEvent.getPayload(), "End event should have no payload");
}
}