mirror of
https://github.com/davidalves04/Trabalho-Pratico-SD.git
synced 2025-12-08 20:43:32 +00:00
Compare commits
43 Commits
david
...
11-convert
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
dc4f567e1f | ||
|
|
db5e01021a | ||
|
|
dab0651dbd | ||
|
|
4772add574 | ||
|
|
ae27115791 | ||
|
|
684fb408ef | ||
| fd26063f6e | |||
|
|
d8b59cc502 | ||
|
|
06c34a198a | ||
|
|
1524188b29 | ||
|
|
bc1a8da160 | ||
|
|
96903e4b7c | ||
|
|
6c5eab0e72 | ||
| 23f7a74798 | |||
| d7dec0d73e | |||
|
|
534a880e3e | ||
|
|
ba3233eae1 | ||
|
|
d20040835c | ||
|
|
2399b4b472 | ||
|
|
974debf7db | ||
| 8e95bc4c01 | |||
| 33ed84b0c2 | |||
| 9093b13c5d | |||
| 12b7aabe87 | |||
| c30aa25de0 | |||
| 3689f7a207 | |||
| bb18c1119e | |||
| f0dbdb551d | |||
| f519c9aba7 | |||
| 1216089e80 | |||
| 211ea25ca5 | |||
|
|
3fe467a2a3 | ||
|
|
af9b091e76 | ||
|
|
fc46b9b83b | ||
|
|
a7c17ca9b9 | ||
|
|
1c033880e7 | ||
|
|
30fc2d6554 | ||
|
|
d41973d27f | ||
|
|
ce226f261a | ||
| 874fd53a21 | |||
|
|
19bf313c81 | ||
|
|
cfb24b21bf | ||
|
|
b9991ba6ba |
61
.github/workflows/maven.yml
vendored
Normal file
61
.github/workflows/maven.yml
vendored
Normal file
@@ -0,0 +1,61 @@
|
||||
name: Java CI with Maven
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ "main" ]
|
||||
tags:
|
||||
- 'v*.*.*'
|
||||
pull_request:
|
||||
branches: [ "main" ]
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up JDK 17
|
||||
uses: actions/setup-java@v4
|
||||
with:
|
||||
java-version: '17'
|
||||
distribution: 'temurin'
|
||||
cache: maven
|
||||
|
||||
- name: Build with Maven
|
||||
run: mvn -B package
|
||||
working-directory: main
|
||||
|
||||
- name: Upload built JAR
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: package
|
||||
path: main/target/*.jar
|
||||
|
||||
- name: Generate dependency graph
|
||||
run: mvn -B -f main/pom.xml com.github.ferstl:depgraph-maven-plugin:4.0.1:graph
|
||||
|
||||
- name: Upload dependency graph artifact
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: dependency-graph
|
||||
path: main/target/**
|
||||
|
||||
publish-release:
|
||||
runs-on: ubuntu-latest
|
||||
needs: [build]
|
||||
if: startsWith(github.ref, 'refs/tags/')
|
||||
permissions:
|
||||
contents: write
|
||||
|
||||
steps:
|
||||
- name: Download built JAR
|
||||
uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: package
|
||||
path: main/target/
|
||||
|
||||
- name: Create GitHub Release
|
||||
uses: softprops/action-gh-release@v2
|
||||
with:
|
||||
files: main/target/*.jar
|
||||
50
.gitignore
vendored
Normal file
50
.gitignore
vendored
Normal file
@@ -0,0 +1,50 @@
|
||||
# Compiled class files
|
||||
*.class
|
||||
|
||||
# Log files
|
||||
*.log
|
||||
|
||||
# BlueJ files
|
||||
*.ctxt
|
||||
|
||||
# Mobile Tools for Java (J2ME)
|
||||
.mtj.tmp/
|
||||
|
||||
# Package Files #
|
||||
*.jar
|
||||
*.war
|
||||
*.ear
|
||||
|
||||
# VS Code settings
|
||||
.vscode/
|
||||
|
||||
# Eclipse files
|
||||
*.pydevproject
|
||||
.project
|
||||
.classpath
|
||||
.cproject
|
||||
.settings/
|
||||
bin/
|
||||
tmp/
|
||||
|
||||
# IntelliJ IDEA files
|
||||
*.iml
|
||||
.idea/
|
||||
out/
|
||||
|
||||
# Mac system files
|
||||
.DS_Store
|
||||
|
||||
# Windows system files
|
||||
Thumbs.db
|
||||
|
||||
# Maven
|
||||
target/
|
||||
|
||||
# Gradle
|
||||
.gradle/
|
||||
build/
|
||||
|
||||
# Other
|
||||
*.swp
|
||||
*.pdf
|
||||
27
Diagrama de arquitetura - SD.drawio
Normal file
27
Diagrama de arquitetura - SD.drawio
Normal file
@@ -0,0 +1,27 @@
|
||||
<mxfile host="app.diagrams.net" agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/141.0.0.0 Safari/537.36 Edg/141.0.0.0" version="28.2.7">
|
||||
<diagram name="Página-1" id="B1_hHcevBzWlEwI7FSV6">
|
||||
<mxGraphModel dx="778" dy="476" grid="1" gridSize="10" guides="1" tooltips="1" connect="1" arrows="1" fold="1" page="1" pageScale="1" pageWidth="827" pageHeight="1169" math="0" shadow="0">
|
||||
<root>
|
||||
<mxCell id="0" />
|
||||
<mxCell id="1" parent="0" />
|
||||
<mxCell id="vcp7vux32DhQR4tKQhnF-8" value="Dashboard" style="sketch=0;pointerEvents=1;shadow=0;dashed=0;html=1;strokeColor=#C73500;labelPosition=center;verticalLabelPosition=bottom;verticalAlign=top;align=center;fillColor=#fa6800;shape=mxgraph.mscae.oms.dashboard;fontColor=#000000;" vertex="1" parent="1">
|
||||
<mxGeometry x="389" y="230" width="50" height="41" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="vcp7vux32DhQR4tKQhnF-12" value="Semaforo.java" style="shape=image;html=1;verticalAlign=top;verticalLabelPosition=bottom;labelBackgroundColor=#ffffff;imageAspect=0;aspect=fixed;image=https://icons.diagrams.net/icon-cache1/Strabo-2829/traffic_light-1068.png" vertex="1" parent="1">
|
||||
<mxGeometry x="230" y="350" width="53" height="53" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="vcp7vux32DhQR4tKQhnF-13" value="" style="endArrow=classic;startArrow=classic;html=1;rounded=0;movable=1;resizable=1;rotatable=1;deletable=1;editable=1;locked=0;connectable=1;" edge="1" parent="1">
|
||||
<mxGeometry width="50" height="50" relative="1" as="geometry">
|
||||
<mxPoint x="310" y="330" as="sourcePoint" />
|
||||
<mxPoint x="360" y="280" as="targetPoint" />
|
||||
</mxGeometry>
|
||||
</mxCell>
|
||||
<mxCell id="vcp7vux32DhQR4tKQhnF-14" value="CruzamentoServer.java" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=1;points=[];movable=1;rotatable=1;deletable=1;editable=1;locked=0;connectable=1;" vertex="1" connectable="0" parent="vcp7vux32DhQR4tKQhnF-13">
|
||||
<mxGeometry x="-0.3933" relative="1" as="geometry">
|
||||
<mxPoint x="25" y="25" as="offset" />
|
||||
</mxGeometry>
|
||||
</mxCell>
|
||||
</root>
|
||||
</mxGraphModel>
|
||||
</diagram>
|
||||
</mxfile>
|
||||
620
README.md
Normal file
620
README.md
Normal file
@@ -0,0 +1,620 @@
|
||||
# Sistema de Simulação de Tráfego Distribuído
|
||||
|
||||
Sistema distribuído de simulação de tráfego.
|
||||
---
|
||||
|
||||
## Índice
|
||||
|
||||
- [Visão Geral](#visão-geral)
|
||||
- [Arquitetura](#arquitetura)
|
||||
- [Protocolo de Comunicação](#protocolo-de-comunicação)
|
||||
- [Estrutura do Projeto](#estrutura-do-projeto)
|
||||
- [Instalação e Execução](#instalação-e-execução)
|
||||
- [Documentação](#documentação)
|
||||
- [Desenvolvimento](#desenvolvimento)
|
||||
|
||||
---
|
||||
|
||||
## Visão Geral
|
||||
|
||||
Este projeto implementa uma simulação distribuída de tráfego veicular numa rede de cruzamentos. O sistema utiliza:
|
||||
|
||||
- **Processos independentes** para cada cruzamento
|
||||
- **Threads** para controlar os semáforos dentro de cada cruzamento
|
||||
- **Comunicação via sockets** para transferência de veículos entre cruzamentos
|
||||
- **Simulação de eventos discretos** (DES) para gerir o tempo de simulação
|
||||
|
||||
### Características Principais
|
||||
|
||||
- Simulação determinística e reproduzível
|
||||
- Comunicação assíncrona entre processos
|
||||
- Protocolo de mensagens baseado em JSON
|
||||
- Dashboard em tempo real (planeado)
|
||||
- Estatísticas detalhadas de desempenho
|
||||
|
||||
---
|
||||
|
||||
## Arquitetura
|
||||
|
||||
### Visão Geral do Sistema
|
||||
|
||||
```
|
||||
┌─────────────────────────────────────────────────────────────────┐
|
||||
│ SISTEMA DISTRIBUÍDO │
|
||||
├─────────────────────────────────────────────────────────────────┤
|
||||
│ │
|
||||
│ ┌──────────────┐ ┌──────────────┐ │
|
||||
│ │ Coordenador │ ────────────────────────>│ Dashboard │ │
|
||||
│ │ / Gerador │ │ │
|
||||
│ └──────┬───────┘ └──────▲───────┘ │
|
||||
│ │ │ │
|
||||
│ │ Gera veículos Stats │ │
|
||||
│ │ │ │
|
||||
│ ▼ │ │
|
||||
│ ┌─────────────────────────────────────────────────┴──────┐ │
|
||||
│ │ Rede de Cruzamentos (Processos) │ │
|
||||
│ │ │ │
|
||||
│ │ ┌────┐ ┌────┐ ┌────┐ │ │
|
||||
│ │ │Cr1 │◄───────►│Cr2 │◄───────►│Cr3 │ │ │
|
||||
│ │ └─┬──┘ └─┬──┘ └─┬──┘ │ │
|
||||
│ │ │ │ │ │ │
|
||||
│ │ │ ┌────▼────┐ │ │ │
|
||||
│ │ └────────►│ Cr4 │◄────────┘ │ │
|
||||
│ │ └────┬────┘ │ │
|
||||
│ │ │ │ │
|
||||
│ │ ┌────▼────┐ │ │
|
||||
│ │ │ Cr5 │ │ │
|
||||
│ │ └────┬────┘ │ │
|
||||
│ └───────────────────┼─────────────────────────────────────┤ │
|
||||
│ │ │ │
|
||||
│ ▼ │ │
|
||||
│ ┌──────────────┐ │ │
|
||||
│ │ Nó de Saída │ │ │
|
||||
│ │ (S) │ │ │
|
||||
│ └──────────────┘ │ │
|
||||
│ │ │
|
||||
└────────────────────────────────────────────────────────────┘ │
|
||||
```
|
||||
|
||||
### Componentes
|
||||
|
||||
1. **Coordenador/Gerador**: Gera veículos e injeta no sistema
|
||||
2. **Cruzamentos (Cr1-Cr5)**: Processos independentes que gerem tráfego local
|
||||
3. **Nó de Saída (S)**: Recolhe estatísticas de veículos que saem do sistema
|
||||
4. **Dashboard Server**: Agrega e exibe dados em tempo real
|
||||
|
||||
---
|
||||
|
||||
## Protocolo de Comunicação
|
||||
|
||||
### Formato de Serialização: JSON (Gson)
|
||||
|
||||
O sistema utiliza JSON como formato de serialização por ser mais rápido, seguro e legível que a serialização em Java.
|
||||
|
||||
### Estrutura de Mensagens
|
||||
|
||||
Todas as mensagens seguem o formato base:
|
||||
|
||||
```json
|
||||
{
|
||||
"messageId": "uuid",
|
||||
"type": "MESSAGE_TYPE",
|
||||
"senderId": "sender_id",
|
||||
"destinationId": "destination_id",
|
||||
"timestamp": 1729595234567,
|
||||
"payload": { ... }
|
||||
}
|
||||
```
|
||||
|
||||
### Tipos de Mensagens
|
||||
|
||||
#### 1. VEHICLE_TRANSFER
|
||||
|
||||
Transfere um veículo entre cruzamentos.
|
||||
|
||||
**Estrutura:**
|
||||
```json
|
||||
{
|
||||
"messageId": "a3c5e7f9-1234-5678-90ab-cdef12345678",
|
||||
"type": "VEHICLE_TRANSFER",
|
||||
"senderId": "Cr1",
|
||||
"destinationId": "Cr2",
|
||||
"timestamp": 1729595234567,
|
||||
"payload": {
|
||||
"id": "V123",
|
||||
"type": "LIGHT",
|
||||
"entryTime": 15.7,
|
||||
"route": ["Cr1", "Cr2", "Cr5", "S"],
|
||||
"currentRouteIndex": 1,
|
||||
"totalWaitingTime": 3.2,
|
||||
"totalCrossingTime": 1.8
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**Fluxo:**
|
||||
1. Veículo completa travessia no Cr1
|
||||
2. Cr1 serializa mensagem VEHICLE_TRANSFER
|
||||
3. Envia para Cr2 via socket
|
||||
4. Cr2 desserializa e adiciona veículo à fila
|
||||
|
||||
#### 2. STATS_UPDATE
|
||||
|
||||
Envia estatísticas de um cruzamento para o Dashboard.
|
||||
|
||||
**Estrutura:**
|
||||
```json
|
||||
{
|
||||
"messageId": "b4d6e8f0-2345-6789-01bc-def123456789",
|
||||
"type": "STATS_UPDATE",
|
||||
"senderId": "Cr3",
|
||||
"destinationId": "Dashboard",
|
||||
"timestamp": 1729595234789,
|
||||
"payload": {
|
||||
"intersectionId": "Cr3",
|
||||
"queueLengths": {
|
||||
"North": 5,
|
||||
"South": 3,
|
||||
"East": 7,
|
||||
"West": 2
|
||||
},
|
||||
"vehiclesProcessed": 142,
|
||||
"averageWaitTime": 4.5,
|
||||
"currentTime": 123.45
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**Frequência:** A cada 10 segundos (configurável)
|
||||
|
||||
#### 3. VEHICLE_EXIT
|
||||
|
||||
Notifica quando um veículo sai do sistema.
|
||||
|
||||
**Estrutura:**
|
||||
```json
|
||||
{
|
||||
"messageId": "c5e7f9a1-3456-7890-12bc-def123456789",
|
||||
"type": "VEHICLE_EXIT",
|
||||
"senderId": "Cr5",
|
||||
"destinationId": "ExitNode",
|
||||
"timestamp": 1729595234890,
|
||||
"payload": {
|
||||
"id": "V123",
|
||||
"type": "LIGHT",
|
||||
"entryTime": 15.7,
|
||||
"exitTime": 45.2,
|
||||
"totalSystemTime": 29.5,
|
||||
"totalWaitingTime": 8.3,
|
||||
"totalCrossingTime": 4.8,
|
||||
"routeTaken": ["Cr1", "Cr2", "Cr5", "S"]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### 4. HEARTBEAT
|
||||
|
||||
Mantém a ligação ativa e monitoriza a saúde dos processos.
|
||||
|
||||
**Estrutura:**
|
||||
```json
|
||||
{
|
||||
"messageId": "d6e8f0a2-4567-8901-23cd-ef1234567890",
|
||||
"type": "HEARTBEAT",
|
||||
"senderId": "Cr1",
|
||||
"destinationId": "Coordinator",
|
||||
"timestamp": 1729595235000,
|
||||
"payload": {
|
||||
"status": "RUNNING",
|
||||
"uptime": 120.5,
|
||||
"vehiclesInQueue": 12
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**Frequência:** A cada 5 segundos
|
||||
|
||||
#### 5. LIGHT_CHANGE
|
||||
|
||||
Notifica mudança de estado de semáforo (para logging/debugging).
|
||||
|
||||
**Estrutura:**
|
||||
```json
|
||||
{
|
||||
"messageId": "e7f9a1b3-5678-9012-34de-f12345678901",
|
||||
"type": "LIGHT_CHANGE",
|
||||
"senderId": "Cr1-North",
|
||||
"destinationId": "Dashboard",
|
||||
"timestamp": 1729595235100,
|
||||
"payload": {
|
||||
"lightId": "Cr1-North",
|
||||
"previousState": "RED",
|
||||
"newState": "GREEN",
|
||||
"queueSize": 5
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Tipos de Veículos
|
||||
|
||||
```json
|
||||
{
|
||||
"BIKE": {
|
||||
"probability": 0.20,
|
||||
"crossingTime": 1.5
|
||||
},
|
||||
"LIGHT": {
|
||||
"probability": 0.60,
|
||||
"crossingTime": 2.0
|
||||
},
|
||||
"HEAVY": {
|
||||
"probability": 0.20,
|
||||
"crossingTime": 4.0
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Estados dos Semáforos
|
||||
|
||||
```
|
||||
RED → Veículos aguardam na fila
|
||||
GREEN → Veículos podem atravessar
|
||||
```
|
||||
|
||||
### Exemplo de Comunicação Completa
|
||||
|
||||
```
|
||||
Tempo Processo Ação Mensagem
|
||||
------ --------- ------------------------------------- ------------------
|
||||
15.7s Gerador Gera veículo V123 -
|
||||
15.7s Gerador → Injeta V123 em Cr1 VEHICLE_TRANSFER
|
||||
18.2s Cr1 V123 inicia travessia -
|
||||
20.2s Cr1 V123 completa travessia -
|
||||
20.2s Cr1 → Cr2 Transfere V123 para Cr2 VEHICLE_TRANSFER
|
||||
23.5s Cr2 V123 inicia travessia -
|
||||
25.5s Cr2 V123 completa travessia -
|
||||
25.5s Cr2 → Cr5 Transfere V123 para Cr5 VEHICLE_TRANSFER
|
||||
28.0s Cr5 V123 inicia travessia -
|
||||
30.0s Cr5 V123 completa travessia -
|
||||
30.0s Cr5 → Exit V123 sai do sistema VEHICLE_EXIT
|
||||
30.0s Exit → Dash Estatísticas de V123 STATS_UPDATE
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Estrutura do Projeto
|
||||
|
||||
```
|
||||
Trabalho-Pratico-SD/
|
||||
├── README.md # Este ficheiro
|
||||
├── TODO.md # Plano de desenvolvimento
|
||||
├── main/
|
||||
│ ├── pom.xml # Configuração do Maven
|
||||
│ ├── docs/
|
||||
│ │ ├── README.md # Índice da documentação
|
||||
│ │ ├── SERIALIZATION_SPECIFICATION.md
|
||||
│ │ ├── SERIALIZATION_DECISION.md
|
||||
│ │ ├── SERIALIZATION_SUMMARY.md
|
||||
│ │ └── SERIALIZATION_ARCHITECTURE.md
|
||||
│ ├── src/
|
||||
│ │ ├── main/java/sd/
|
||||
│ │ │ ├── Entry.java # Ponto de entrada
|
||||
│ │ │ ├── config/
|
||||
│ │ │ │ └── SimulationConfig.java
|
||||
│ │ │ ├── engine/
|
||||
│ │ │ │ └── SimulationEngine.java
|
||||
│ │ │ ├── model/
|
||||
│ │ │ │ ├── Event.java
|
||||
│ │ │ │ ├── EventType.java
|
||||
│ │ │ │ ├── Intersection.java
|
||||
│ │ │ │ ├── Message.java # Estrutura de mensagens
|
||||
│ │ │ │ ├── MessageType.java # Tipos de mensagens
|
||||
│ │ │ │ ├── TrafficLight.java
|
||||
│ │ │ │ ├── Vehicle.java
|
||||
│ │ │ │ └── VehicleType.java
|
||||
│ │ │ ├── serialization/ # Sistema de serialização
|
||||
│ │ │ │ ├── MessageSerializer.java
|
||||
│ │ │ │ ├── SerializationException.java
|
||||
│ │ │ │ ├── JsonMessageSerializer.java
|
||||
│ │ │ │ ├── SerializerFactory.java
|
||||
│ │ │ │ ├── SerializationExample.java
|
||||
│ │ │ │ └── README.md
|
||||
│ │ │ └── util/
|
||||
│ │ │ ├── RandomGenerator.java
|
||||
│ │ │ ├── StatisticsCollector.java
|
||||
│ │ │ └── VehicleGenerator.java
|
||||
│ │ └── test/java/
|
||||
│ │ ├── SimulationTest.java
|
||||
│ │ └── sd/serialization/
|
||||
│ │ └── SerializationTest.java
|
||||
│ └── target/ # Ficheiros compilados
|
||||
└── .vscode/ # Configuração do VS Code
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Instalação e Execução
|
||||
|
||||
### Pré-requisitos
|
||||
|
||||
- **Java 17** ou superior
|
||||
- **Maven 3.8+**
|
||||
- **Git**
|
||||
|
||||
### Instalação
|
||||
|
||||
```bash
|
||||
# Clonar o repositório
|
||||
git clone https://github.com/davidalves04/Trabalho-Pratico-SD.git
|
||||
cd Trabalho-Pratico-SD/main
|
||||
|
||||
# Compilar o projeto
|
||||
mvn clean compile
|
||||
|
||||
# Executar os testes
|
||||
mvn test
|
||||
```
|
||||
|
||||
### Execução
|
||||
|
||||
#### Simulação Básica (Single Process)
|
||||
|
||||
```bash
|
||||
mvn exec:java -Dexec.mainClass="sd.Entry"
|
||||
```
|
||||
|
||||
#### Exemplo de Serialização
|
||||
|
||||
```bash
|
||||
mvn exec:java -Dexec.mainClass="sd.serialization.SerializationExample"
|
||||
```
|
||||
|
||||
#### Configuração
|
||||
|
||||
Editar `src/main/resources/simulation.properties`:
|
||||
|
||||
```properties
|
||||
# Duração da simulação (segundos)
|
||||
simulation.duration=60.0
|
||||
|
||||
# Modelo de chegada: FIXED ou POISSON
|
||||
arrival.model=POISSON
|
||||
|
||||
# Taxa de chegada (veículos/segundo)
|
||||
arrival.rate=0.5
|
||||
|
||||
# Intervalo de atualização de estatísticas (segundos)
|
||||
stats.update.interval=10.0
|
||||
|
||||
# Distribuição de tipos de veículos
|
||||
vehicle.type.bike.probability=0.20
|
||||
vehicle.type.light.probability=0.60
|
||||
vehicle.type.heavy.probability=0.20
|
||||
|
||||
# Tempos de travessia por tipo (segundos)
|
||||
vehicle.type.bike.crossing.time=1.5
|
||||
vehicle.type.light.crossing.time=2.0
|
||||
vehicle.type.heavy.crossing.time=4.0
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Documentação
|
||||
|
||||
### Documentação de Serialização
|
||||
|
||||
A documentação completa sobre o protocolo de serialização está disponível em:
|
||||
|
||||
- **[Índice Completo](./main/docs/README.md)** - Navegação da documentação
|
||||
- **[Especificação](./main/docs/SERIALIZATION_SPECIFICATION.md)** - Design detalhado
|
||||
- **[Guia de Decisão](./main/docs/SERIALIZATION_DECISION.md)** - Porquê JSON?
|
||||
- **[Resumo](./main/docs/SERIALIZATION_SUMMARY.md)** - Estado de implementação
|
||||
- **[Arquitetura](./main/docs/SERIALIZATION_ARCHITECTURE.md)** - Diagramas visuais
|
||||
|
||||
### Guias de Utilização
|
||||
|
||||
- **[Serialization README](./main/src/main/java/sd/serialization/README.md)** - Como utilizar os serializers
|
||||
|
||||
### Exemplos de Código
|
||||
|
||||
```java
|
||||
// Criar serializer
|
||||
MessageSerializer serializer = SerializerFactory.createDefault();
|
||||
|
||||
// Serializar mensagem
|
||||
Vehicle vehicle = new Vehicle("V123", VehicleType.LIGHT, 10.5, route);
|
||||
Message message = new Message(
|
||||
MessageType.VEHICLE_TRANSFER,
|
||||
"Cr1",
|
||||
"Cr2",
|
||||
vehicle
|
||||
);
|
||||
byte[] data = serializer.serialize(message);
|
||||
|
||||
// Enviar via socket
|
||||
outputStream.write(data);
|
||||
|
||||
// Receber e desserializar
|
||||
byte[] received = inputStream.readAllBytes();
|
||||
Message msg = serializer.deserialize(received, Message.class);
|
||||
Vehicle v = msg.getPayloadAs(Vehicle.class);
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Desenvolvimento
|
||||
|
||||
### Estado do Projeto
|
||||
|
||||
| Componente | Estado | Notas |
|
||||
|------------|--------|-------|
|
||||
| Modelo de Dados | Completo | Vehicle, Message, Event, etc. |
|
||||
| Simulação DES | Completo | Single-process funcional |
|
||||
| Serialização | Completo | JSON e Java implementados |
|
||||
| Testes | 14/14 | Suite de serialização |
|
||||
| Processos Distribuídos | Planeado | Próxima etapa |
|
||||
| Comunicação Sockets | Planeado | Em design |
|
||||
| Dashboard | Planeado | UI web |
|
||||
|
||||
### Roteiro de Desenvolvimento
|
||||
|
||||
#### Fase 1: Fundações (Concluído)
|
||||
- Modelação de classes
|
||||
- Simulação DES single-process
|
||||
- Design de protocolo de serialização
|
||||
- Implementação JSON/Java serialization
|
||||
- Testes unitários
|
||||
|
||||
#### Fase 2: Distribuição (Em Curso)
|
||||
- Implementar comunicação via sockets
|
||||
- Separar cruzamentos em processos
|
||||
- Implementar threads de semáforos
|
||||
- Testar comunicação entre processos
|
||||
|
||||
#### Fase 3: Dashboard e Monitorização
|
||||
- Dashboard server
|
||||
- UI web em tempo real
|
||||
- Visualização de estatísticas
|
||||
- Logs estruturados
|
||||
|
||||
#### Fase 4: Optimização e Análise
|
||||
- Testes de carga
|
||||
- Análise de diferentes políticas
|
||||
- Recolha de métricas
|
||||
- Relatório final
|
||||
|
||||
### Executar Testes
|
||||
|
||||
```bash
|
||||
# Todos os testes
|
||||
mvn test
|
||||
|
||||
# Apenas testes de serialização
|
||||
mvn test -Dtest=SerializationTest
|
||||
|
||||
# Com relatório de cobertura
|
||||
mvn test jacoco:report
|
||||
```
|
||||
|
||||
### Contribuir
|
||||
|
||||
1. Fork o projeto
|
||||
2. Criar uma branch para a funcionalidade (`git checkout -b feature/MinhaFuncionalidade`)
|
||||
3. Commit das alterações (`git commit -m 'Adiciona MinhaFuncionalidade'`)
|
||||
4. Push para a branch (`git push origin feature/MinhaFuncionalidade`)
|
||||
5. Abrir um Pull Request
|
||||
|
||||
---
|
||||
|
||||
## Métricas de Desempenho
|
||||
|
||||
### Serialização
|
||||
|
||||
| Formato | Tamanho | Latência | Throughput |
|
||||
|---------|---------|----------|------------|
|
||||
| JSON | 300 bytes | 40.79 μs | ~24k msgs/s |
|
||||
| Java | 657 bytes | 33.34 μs | ~30k msgs/s |
|
||||
|
||||
**Conclusão**: JSON é 54% menor com overhead desprezível (7 μs)
|
||||
|
||||
### Simulação
|
||||
|
||||
- **Veículos gerados/s**: ~0.5-1.0 (configurável)
|
||||
- **Throughput**: ~0.2 veículos/s (saída)
|
||||
- **Tempo de execução**: 140ms para 60s de simulação
|
||||
- **Overhead**: < 0.25% do tempo simulado
|
||||
|
||||
---
|
||||
|
||||
## Protocolo de Mensagens - Resumo
|
||||
|
||||
### Formato Base
|
||||
|
||||
```
|
||||
+------------------+
|
||||
| Message Header |
|
||||
|------------------|
|
||||
| messageId | UUID único
|
||||
| type | Enum MessageType
|
||||
| senderId | ID do processo remetente
|
||||
| destinationId | ID do processo destino (null = broadcast)
|
||||
| timestamp | Tempo de criação (ms)
|
||||
+------------------+
|
||||
| Payload |
|
||||
|------------------|
|
||||
| Object | Dados específicos do tipo de mensagem
|
||||
+------------------+
|
||||
```
|
||||
|
||||
### Serialização
|
||||
|
||||
- **Formato**: JSON (UTF-8)
|
||||
- **Biblioteca**: Gson 2.10.1
|
||||
- **Codificação**: UTF-8
|
||||
- **Compressão**: Opcional (gzip)
|
||||
|
||||
### Transporte
|
||||
|
||||
- **Protocolo**: TCP/IP
|
||||
- **Porta base**: 5000+ (configurável)
|
||||
- **Timeout**: 30s
|
||||
- **Keep-alive**: Heartbeat a cada 5s
|
||||
|
||||
---
|
||||
|
||||
## Segurança
|
||||
|
||||
### Considerações
|
||||
|
||||
1. **Validação de Mensagens**
|
||||
- Verificar tipos esperados
|
||||
- Validar intervalos de valores
|
||||
- Rejeitar mensagens malformadas
|
||||
|
||||
2. **Autenticação** (Planeado)
|
||||
- Autenticação baseada em token
|
||||
- Whitelist de processos
|
||||
|
||||
3. **Encriptação** (Opcional)
|
||||
- TLS/SSL para produção
|
||||
- Não necessário para ambiente de desenvolvimento local
|
||||
|
||||
---
|
||||
|
||||
## Licença
|
||||
|
||||
Este projeto é desenvolvido para fins académicos no âmbito da disciplina de Sistemas Distribuídos (SD) do Instituto Politécnico do Porto.
|
||||
|
||||
---
|
||||
|
||||
## Equipa
|
||||
|
||||
**Instituição**: Instituto Politécnico do Porto
|
||||
**Curso**: Sistemas Distribuídos
|
||||
**Ano Letivo**: 2025-2026 (1º Semestre)
|
||||
|
||||
---
|
||||
|
||||
## Suporte
|
||||
|
||||
Para questões ou problemas:
|
||||
|
||||
1. Consultar a [documentação](./main/docs/README.md)
|
||||
2. Ver [exemplos de código](./main/src/main/java/sd/serialization/SerializationExample.java)
|
||||
3. Executar testes: `mvn test`
|
||||
4. Abrir issue no GitHub
|
||||
|
||||
---
|
||||
|
||||
## Ligações Úteis
|
||||
|
||||
- [Documentação do Projeto](./main/docs/README.md)
|
||||
- [Plano de Desenvolvimento](./TODO.md)
|
||||
- [Especificação de Serialização](./main/docs/SERIALIZATION_SPECIFICATION.md)
|
||||
- [Guia de Serialização](./main/src/main/java/sd/serialization/README.md)
|
||||
|
||||
---
|
||||
|
||||
**Última actualização**: 23 de outubro de 2025
|
||||
**Versão**: 1.0.0
|
||||
**Estado**: Em Desenvolvimento Activo
|
||||
134
STEP2_SUMMARY.md
Normal file
134
STEP2_SUMMARY.md
Normal file
@@ -0,0 +1,134 @@
|
||||
# 🏁 Single-Process Prototype — Implementation Summary
|
||||
|
||||
**Status:** ✅ Complete
|
||||
**Date:** October 22, 2025
|
||||
**Branch:** `8-single-process-prototype`
|
||||
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
The single-process prototype implements a **discrete event simulation (DES)** of a 3×3 urban grid with five intersections, realistic vehicle behavior, and fully synchronized traffic lights. Everything runs under one process, laying the groundwork for the distributed architecture in Phase 3.
|
||||
|
||||
---
|
||||
|
||||
## Core Architecture
|
||||
|
||||
### **SimulationEngine**
|
||||
|
||||
Drives the DES loop with a priority queue of timestamped events — vehicles, lights, crossings, and periodic stats updates. Handles five intersections (Cr1–Cr5) and six event types.
|
||||
|
||||
**Main loop:**
|
||||
|
||||
```
|
||||
while (events && time < duration):
|
||||
event = nextEvent()
|
||||
time = event.timestamp
|
||||
handle(event)
|
||||
```
|
||||
|
||||
### **VehicleGenerator**
|
||||
|
||||
Spawns vehicles via:
|
||||
|
||||
* **Poisson arrivals** (λ = 0.5 veh/s) or fixed intervals
|
||||
* **Probabilistic routes** from E1–E3
|
||||
* **Type distribution**: 20% BIKE, 60% LIGHT, 20% HEAVY
|
||||
|
||||
### **StatisticsCollector**
|
||||
|
||||
Tracks system-wide and per-type metrics: throughput, avg. wait, queue sizes, light cycles — updated every 10 s and at simulation end.
|
||||
|
||||
---
|
||||
|
||||
## Model Highlights
|
||||
|
||||
* **Vehicle** – type, route, timings, lifecycle.
|
||||
* **Intersection** – routing tables, traffic lights, queues.
|
||||
* **TrafficLight** – red/green cycles with FIFO queues.
|
||||
* **Event** – timestamped, comparable; 6 types for all DES actions.
|
||||
|
||||
---
|
||||
|
||||
## Configuration (`simulation.properties`)
|
||||
|
||||
```properties
|
||||
simulation.duration=60.0
|
||||
simulation.arrival.model=POISSON
|
||||
simulation.arrival.rate=0.5
|
||||
|
||||
vehicle.bike.crossingTime=1.5
|
||||
vehicle.light.crossingTime=2.0
|
||||
vehicle.heavy.crossingTime=4.0
|
||||
|
||||
statistics.update.interval=10.0
|
||||
```
|
||||
|
||||
**Speed logic:**
|
||||
`t_bike = 0.5×t_car`, `t_heavy = 2×t_car`.
|
||||
|
||||
---
|
||||
|
||||
## Topology
|
||||
|
||||
```
|
||||
E1→Cr1→Cr4→Cr5→S
|
||||
E2→Cr2→Cr5→S
|
||||
E3→Cr3→S
|
||||
Bi-dir: Cr1↔Cr2, Cr2↔Cr3
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Results
|
||||
|
||||
**Unit Tests:** 7/7 ✅
|
||||
**60-Second Simulation:**
|
||||
|
||||
* Generated: 22 vehicles
|
||||
* Completed: 5 (22.7%)
|
||||
* Avg system time: 15.47 s
|
||||
* Throughput: 0.08 veh/s
|
||||
* All lights & intersections operational
|
||||
|
||||
**Performance:**
|
||||
~0.03 s real-time run (≈2000× speed-up), < 50 MB RAM.
|
||||
|
||||
---
|
||||
|
||||
## Code Structure
|
||||
|
||||
```
|
||||
sd/
|
||||
├── engine/SimulationEngine.java
|
||||
├── model/{Vehicle,Intersection,TrafficLight,Event}.java
|
||||
├── util/{VehicleGenerator,StatisticsCollector}.java
|
||||
└── config/SimulationConfig.java
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Key Flow
|
||||
|
||||
1. Initialize intersections, lights, first events.
|
||||
2. Process events chronologically.
|
||||
3. Vehicles follow routes → queue → cross → exit.
|
||||
4. Lights toggle, queues drain, stats update.
|
||||
5. Print summary and performance metrics.
|
||||
|
||||
---
|
||||
|
||||
## Next Steps — Phase 3
|
||||
|
||||
* Split intersections into independent **processes**.
|
||||
* Add **socket-based communication**.
|
||||
* Run **traffic lights as threads**.
|
||||
* Enable **distributed synchronization** and fault handling.
|
||||
|
||||
---
|
||||
|
||||
## TL;DR
|
||||
|
||||
Solid single-process DES ✅
|
||||
Everything’s working — traffic lights, routing, vehicles, stats.
|
||||
Ready to go distributed next.
|
||||
25
TODO.md
25
TODO.md
@@ -1,3 +1,26 @@
|
||||
## ✅ SINGLE-PROCESS PROTOTYPE - COMPLETED
|
||||
|
||||
### Phase 2 Status: DONE ✅
|
||||
|
||||
All components for the single-process prototype have been successfully implemented and tested:
|
||||
|
||||
- ✅ **SimulationEngine** - Priority queue-based discrete event simulation
|
||||
- ✅ **VehicleGenerator** - Poisson and Fixed arrival models
|
||||
- ✅ **StatisticsCollector** - Comprehensive metrics tracking
|
||||
- ✅ **Entry point** - Main simulation runner
|
||||
- ✅ **60s test simulation** - Successfully validated event processing and routing
|
||||
|
||||
### Test Results:
|
||||
- All 7 unit tests passing
|
||||
- 60-second simulation completed successfully
|
||||
- Generated 22 vehicles with 5 completing their routes
|
||||
- Traffic light state changes working correctly
|
||||
- Vehicle routing through intersections validated
|
||||
|
||||
---
|
||||
|
||||
## NEXT: Distributed Architecture Implementation
|
||||
|
||||
### Compreender os Conceitos Fundamentais
|
||||
|
||||
Primeiro, as tecnologias e paradigmas chave necessários para este projeto devem ser totalmente compreendidos.
|
||||
@@ -16,7 +39,7 @@ Primeiro, as tecnologias e paradigmas chave necessários para este projeto devem
|
||||
|
||||
- Uma **lista de eventos** central, frequentemente uma fila de prioridades, será necessária para armazenar eventos futuros, ordenados pelo seu timestamp. O ciclo principal da simulação retira o próximo evento da lista, processa-o e adiciona quaisquer novos eventos que resultem dele.
|
||||
|
||||
- **Processo de Poisson:** Para o modelo "mais realista" de chegadas de veículos, é especificado um processo de Poisson. A principal conclusão é que o tempo _entre_ chegadas consecutivas de veículos segue uma **distribuição exponencial**. Em Java, este intervalo pode ser gerado usando `Math.log(1 - Math.random()) / -lambda`, onde `lambda` (λi) é a taxa de chegada especificada.
|
||||
- **Processo de Poisson:** Para o modelo 'mais realista' de chegadas de veículos, é especificado um processo de Poisson. A principal conclusão é que o tempo _entre_ chegadas consecutivas de veículos segue uma **distribuição exponencial**. Em Java, este intervalo pode ser gerado usando `Math.log(1 - Math.random()) / -lambda`, onde `lambda` (λi) é a taxa de chegada especificada.
|
||||
|
||||
|
||||
---
|
||||
|
||||
172
arquitetura_simplificada.xml
Normal file
172
arquitetura_simplificada.xml
Normal file
@@ -0,0 +1,172 @@
|
||||
<?xml version='1.0' encoding='utf-8'?>
|
||||
<mxfile host="app.diagrams.net" agent="Gemini" version="28.2.7">
|
||||
<diagram name="Arquitetura-Sistema-Trafego" id="L-jWkP8vD7q_2fM6N-yC">
|
||||
<mxGraphModel dx="1434" dy="746" grid="1" gridSize="10" guides="1" tooltips="1" connect="1" arrows="1" fold="1" page="1" pageScale="1" pageWidth="1654" pageHeight="1169" math="0" shadow="0">
|
||||
<root>
|
||||
<mxCell id="0" />
|
||||
<mxCell id="1" parent="0" />
|
||||
<mxCell id="E1-process" value="Processo Gerador E1" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#dae8fc;strokeColor=#6c8ebf;" vertex="1" parent="1">
|
||||
<mxGeometry x="140" y="100" width="140" height="60" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="E2-process" value="Processo Gerador E2" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#dae8fc;strokeColor=#6c8ebf;" vertex="1" parent="1">
|
||||
<mxGeometry x="430" y="100" width="140" height="60" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="E3-process" value="Processo Gerador E3" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#dae8fc;strokeColor=#6c8ebf;" vertex="1" parent="1">
|
||||
<mxGeometry x="720" y="100" width="140" height="60" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="Cr1-process" value="Processo Cruzamento (Cr1)" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#fff2cc;strokeColor=#d6b656;verticalAlign=top;spacingTop=5;" vertex="1" parent="1">
|
||||
<mxGeometry x="140" y="240" width="140" height="100" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="Cr1-thread1" value="Thread Semáforo" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#d5e8d4;strokeColor=#82b366;" vertex="1" parent="Cr1-process">
|
||||
<mxGeometry x="20" y="30" width="100" height="30" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="Cr1-thread2" value="Thread Semáforo" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#d5e8d4;strokeColor=#82b366;" vertex="1" parent="Cr1-process">
|
||||
<mxGeometry x="20" y="65" width="100" height="30" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="Cr2-process" value="Processo Cruzamento (Cr2)" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#fff2cc;strokeColor=#d6b656;verticalAlign=top;spacingTop=5;" vertex="1" parent="1">
|
||||
<mxGeometry x="430" y="240" width="140" height="140" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="Cr2-thread1" value="Thread Semáforo" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#d5e8d4;strokeColor=#82b366;" vertex="1" parent="Cr2-process">
|
||||
<mxGeometry x="20" y="30" width="100" height="30" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="Cr2-thread2" value="Thread Semáforo" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#d5e8d4;strokeColor=#82b366;" vertex="1" parent="Cr2-process">
|
||||
<mxGeometry x="20" y="65" width="100" height="30" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="Cr2-thread3" value="Thread Semáforo" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#d5e8d4;strokeColor=#82b366;" vertex="1" parent="Cr2-process">
|
||||
<mxGeometry x="20" y="100" width="100" height="30" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="Cr3-process" value="Processo Cruzamento (Cr3)" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#fff2cc;strokeColor=#d6b656;verticalAlign=top;spacingTop=5;" vertex="1" parent="1">
|
||||
<mxGeometry x="720" y="240" width="140" height="140" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="Cr3-thread1" value="Thread Semáforo" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#d5e8d4;strokeColor=#82b366;" vertex="1" parent="Cr3-process">
|
||||
<mxGeometry x="20" y="30" width="100" height="30" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="Cr3-thread2" value="Thread Semáforo" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#d5e8d4;strokeColor=#82b366;" vertex="1" parent="Cr3-process">
|
||||
<mxGeometry x="20" y="65" width="100" height="30" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="Cr3-thread3" value="Thread Semáforo" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#d5e8d4;strokeColor=#82b366;" vertex="1" parent="Cr3-process">
|
||||
<mxGeometry x="20" y="100" width="100" height="30" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="Cr4-process" value="Processo Cruzamento (Cr4)" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#fff2cc;strokeColor=#d6b656;verticalAlign=top;spacingTop=5;" vertex="1" parent="1">
|
||||
<mxGeometry x="140" y="460" width="140" height="100" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="Cr4-thread1" value="Thread Semáforo" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#d5e8d4;strokeColor=#82b366;" vertex="1" parent="Cr4-process">
|
||||
<mxGeometry x="20" y="30" width="100" height="30" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="Cr4-thread-peao" value="Thread Semáforo (Peões)" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#d5e8d4;strokeColor=#82b366;" vertex="1" parent="Cr4-process">
|
||||
<mxGeometry x="20" y="65" width="100" height="30" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="Cr5-process" value="Processo Cruzamento (Cr5)" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#fff2cc;strokeColor=#d6b656;verticalAlign=top;spacingTop=5;" vertex="1" parent="1">
|
||||
<mxGeometry x="430" y="460" width="140" height="100" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="Cr5-thread1" value="Thread Semáforo" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#d5e8d4;strokeColor=#82b366;" vertex="1" parent="Cr5-process">
|
||||
<mxGeometry x="20" y="30" width="100" height="30" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="Cr5-thread2" value="Thread Semáforo" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#d5e8d4;strokeColor=#82b366;" vertex="1" parent="Cr5-process">
|
||||
<mxGeometry x="20" y="65" width="100" height="30" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="S-process" value="Processo Saída (S)" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#f8cecc;strokeColor=#b85450;" vertex="1" parent="1">
|
||||
<mxGeometry x="720" y="460" width="140" height="60" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="dashboard-server" value="Servidor Dashboard" style="shape=cylinder3;whiteSpace=wrap;html=1;boundedLbl=1;backgroundOutline=1;size=15;fillColor=#e1d5e7;strokeColor=#9673a6;" vertex="1" parent="1">
|
||||
<mxGeometry x="430" y="640" width="140" height="80" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="arrow-E1-Cr1" value="Fluxo Veículos<br>(Sockets/Middleware)" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;fontSize=10;align=left;verticalAlign=bottom;" edge="1" parent="1" source="E1-process" target="Cr1-process">
|
||||
<mxGeometry relative="1" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="arrow-E2-Cr2" value="Fluxo Veículos<br>(Sockets/Middleware)" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;fontSize=10;align=left;verticalAlign=bottom;" edge="1" parent="1" source="E2-process" target="Cr2-process">
|
||||
<mxGeometry relative="1" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="arrow-E3-Cr3" value="Fluxo Veículos<br>(Sockets/Middleware)" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;fontSize=10;align=left;verticalAlign=bottom;" edge="1" parent="1" source="E3-process" target="Cr3-process">
|
||||
<mxGeometry relative="1" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="arrow-Cr1-Cr4" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;" edge="1" parent="1" source="Cr1-process" target="Cr4-process">
|
||||
<mxGeometry relative="1" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="arrow-Cr2-Cr5" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;" edge="1" parent="1" source="Cr2-process" target="Cr5-process">
|
||||
<mxGeometry relative="1" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="arrow-Cr4-Cr5" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;" edge="1" parent="1" source="Cr4-process" target="Cr5-process">
|
||||
<mxGeometry relative="1" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="arrow-Cr5-S" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;" edge="1" parent="1" source="Cr5-process" target="S-process">
|
||||
<mxGeometry relative="1" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="arrow-Cr3-S" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;" edge="1" parent="1" source="Cr3-process" target="S-process">
|
||||
<mxGeometry relative="1" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="arrow-Cr1-Cr2" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;" edge="1" parent="1" source="Cr1-process" target="Cr2-process">
|
||||
<mxGeometry relative="1" as="geometry">
|
||||
<Array as="points">
|
||||
<mxPoint x="280" y="290" />
|
||||
<mxPoint x="430" y="290" />
|
||||
</Array>
|
||||
</mxGeometry>
|
||||
</mxCell>
|
||||
<mxCell id="arrow-Cr2-Cr1" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;" edge="1" parent="1" source="Cr2-process" target="Cr1-process">
|
||||
<mxGeometry relative="1" as="geometry">
|
||||
<Array as="points">
|
||||
<mxPoint x="430" y="310" />
|
||||
<mxPoint x="280" y="310" />
|
||||
</Array>
|
||||
</mxGeometry>
|
||||
</mxCell>
|
||||
<mxCell id="arrow-Cr2-Cr3" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;" edge="1" parent="1" source="Cr2-process" target="Cr3-process">
|
||||
<mxGeometry relative="1" as="geometry">
|
||||
<Array as="points">
|
||||
<mxPoint x="570" y="290" />
|
||||
<mxPoint x="720" y="290" />
|
||||
</Array>
|
||||
</mxGeometry>
|
||||
</mxCell>
|
||||
<mxCell id="arrow-Cr3-Cr2" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;" edge="1" parent="1" source="Cr3-process" target="Cr2-process">
|
||||
<mxGeometry relative="1" as="geometry">
|
||||
<Array as="points">
|
||||
<mxPoint x="720" y="310" />
|
||||
<mxPoint x="570" y="310" />
|
||||
</Array>
|
||||
</mxGeometry>
|
||||
</mxCell>
|
||||
<mxCell id="stats-Cr1-Dash" value="Envio de Estatísticas" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;dashed=1;strokeColor=#9673a6;fontSize=10;verticalAlign=bottom;" edge="1" parent="1" source="Cr1-process" target="dashboard-server">
|
||||
<mxGeometry relative="1" as="geometry">
|
||||
<Array as="points">
|
||||
<mxPoint x="210" y="680" />
|
||||
</Array>
|
||||
</mxGeometry>
|
||||
</mxCell>
|
||||
<mxCell id="stats-Cr2-Dash" value="Envio de Estatísticas" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;dashed=1;strokeColor=#9673a6;fontSize=10;verticalAlign=bottom;" edge="1" parent="1" source="Cr2-process" target="dashboard-server">
|
||||
<mxGeometry relative="1" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="stats-Cr3-Dash" value="Envio de Estatísticas" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;dashed=1;strokeColor=#9673a6;fontSize=10;verticalAlign=bottom;" edge="1" parent="1" source="Cr3-process" target="dashboard-server">
|
||||
<mxGeometry relative="1" as="geometry">
|
||||
<Array as="points">
|
||||
<mxPoint x="790" y="680" />
|
||||
</Array>
|
||||
</mxGeometry>
|
||||
</mxCell>
|
||||
<mxCell id="stats-Cr4-Dash" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;dashed=1;strokeColor=#9673a6;" edge="1" parent="1" source="Cr4-process" target="dashboard-server">
|
||||
<mxGeometry relative="1" as="geometry">
|
||||
<Array as="points">
|
||||
<mxPoint x="210" y="680" />
|
||||
</Array>
|
||||
</mxGeometry>
|
||||
</mxCell>
|
||||
<mxCell id="stats-Cr5-Dash" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;dashed=1;strokeColor=#9673a6;" edge="1" parent="1" source="Cr5-process" target="dashboard-server">
|
||||
<mxGeometry relative="1" as="geometry" />
|
||||
</mxCell>
|
||||
<mxCell id="stats-S-Dash" value="Estatísticas Globais" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;dashed=1;strokeColor=#9673a6;fontSize=10;verticalAlign=bottom;" edge="1" parent="1" source="S-process" target="dashboard-server">
|
||||
<mxGeometry relative="1" as="geometry">
|
||||
<Array as="points">
|
||||
<mxPoint x="790" y="680" />
|
||||
</Array>
|
||||
</mxGeometry>
|
||||
</mxCell>
|
||||
<mxCell id="legend" value="Legenda simplificada (removida tabela)" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#ffffff;strokeColor=#999999;" vertex="1" parent="1">
|
||||
</mxCell>
|
||||
<mxCell id="title" value="Diagrama de Arquitetura - Simulador de Tráfego Distribuído" style="text;html=1;strokeColor=none;fillColor=none;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;fontSize=18;fontStyle=1" vertex="1" parent="1">
|
||||
<mxGeometry x="290" y="40" width="420" height="30" as="geometry" />
|
||||
</mxCell>
|
||||
</root>
|
||||
</mxGraphModel>
|
||||
</diagram>
|
||||
</mxfile>
|
||||
52
main/pom.xml
52
main/pom.xml
@@ -11,6 +11,58 @@
|
||||
<properties>
|
||||
<maven.compiler.source>17</maven.compiler.source>
|
||||
<maven.compiler.target>17</maven.compiler.target>
|
||||
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
|
||||
</properties>
|
||||
|
||||
<dependencies>
|
||||
<!-- JUnit 5 for testing -->
|
||||
<dependency>
|
||||
<groupId>org.junit.jupiter</groupId>
|
||||
<artifactId>junit-jupiter</artifactId>
|
||||
<version>5.10.0</version>
|
||||
<scope>test</scope>
|
||||
</dependency>
|
||||
|
||||
<!-- Gson for JSON serialization -->
|
||||
<dependency>
|
||||
<groupId>com.google.code.gson</groupId>
|
||||
<artifactId>gson</artifactId>
|
||||
<version>2.10.1</version>
|
||||
</dependency>
|
||||
</dependencies>
|
||||
|
||||
<build>
|
||||
<plugins>
|
||||
<!-- Maven Exec Plugin for running examples -->
|
||||
<plugin>
|
||||
<groupId>org.codehaus.mojo</groupId>
|
||||
<artifactId>exec-maven-plugin</artifactId>
|
||||
<version>3.1.0</version>
|
||||
<configuration>
|
||||
<mainClass>sd.Entry</mainClass>
|
||||
</configuration>
|
||||
</plugin>
|
||||
<plugin>
|
||||
<groupId>org.apache.maven.plugins</groupId>
|
||||
<artifactId>maven-shade-plugin</artifactId>
|
||||
<version>3.5.2</version>
|
||||
<executions>
|
||||
<execution>
|
||||
<phase>package</phase>
|
||||
<goals>
|
||||
<goal>shade</goal>
|
||||
</goals>
|
||||
<configuration>
|
||||
<transformers>
|
||||
<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
|
||||
<mainClass>sd.Entry</mainClass>
|
||||
</transformer>
|
||||
</transformers>
|
||||
</configuration>
|
||||
</execution>
|
||||
</executions>
|
||||
</plugin>
|
||||
</plugins>
|
||||
</build>
|
||||
|
||||
</project>
|
||||
@@ -1,7 +1,94 @@
|
||||
package sd;
|
||||
|
||||
import java.io.IOException;
|
||||
|
||||
import sd.config.SimulationConfig;
|
||||
import sd.engine.SimulationEngine;
|
||||
|
||||
/**
|
||||
* Main entry point for the traffic simulation.
|
||||
* * This class is responsible for loading the simulation configuration,
|
||||
* initializing the {@link SimulationEngine}, and starting the simulation run.
|
||||
* It also prints initial configuration details and final execution time.
|
||||
*/
|
||||
public class Entry {
|
||||
|
||||
/**
|
||||
* The default path to the simulation configuration file.
|
||||
* This is used if no command-line arguments are provided.
|
||||
*/
|
||||
private static final String DEFAULT_CONFIG_FILE = "src/main/resources/simulation.properties";
|
||||
|
||||
/**
|
||||
* The main method to start the simulation.
|
||||
* * @param args Command-line arguments. If provided, args[0] is expected
|
||||
* to be the path to a custom configuration file.
|
||||
*/
|
||||
public static void main(String[] args) {
|
||||
System.out.println("Hello, World!");
|
||||
System.out.println("=".repeat(60));
|
||||
System.out.println("TRAFFIC SIMULATION - DISCRETE EVENT SIMULATOR");
|
||||
System.out.println("=".repeat(60));
|
||||
|
||||
try {
|
||||
// 1. Load configuration
|
||||
String configFile = args.length > 0 ? args[0] : DEFAULT_CONFIG_FILE;
|
||||
System.out.println("Loading configuration from: " + configFile);
|
||||
|
||||
SimulationConfig config = new SimulationConfig(configFile);
|
||||
|
||||
// 2. Display configuration
|
||||
displayConfiguration(config);
|
||||
|
||||
// 3. Create and initialize simulation engine
|
||||
SimulationEngine engine = new SimulationEngine(config);
|
||||
engine.initialize();
|
||||
|
||||
System.out.println("\n" + "=".repeat(60));
|
||||
|
||||
// 4. Run simulation
|
||||
long startTime = System.currentTimeMillis();
|
||||
engine.run();
|
||||
long endTime = System.currentTimeMillis();
|
||||
|
||||
// 5. Display execution time
|
||||
double executionTime = (endTime - startTime) / 1000.0;
|
||||
System.out.println("\nExecution time: " + String.format("%.2f", executionTime) + " seconds");
|
||||
System.out.println("=".repeat(60));
|
||||
|
||||
} catch (IOException e) {
|
||||
System.err.println("Error loading configuration: " + e.getMessage());
|
||||
e.printStackTrace();
|
||||
} catch (Exception e) {
|
||||
System.err.println("Error during simulation: " + e.getMessage());
|
||||
e.printStackTrace();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Displays the main configuration parameters to the console.
|
||||
* This provides a summary of the simulation settings before it starts.
|
||||
*
|
||||
* @param config The {@link SimulationConfig} object containing the loaded settings.
|
||||
*/
|
||||
private static void displayConfiguration(SimulationConfig config) {
|
||||
System.out.println("\nSIMULATION CONFIGURATION:");
|
||||
System.out.println(" Duration: " + config.getSimulationDuration() + " seconds");
|
||||
System.out.println(" Arrival Model: " + config.getArrivalModel());
|
||||
|
||||
if ("POISSON".equalsIgnoreCase(config.getArrivalModel())) {
|
||||
System.out.println(" Arrival Rate (λ): " + config.getArrivalRate() + " vehicles/second");
|
||||
} else {
|
||||
System.out.println(" Fixed Interval: " + config.getFixedArrivalInterval() + " seconds");
|
||||
}
|
||||
|
||||
System.out.println(" Statistics Update Interval: " + config.getStatisticsUpdateInterval() + " seconds");
|
||||
|
||||
System.out.println("\nVEHICLE TYPES:");
|
||||
System.out.println(" Bike: " + (config.getBikeVehicleProbability() * 100) + "% " +
|
||||
"(crossing time: " + config.getBikeVehicleCrossingTime() + "s)");
|
||||
System.out.println(" Light: " + (config.getLightVehicleProbability() * 100) + "% " +
|
||||
"(crossing time: " + config.getLightVehicleCrossingTime() + "s)");
|
||||
System.out.println(" Heavy: " + (config.getHeavyVehicleProbability() * 100) + "% " +
|
||||
"(crossing time: " + config.getHeavyVehicleCrossingTime() + "s)");
|
||||
}
|
||||
}
|
||||
501
main/src/main/java/sd/IntersectionProcess.java
Normal file
501
main/src/main/java/sd/IntersectionProcess.java
Normal file
@@ -0,0 +1,501 @@
|
||||
package sd;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.net.ServerSocket;
|
||||
import java.net.Socket;
|
||||
import java.util.HashMap;
|
||||
import java.util.Map;
|
||||
import java.util.concurrent.ExecutorService;
|
||||
import java.util.concurrent.Executors;
|
||||
import java.util.concurrent.TimeUnit;
|
||||
|
||||
import sd.config.SimulationConfig;
|
||||
import sd.model.Intersection;
|
||||
import sd.model.MessageType;
|
||||
import sd.model.TrafficLight;
|
||||
import sd.model.TrafficLightState;
|
||||
import sd.model.Vehicle;
|
||||
import sd.protocol.MessageProtocol;
|
||||
import sd.protocol.SocketConnection;
|
||||
|
||||
/**
|
||||
* Main class for an Intersection Process in the distributed traffic simulation.
|
||||
* * Each IntersectionProcess runs as an independent Java application (JVM instance)
|
||||
* representing one of the five intersections (Cr1-Cr5) in the network.
|
||||
*/
|
||||
public class IntersectionProcess {
|
||||
|
||||
private final String intersectionId;
|
||||
|
||||
private final SimulationConfig config;
|
||||
|
||||
private final Intersection intersection;
|
||||
|
||||
private ServerSocket serverSocket;
|
||||
|
||||
private final Map<String, SocketConnection> outgoingConnections;
|
||||
|
||||
private final ExecutorService connectionHandlerPool;
|
||||
|
||||
private final ExecutorService trafficLightPool;
|
||||
|
||||
private volatile boolean running; //Quando uma thread escreve um valor volatile, todas as outras
|
||||
//threads veem a mudança imediatamente.
|
||||
|
||||
/**
|
||||
* Constructs a new IntersectionProcess.
|
||||
*
|
||||
* @param intersectionId The ID of this intersection (e.g., "Cr1").
|
||||
* @param configFilePath Path to the simulation.properties file.
|
||||
* @throws IOException If configuration cannot be loaded.
|
||||
*/
|
||||
public IntersectionProcess(String intersectionId, String configFilePath) throws IOException {
|
||||
this.intersectionId = intersectionId;
|
||||
this.config = new SimulationConfig(configFilePath);
|
||||
this.intersection = new Intersection(intersectionId);
|
||||
this.outgoingConnections = new HashMap<>();
|
||||
this.connectionHandlerPool = Executors.newCachedThreadPool();
|
||||
this.trafficLightPool = Executors.newFixedThreadPool(4); // Max 4 directions
|
||||
this.running = false;
|
||||
|
||||
System.out.println("=".repeat(60));
|
||||
System.out.println("INTERSECTION PROCESS: " + intersectionId);
|
||||
System.out.println("=".repeat(60));
|
||||
}
|
||||
|
||||
public void initialize() {
|
||||
System.out.println("\n[" + intersectionId + "] Initializing intersection...");
|
||||
|
||||
createTrafficLights();
|
||||
|
||||
configureRouting();
|
||||
|
||||
startTrafficLights();
|
||||
|
||||
System.out.println("[" + intersectionId + "] Initialization complete.");
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates traffic lights for this intersection based on its physical connections.
|
||||
* Each intersection has different number and directions of traffic lights
|
||||
* according to the network topology.
|
||||
*/
|
||||
private void createTrafficLights() {
|
||||
System.out.println("\n[" + intersectionId + "] Creating traffic lights...");
|
||||
|
||||
String[] directions = new String[0];
|
||||
switch (intersectionId) {
|
||||
case "Cr1":
|
||||
directions = new String[]{"East", "South"};
|
||||
break;
|
||||
case "Cr2":
|
||||
directions = new String[]{"West", "East", "South"};
|
||||
break;
|
||||
case "Cr3":
|
||||
directions = new String[]{"West", "South"};
|
||||
break;
|
||||
case "Cr4":
|
||||
directions = new String[]{"East"};
|
||||
break;
|
||||
case "Cr5":
|
||||
directions = new String[]{"East"};
|
||||
break;
|
||||
}
|
||||
|
||||
for (String direction : directions) {
|
||||
double greenTime = config.getTrafficLightGreenTime(intersectionId, direction);
|
||||
double redTime = config.getTrafficLightRedTime(intersectionId, direction);
|
||||
|
||||
TrafficLight light = new TrafficLight(
|
||||
intersectionId + "-" + direction,
|
||||
direction,
|
||||
greenTime,
|
||||
redTime
|
||||
);
|
||||
|
||||
intersection.addTrafficLight(light);
|
||||
System.out.println(" Created traffic light: " + direction +
|
||||
" (Green: " + greenTime + "s, Red: " + redTime + "s)");
|
||||
}
|
||||
}
|
||||
|
||||
private void configureRouting() {
|
||||
System.out.println("\n[" + intersectionId + "] Configuring routing...");
|
||||
|
||||
switch (intersectionId) {
|
||||
case "Cr1":
|
||||
intersection.configureRoute("Cr2", "East");
|
||||
intersection.configureRoute("Cr4", "South");
|
||||
break;
|
||||
|
||||
case "Cr2":
|
||||
intersection.configureRoute("Cr1", "West");
|
||||
intersection.configureRoute("Cr3", "East");
|
||||
intersection.configureRoute("Cr5", "South");
|
||||
break;
|
||||
|
||||
case "Cr3":
|
||||
intersection.configureRoute("Cr2", "West");
|
||||
intersection.configureRoute("S", "South");
|
||||
break;
|
||||
|
||||
case "Cr4":
|
||||
intersection.configureRoute("Cr5", "East");
|
||||
break;
|
||||
|
||||
case "Cr5":
|
||||
intersection.configureRoute("S", "East");
|
||||
break;
|
||||
|
||||
default:
|
||||
System.err.println(" Error: unknown intersection ID: " + intersectionId);
|
||||
}
|
||||
|
||||
System.out.println(" Routing configured.");
|
||||
}
|
||||
|
||||
/**
|
||||
* Starts all traffic light threads.
|
||||
*/
|
||||
private void startTrafficLights() {
|
||||
System.out.println("\n[" + intersectionId + "] Starting traffic light threads...");
|
||||
|
||||
for (TrafficLight light : intersection.getTrafficLights()) {
|
||||
trafficLightPool.submit(() -> runTrafficLightCycle(light));
|
||||
System.out.println(" Started thread for: " + light.getDirection());
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* The main loop for a traffic light thread.
|
||||
* Continuously cycles between GREEN and RED states.
|
||||
*
|
||||
* @param light The traffic light to control.
|
||||
*/
|
||||
private void runTrafficLightCycle(TrafficLight light) {
|
||||
System.out.println("[" + light.getId() + "] Traffic light thread started.");
|
||||
|
||||
while (running) {
|
||||
try {
|
||||
// Green state
|
||||
light.changeState(TrafficLightState.GREEN);
|
||||
System.out.println("[" + light.getId() + "] State: GREEN");
|
||||
|
||||
// Process vehicles while green
|
||||
processGreenLight(light);
|
||||
|
||||
// Wait for green duration
|
||||
Thread.sleep((long) (light.getGreenTime() * 1000));
|
||||
|
||||
// RED state
|
||||
light.changeState(TrafficLightState.RED);
|
||||
System.out.println("[" + light.getId() + "] State: RED");
|
||||
|
||||
// Wait for red duration
|
||||
Thread.sleep((long) (light.getRedTime() * 1000));
|
||||
|
||||
} catch (InterruptedException e) {
|
||||
System.out.println("[" + light.getId() + "] Traffic light thread interrupted.");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
System.out.println("[" + light.getId() + "] Traffic light thread stopped.");
|
||||
}
|
||||
|
||||
/**
|
||||
* Processes vehicles when a traffic light is GREEN.
|
||||
* Dequeues vehicles and sends them to their next destination.
|
||||
*
|
||||
* @param light The traffic light that is currently green.
|
||||
*/
|
||||
private void processGreenLight(TrafficLight light) {
|
||||
while (light.getState() == TrafficLightState.GREEN && light.getQueueSize() > 0) {
|
||||
Vehicle vehicle = light.removeVehicle();
|
||||
|
||||
if (vehicle != null) {
|
||||
// Get crossing time based on vehicle type
|
||||
double crossingTime = getCrossingTimeForVehicle(vehicle);
|
||||
|
||||
// Simulate crossing time
|
||||
try {
|
||||
Thread.sleep((long) (crossingTime * 1000));
|
||||
} catch (InterruptedException e) {
|
||||
Thread.currentThread().interrupt();
|
||||
break;
|
||||
}
|
||||
|
||||
// Update vehicle statistics
|
||||
vehicle.addCrossingTime(crossingTime);
|
||||
|
||||
// Update intersection statistics
|
||||
intersection.incrementVehiclesSent();
|
||||
|
||||
// Send vehicle to next destination
|
||||
sendVehicleToNextDestination(vehicle);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the crossing time for a vehicle based on its type.
|
||||
*
|
||||
* @param vehicle The vehicle.
|
||||
* @return The crossing time in seconds.
|
||||
*/
|
||||
private double getCrossingTimeForVehicle(Vehicle vehicle) {
|
||||
switch (vehicle.getType()) {
|
||||
case BIKE:
|
||||
return config.getBikeVehicleCrossingTime();
|
||||
case LIGHT:
|
||||
return config.getLightVehicleCrossingTime();
|
||||
case HEAVY:
|
||||
return config.getHeavyVehicleCrossingTime();
|
||||
default:
|
||||
return config.getLightVehicleCrossingTime();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Sends a vehicle to its next destination via socket connection.
|
||||
*
|
||||
* @param vehicle The vehicle that has crossed this intersection.
|
||||
*/
|
||||
private void sendVehicleToNextDestination(Vehicle vehicle) {
|
||||
String nextDestination = vehicle.getCurrentDestination();
|
||||
|
||||
try {
|
||||
// Get or create connection to next destination
|
||||
SocketConnection connection = getOrCreateConnection(nextDestination);
|
||||
|
||||
// Create and send message
|
||||
MessageProtocol message = new VehicleTransferMessage(
|
||||
intersectionId,
|
||||
nextDestination,
|
||||
vehicle
|
||||
);
|
||||
|
||||
connection.sendMessage(message);
|
||||
|
||||
System.out.println("[" + intersectionId + "] Sent vehicle " + vehicle.getId() +
|
||||
" to " + nextDestination);
|
||||
|
||||
// Note: vehicle route is advanced when it arrives at the next intersection
|
||||
|
||||
} catch (IOException | InterruptedException e) {
|
||||
System.err.println("[" + intersectionId + "] Failed to send vehicle " +
|
||||
vehicle.getId() + " to " + nextDestination + ": " + e.getMessage());
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets an existing connection to a destination or creates a new one.
|
||||
*
|
||||
* @param destinationId The ID of the destination node.
|
||||
* @return The SocketConnection to that destination.
|
||||
* @throws IOException If connection cannot be established.
|
||||
* @throws InterruptedException If connection attempt is interrupted.
|
||||
*/
|
||||
private synchronized SocketConnection getOrCreateConnection(String destinationId)
|
||||
throws IOException, InterruptedException {
|
||||
|
||||
if (!outgoingConnections.containsKey(destinationId)) {
|
||||
String host = getHostForDestination(destinationId);
|
||||
int port = getPortForDestination(destinationId);
|
||||
|
||||
System.out.println("[" + intersectionId + "] Creating connection to " +
|
||||
destinationId + " at " + host + ":" + port);
|
||||
|
||||
SocketConnection connection = new SocketConnection(host, port);
|
||||
outgoingConnections.put(destinationId, connection);
|
||||
}
|
||||
|
||||
return outgoingConnections.get(destinationId);
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the host address for a destination node from configuration.
|
||||
*
|
||||
* @param destinationId The destination node ID.
|
||||
* @return The host address.
|
||||
*/
|
||||
private String getHostForDestination(String destinationId) {
|
||||
if (destinationId.equals("S")) {
|
||||
return config.getExitHost();
|
||||
} else {
|
||||
return config.getIntersectionHost(destinationId);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the port number for a destination node from configuration.
|
||||
*
|
||||
* @param destinationId The destination node ID.
|
||||
* @return The port number.
|
||||
*/
|
||||
private int getPortForDestination(String destinationId) {
|
||||
if (destinationId.equals("S")) {
|
||||
return config.getExitPort();
|
||||
} else {
|
||||
return config.getIntersectionPort(destinationId);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Starts the server socket and begins accepting incoming connections.
|
||||
* This is the main listening loop of the process.
|
||||
*
|
||||
* @throws IOException If the server socket cannot be created.
|
||||
*/
|
||||
public void start() throws IOException {
|
||||
int port = config.getIntersectionPort(intersectionId);
|
||||
serverSocket = new ServerSocket(port);
|
||||
running = true;
|
||||
|
||||
System.out.println("\n[" + intersectionId + "] Server started on port " + port);
|
||||
System.out.println("[" + intersectionId + "] Waiting for incoming connections...\n");
|
||||
|
||||
// Main accept loop
|
||||
while (running) {
|
||||
try {
|
||||
Socket clientSocket = serverSocket.accept();
|
||||
|
||||
// Handle each connection in a separate thread
|
||||
connectionHandlerPool.submit(() -> handleIncomingConnection(clientSocket));
|
||||
|
||||
} catch (IOException e) {
|
||||
if (running) {
|
||||
System.err.println("[" + intersectionId + "] Error accepting connection: " +
|
||||
e.getMessage());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Handles an incoming connection from another process.
|
||||
* Continuously listens for vehicle transfer messages.
|
||||
*
|
||||
* @param clientSocket The accepted socket connection.
|
||||
*/
|
||||
private void handleIncomingConnection(Socket clientSocket) {
|
||||
try (SocketConnection connection = new SocketConnection(clientSocket)) {
|
||||
|
||||
System.out.println("[" + intersectionId + "] New connection accepted from " +
|
||||
clientSocket.getInetAddress().getHostAddress());
|
||||
|
||||
// Continuously receive messages while connection is active
|
||||
while (running && connection.isConnected()) {
|
||||
try {
|
||||
MessageProtocol message = connection.receiveMessage();
|
||||
|
||||
if (message.getType() == MessageType.VEHICLE_TRANSFER) {
|
||||
Vehicle vehicle = (Vehicle) message.getPayload();
|
||||
|
||||
System.out.println("[" + intersectionId + "] Received vehicle: " +
|
||||
vehicle.getId() + " from " + message.getSourceNode());
|
||||
|
||||
// Add vehicle to appropriate queue
|
||||
intersection.receiveVehicle(vehicle);
|
||||
}
|
||||
|
||||
} catch (ClassNotFoundException e) {
|
||||
System.err.println("[" + intersectionId + "] Unknown message type received: " +
|
||||
e.getMessage());
|
||||
}
|
||||
}
|
||||
|
||||
} catch (IOException e) {
|
||||
if (running) {
|
||||
System.err.println("[" + intersectionId + "] Connection error: " + e.getMessage());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Stops the intersection process gracefully.
|
||||
* Shuts down all threads and closes all connections.
|
||||
*/
|
||||
public void shutdown() {
|
||||
System.out.println("\n[" + intersectionId + "] Shutting down...");
|
||||
running = false;
|
||||
|
||||
// Close server socket
|
||||
try {
|
||||
if (serverSocket != null && !serverSocket.isClosed()) {
|
||||
serverSocket.close();
|
||||
}
|
||||
} catch (IOException e) {
|
||||
System.err.println("[" + intersectionId + "] Error closing server socket: " +
|
||||
e.getMessage());
|
||||
}
|
||||
|
||||
// Shutdown thread pools
|
||||
trafficLightPool.shutdown();
|
||||
connectionHandlerPool.shutdown();
|
||||
|
||||
try {
|
||||
if (!trafficLightPool.awaitTermination(5, TimeUnit.SECONDS)) {
|
||||
trafficLightPool.shutdownNow();
|
||||
}
|
||||
if (!connectionHandlerPool.awaitTermination(5, TimeUnit.SECONDS)) {
|
||||
connectionHandlerPool.shutdownNow();
|
||||
}
|
||||
} catch (InterruptedException e) {
|
||||
trafficLightPool.shutdownNow();
|
||||
connectionHandlerPool.shutdownNow();
|
||||
}
|
||||
|
||||
// Close all outgoing connections
|
||||
for (Map.Entry<String, SocketConnection> entry : outgoingConnections.entrySet()) {
|
||||
try {
|
||||
entry.getValue().close();
|
||||
} catch (IOException e) {
|
||||
System.err.println("[" + intersectionId + "] Error closing connection to " +
|
||||
entry.getKey() + ": " + e.getMessage());
|
||||
}
|
||||
}
|
||||
|
||||
System.out.println("[" + intersectionId + "] Shutdown complete.");
|
||||
System.out.println("=".repeat(60));
|
||||
}
|
||||
|
||||
// --- Inner class for Vehicle Transfer Messages ---
|
||||
|
||||
/**
|
||||
* Implementation of MessageProtocol for vehicle transfers between processes.
|
||||
*/
|
||||
private static class VehicleTransferMessage implements MessageProtocol {
|
||||
private static final long serialVersionUID = 1L;
|
||||
|
||||
private final String sourceNode;
|
||||
private final String destinationNode;
|
||||
private final Vehicle payload;
|
||||
|
||||
public VehicleTransferMessage(String sourceNode, String destinationNode, Vehicle vehicle) {
|
||||
this.sourceNode = sourceNode;
|
||||
this.destinationNode = destinationNode;
|
||||
this.payload = vehicle;
|
||||
}
|
||||
|
||||
@Override
|
||||
public MessageType getType() {
|
||||
return MessageType.VEHICLE_TRANSFER;
|
||||
}
|
||||
|
||||
@Override
|
||||
public Object getPayload() {
|
||||
return payload;
|
||||
}
|
||||
|
||||
@Override
|
||||
public String getSourceNode() {
|
||||
return sourceNode;
|
||||
}
|
||||
|
||||
@Override
|
||||
public String getDestinationNode() {
|
||||
return destinationNode;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -7,94 +7,253 @@ import java.util.Properties;
|
||||
|
||||
/**
|
||||
* Class to load and manage simulation configurations.
|
||||
* Configurations are read from a .properties file.
|
||||
* Configurations are read from a .properties file. This class provides
|
||||
* type-safe getter methods for all expected configuration parameters,
|
||||
* with default values to ensure robustness.
|
||||
*/
|
||||
public class SimulationConfig {
|
||||
|
||||
/**
|
||||
* Holds all properties loaded from the file.
|
||||
*/
|
||||
private final Properties properties;
|
||||
|
||||
/**
|
||||
* Constructs a new SimulationConfig object by loading properties
|
||||
* from the specified file path.
|
||||
*
|
||||
* @param filePath The path to the .properties file (e.g., "src/main/resources/simulation.properties").
|
||||
* @throws IOException If the file cannot be found or read.
|
||||
*/
|
||||
public SimulationConfig(String filePath) throws IOException {
|
||||
properties = new Properties();
|
||||
/**Tenta carregar diretamente a partir do sistema de ficheiros, se o ficheiro não existir
|
||||
* (por exemplo quando executado a partir do classpath/jar),
|
||||
* faz fallback para carregar a partir do classpath usando o ClassLoader.
|
||||
*/
|
||||
IOException lastException = null; //FIXME: melhorar esta parte para reportar erros de forma mais clara
|
||||
|
||||
try {
|
||||
try (InputStream input = new FileInputStream(filePath)) {
|
||||
properties.load(input);
|
||||
return; // carregado com sucesso a partir do caminho fornecido
|
||||
}
|
||||
} catch (IOException e) {
|
||||
lastException = e;
|
||||
//tenta carregar a partir do classpath sem prefixos comuns
|
||||
String resourcePath = filePath;
|
||||
//Remove prefixos que apontam para src/main/resources quando presentes
|
||||
resourcePath = resourcePath.replace("src/main/resources/", "").replace("src\\main\\resources\\", "");
|
||||
//Remove prefixo classpath: se fornecido
|
||||
if (resourcePath.startsWith("classpath:")) {
|
||||
resourcePath = resourcePath.substring("classpath:".length());
|
||||
if (resourcePath.startsWith("/")) resourcePath = resourcePath.substring(1);
|
||||
}
|
||||
|
||||
// Network configurations
|
||||
InputStream resourceStream = Thread.currentThread().getContextClassLoader().getResourceAsStream(resourcePath);
|
||||
if (resourceStream == null) {
|
||||
//como último recurso, tentar com um leading slash
|
||||
resourceStream = SimulationConfig.class.getResourceAsStream('/' + resourcePath);
|
||||
}
|
||||
|
||||
if (resourceStream != null) {
|
||||
try (InputStream input = resourceStream) {
|
||||
properties.load(input);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (lastException != null) throw lastException;
|
||||
}
|
||||
|
||||
// --- Network configurations ---
|
||||
|
||||
/**
|
||||
* Gets the host address for a specific intersection.
|
||||
* @param intersectionId The ID of the intersection (e.g., "Cr1").
|
||||
* @return The host (e.g., "localhost").
|
||||
*/
|
||||
public String getIntersectionHost(String intersectionId) {
|
||||
return properties.getProperty("intersection." + intersectionId + ".host", "localhost");
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the port number for a specific intersection.
|
||||
* @param intersectionId The ID of the intersection (e.g., "Cr1").
|
||||
* @return The port number.
|
||||
*/
|
||||
public int getIntersectionPort(String intersectionId) {
|
||||
return Integer.parseInt(properties.getProperty("intersection." + intersectionId + ".port", "0"));
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the host address for the dashboard server.
|
||||
* @return The dashboard host.
|
||||
*/
|
||||
public String getDashboardHost() {
|
||||
return properties.getProperty("dashboard.host", "localhost");
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the port number for the dashboard server.
|
||||
* @return The dashboard port.
|
||||
*/
|
||||
public int getDashboardPort() {
|
||||
return Integer.parseInt(properties.getProperty("dashboard.port", "9000"));
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the host address for the exit node.
|
||||
* @return The exit node host.
|
||||
*/
|
||||
public String getExitHost() {
|
||||
return properties.getProperty("exit.host", "localhost");
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the port number for the exit node.
|
||||
* @return The exit node port.
|
||||
*/
|
||||
public int getExitPort() {
|
||||
return Integer.parseInt(properties.getProperty("exit.port", "9001"));
|
||||
}
|
||||
|
||||
// Simulation configurations
|
||||
// --- Simulation configurations ---
|
||||
|
||||
/**
|
||||
* Gets the total duration of the simulation in virtual seconds.
|
||||
* @return The simulation duration.
|
||||
*/
|
||||
public double getSimulationDuration() {
|
||||
return Double.parseDouble(properties.getProperty("simulation.duration", "3600.0"));
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the vehicle arrival model ("POISSON" or "FIXED").
|
||||
* @return The arrival model as a string.
|
||||
*/
|
||||
public String getArrivalModel() {
|
||||
return properties.getProperty("simulation.arrival.model", "POISSON");
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the average arrival rate (lambda) for the POISSON model.
|
||||
* This represents the average number of vehicles arriving per second.
|
||||
* @return The arrival rate.
|
||||
*/
|
||||
public double getArrivalRate() {
|
||||
return Double.parseDouble(properties.getProperty("simulation.arrival.rate", "0.5"));
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the fixed time interval between vehicle arrivals for the FIXED model.
|
||||
* @return The fixed interval in seconds.
|
||||
*/
|
||||
public double getFixedArrivalInterval() {
|
||||
return Double.parseDouble(properties.getProperty("simulation.arrival.fixed.interval", "2.0"));
|
||||
}
|
||||
|
||||
// Traffic light configurations
|
||||
// --- Traffic light configurations ---
|
||||
|
||||
/**
|
||||
* Gets the duration of the GREEN light state for a specific traffic light.
|
||||
* @param intersectionId The ID of the intersection (e.g., "Cr1").
|
||||
* @param direction The direction of the light (e.g., "North").
|
||||
* @return The green light time in seconds.
|
||||
*/
|
||||
public double getTrafficLightGreenTime(String intersectionId, String direction) {
|
||||
String key = "trafficlight." + intersectionId + "." + direction + ".green";
|
||||
return Double.parseDouble(properties.getProperty(key, "30.0"));
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the duration of the RED light state for a specific traffic light.
|
||||
* @param intersectionId The ID of the intersection (e.g., "Cr1").
|
||||
* @param direction The direction of the light (e.g., "North").
|
||||
* @return The red light time in seconds.
|
||||
*/
|
||||
public double getTrafficLightRedTime(String intersectionId, String direction) {
|
||||
String key = "trafficlight." + intersectionId + "." + direction + ".red";
|
||||
return Double.parseDouble(properties.getProperty(key, "30.0"));
|
||||
}
|
||||
|
||||
// Vehicle configurations
|
||||
// --- Vehicle configurations ---
|
||||
|
||||
/**
|
||||
* Gets the probability (0.0 to 1.0) that a generated vehicle is of type LIGHT.
|
||||
* @return The probability for LIGHT vehicles.
|
||||
*/
|
||||
public double getLightVehicleProbability() {
|
||||
return Double.parseDouble(properties.getProperty("vehicle.probability.light", "0.7"));
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the average time it takes a LIGHT vehicle to cross an intersection.
|
||||
* @return The crossing time in seconds.
|
||||
*/
|
||||
public double getLightVehicleCrossingTime() {
|
||||
return Double.parseDouble(properties.getProperty("vehicle.crossing.time.light", "2.0"));
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the probability (0.0 to 1.0) that a generated vehicle is of type BIKE.
|
||||
* @return The probability for BIKE vehicles.
|
||||
*/
|
||||
public double getBikeVehicleProbability() {
|
||||
return Double.parseDouble(properties.getProperty("vehicle.probability.bike", "0.0"));
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the average time it takes a BIKE vehicle to cross an intersection.
|
||||
* @return The crossing time in seconds.
|
||||
*/
|
||||
public double getBikeVehicleCrossingTime() {
|
||||
return Double.parseDouble(properties.getProperty("vehicle.crossing.time.bike", "1.5"));
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the probability (0.0 to 1.0) that a generated vehicle is of type HEAVY.
|
||||
* @return The probability for HEAVY vehicles.
|
||||
*/
|
||||
public double getHeavyVehicleProbability() {
|
||||
return Double.parseDouble(properties.getProperty("vehicle.probability.heavy", "0.0"));
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the average time it takes a HEAVY vehicle to cross an intersection.
|
||||
* @return The crossing time in seconds.
|
||||
*/
|
||||
public double getHeavyVehicleCrossingTime() {
|
||||
return Double.parseDouble(properties.getProperty("vehicle.crossing.time.heavy", "4.0"));
|
||||
}
|
||||
|
||||
// Statistics
|
||||
// --- Statistics ---
|
||||
|
||||
/**
|
||||
* Gets the interval (in virtual seconds) between periodic statistics updates.
|
||||
* @return The statistics update interval.
|
||||
*/
|
||||
public double getStatisticsUpdateInterval() {
|
||||
return Double.parseDouble(properties.getProperty("statistics.update.interval", "10.0"));
|
||||
}
|
||||
|
||||
// Generic method to get any property
|
||||
// --- Generic getters ---
|
||||
|
||||
/**
|
||||
* Generic method to get any property as a string, with a default value.
|
||||
* @param key The property key.
|
||||
* @param defaultValue The value to return if the key is not found.
|
||||
* @return The property value or the default.
|
||||
*/
|
||||
public String getProperty(String key, String defaultValue) {
|
||||
return properties.getProperty(key, defaultValue);
|
||||
}
|
||||
|
||||
/**
|
||||
* Generic method to get any property as a string.
|
||||
* @param key The property key.
|
||||
* @return The property value, or null if not found.
|
||||
*/
|
||||
public String getProperty(String key) {
|
||||
return properties.getProperty(key);
|
||||
}
|
||||
|
||||
628
main/src/main/java/sd/engine/SimulationEngine.java
Normal file
628
main/src/main/java/sd/engine/SimulationEngine.java
Normal file
@@ -0,0 +1,628 @@
|
||||
package sd.engine;
|
||||
|
||||
import java.util.HashMap;
|
||||
import java.util.Map;
|
||||
import java.util.PriorityQueue;
|
||||
|
||||
import sd.config.SimulationConfig;
|
||||
import sd.model.Event;
|
||||
import sd.model.EventType;
|
||||
import sd.model.Intersection;
|
||||
import sd.model.TrafficLight;
|
||||
import sd.model.TrafficLightState;
|
||||
import sd.model.Vehicle;
|
||||
import sd.model.VehicleType;
|
||||
import sd.util.StatisticsCollector;
|
||||
import sd.util.VehicleGenerator;
|
||||
|
||||
/**
|
||||
* Core simulation engine using discrete event simulation (DES).
|
||||
* * This class orchestrates the entire simulation. It maintains a
|
||||
* {@link PriorityQueue} of {@link Event} objects, representing all
|
||||
* scheduled future actions. The engine processes events in strict
|
||||
* chronological order (based on their timestamp).
|
||||
* * It manages the simulation's state, including:
|
||||
* - The current simulation time ({@code currentTime}).
|
||||
* - The collection of all {@link Intersection} objects.
|
||||
* - The {@link VehicleGenerator} for creating new vehicles.
|
||||
* - The {@link StatisticsCollector} for tracking metrics.
|
||||
*/
|
||||
public class SimulationEngine {
|
||||
|
||||
/**
|
||||
* Holds all simulation parameters loaded from the properties file.
|
||||
*/
|
||||
private final SimulationConfig config;
|
||||
|
||||
/**
|
||||
* The core of the discrete event simulation. Events are pulled from this
|
||||
* queue in order of their timestamp.
|
||||
*/
|
||||
private final PriorityQueue<Event> eventQueue;
|
||||
|
||||
/**
|
||||
* A map storing all intersections in the simulation, keyed by their ID (e.g., "Cr1").
|
||||
*/
|
||||
private final Map<String, Intersection> intersections;
|
||||
|
||||
/**
|
||||
* Responsible for creating new vehicles according to the configured arrival model.
|
||||
*/
|
||||
private final VehicleGenerator vehicleGenerator;
|
||||
|
||||
/**
|
||||
* Collects and calculates statistics throughout the simulation.
|
||||
*/
|
||||
private final StatisticsCollector statisticsCollector;
|
||||
|
||||
/**
|
||||
* The current time in the simulation (in virtual seconds).
|
||||
* This time advances based on the timestamp of the event being processed.
|
||||
*/
|
||||
private double currentTime;
|
||||
|
||||
/**
|
||||
* A simple counter to generate unique IDs for vehicles.
|
||||
*/
|
||||
private int vehicleCounter;
|
||||
|
||||
/**
|
||||
* Constructs a new SimulationEngine.
|
||||
*
|
||||
* @param config The {@link SimulationConfig} object containing all
|
||||
* simulation parameters.
|
||||
*/
|
||||
public SimulationEngine(SimulationConfig config) {
|
||||
this.config = config;
|
||||
this.eventQueue = new PriorityQueue<>();
|
||||
this.intersections = new HashMap<>();
|
||||
this.vehicleGenerator = new VehicleGenerator(config);
|
||||
this.statisticsCollector = new StatisticsCollector(config);
|
||||
this.currentTime = 0.0;
|
||||
this.vehicleCounter = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Initializes the simulation. This involves:
|
||||
* 1. Creating all {@link Intersection} and {@link TrafficLight} objects.
|
||||
* 2. Configuring the routing logic between intersections.
|
||||
* 3. Scheduling the initial events (first traffic light changes,
|
||||
* first vehicle generation, and periodic statistics updates).
|
||||
*/
|
||||
public void initialize() {
|
||||
System.out.println("Initializing simulation...");
|
||||
|
||||
setupIntersections();
|
||||
setupRouting();
|
||||
|
||||
// Schedule initial events to "bootstrap" the simulation
|
||||
scheduleTrafficLightEvents();
|
||||
scheduleNextVehicleGeneration(0.0);
|
||||
scheduleStatisticsUpdates();
|
||||
|
||||
System.out.println("Simulation initialized with " + intersections.size() + " intersections");
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates all intersections defined in the configuration
|
||||
* and adds their corresponding traffic lights.
|
||||
*/
|
||||
private void setupIntersections() {
|
||||
String[] intersectionIds = {"Cr1", "Cr2", "Cr3", "Cr4", "Cr5"};
|
||||
// Note: "North" is commented out, so it won't be created.
|
||||
String[] directions = {/*"North",*/ "South", "East", "West"};
|
||||
|
||||
for (String id : intersectionIds) {
|
||||
Intersection intersection = new Intersection(id);
|
||||
|
||||
// Add traffic lights for each configured direction
|
||||
for (String direction : directions) {
|
||||
double greenTime = config.getTrafficLightGreenTime(id, direction);
|
||||
double redTime = config.getTrafficLightRedTime(id, direction);
|
||||
|
||||
TrafficLight light = new TrafficLight(
|
||||
id + "-" + direction,
|
||||
direction,
|
||||
greenTime,
|
||||
redTime
|
||||
);
|
||||
|
||||
intersection.addTrafficLight(light);
|
||||
}
|
||||
|
||||
intersections.put(id, intersection);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Configures how vehicles should be routed between intersections.
|
||||
* This hardcoded logic defines the "map" of the city.
|
||||
* * For example, `intersections.get("Cr1").configureRoute("Cr2", "East");` means
|
||||
* "at intersection Cr1, any vehicle whose *next* destination is Cr2
|
||||
* should be sent to the 'East' traffic light queue."
|
||||
*/
|
||||
private void setupRouting() {
|
||||
// Cr1 routing
|
||||
intersections.get("Cr1").configureRoute("Cr2", "East");
|
||||
intersections.get("Cr1").configureRoute("Cr4", "South");
|
||||
|
||||
// Cr2 routing
|
||||
intersections.get("Cr2").configureRoute("Cr1", "West");
|
||||
intersections.get("Cr2").configureRoute("Cr3", "East");
|
||||
intersections.get("Cr2").configureRoute("Cr5", "South");
|
||||
|
||||
// Cr3 routing
|
||||
intersections.get("Cr3").configureRoute("Cr2", "West");
|
||||
intersections.get("Cr3").configureRoute("S", "South"); // "S" is the exit
|
||||
|
||||
// Cr4 routing
|
||||
//intersections.get("Cr4").configureRoute("Cr1", "North");
|
||||
intersections.get("Cr4").configureRoute("Cr5", "East");
|
||||
|
||||
// Cr5 routing
|
||||
//intersections.get("Cr5").configureRoute("Cr2", "North");
|
||||
//intersections.get("Cr5").configureRoute("Cr4", "West");
|
||||
intersections.get("Cr5").configureRoute("S", "East"); // "S" is the exit
|
||||
}
|
||||
|
||||
/**
|
||||
* Schedules the initial {@link EventType#TRAFFIC_LIGHT_CHANGE} event
|
||||
* for every traffic light in the simulation.
|
||||
* A small random delay is added to "stagger" the lights, preventing
|
||||
* all of them from changing at the exact same time at t=0.
|
||||
*/
|
||||
private void scheduleTrafficLightEvents() {
|
||||
for (Intersection intersection : intersections.values()) {
|
||||
for (TrafficLight light : intersection.getTrafficLights()) {
|
||||
// Start with lights in RED state, schedule first GREEN change
|
||||
// Stagger the start times slightly to avoid all lights changing at once
|
||||
double staggerDelay = Math.random() * 1.5;
|
||||
scheduleTrafficLightChange(light, intersection.getId(), staggerDelay);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates and schedules a new {@link EventType#TRAFFIC_LIGHT_CHANGE} event.
|
||||
* The event is scheduled to occur at {@code currentTime + delay}.
|
||||
*
|
||||
* @param light The {@link TrafficLight} that will change state.
|
||||
* @param intersectionId The ID of the intersection where the light is located.
|
||||
* @param delay The time (in seconds) from {@code currentTime} when the change should occur.
|
||||
*/
|
||||
private void scheduleTrafficLightChange(TrafficLight light, String intersectionId, double delay) {
|
||||
double changeTime = currentTime + delay;
|
||||
Event event = new Event(changeTime, EventType.TRAFFIC_LIGHT_CHANGE, light, intersectionId);
|
||||
eventQueue.offer(event);
|
||||
}
|
||||
|
||||
/**
|
||||
* Schedules the next {@link EventType#VEHICLE_GENERATION} event.
|
||||
* The time of the next arrival is determined by the {@link VehicleGenerator}.
|
||||
*
|
||||
* @param baseTime The time from which to calculate the next arrival (usually {@code currentTime}).
|
||||
*/
|
||||
private void scheduleNextVehicleGeneration(double baseTime) {
|
||||
// Get the absolute time for the next arrival.
|
||||
double nextArrivalTime = vehicleGenerator.getNextArrivalTime(baseTime);
|
||||
|
||||
// Only schedule the event if it's within the simulation's total duration.
|
||||
if (nextArrivalTime < config.getSimulationDuration()) {
|
||||
Event event = new Event(nextArrivalTime, EventType.VEHICLE_GENERATION, null, null);
|
||||
eventQueue.offer(event);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Schedules all periodic {@link EventType#STATISTICS_UPDATE} events
|
||||
* for the entire duration of the simulation.
|
||||
*/
|
||||
private void scheduleStatisticsUpdates() {
|
||||
double interval = config.getStatisticsUpdateInterval();
|
||||
double duration = config.getSimulationDuration();
|
||||
|
||||
for (double time = interval; time < duration; time += interval) {
|
||||
Event event = new Event(time, EventType.STATISTICS_UPDATE, null, null);
|
||||
eventQueue.offer(event);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Runs the main simulation loop.
|
||||
* The loop continues as long as there are events in the queue and
|
||||
* the {@code currentTime} is less than the total simulation duration.
|
||||
* * In each iteration, it:
|
||||
* 1. Polls the next event from the {@link #eventQueue}.
|
||||
* 2. Advances {@link #currentTime} to the event's timestamp.
|
||||
* 3. Calls {@link #processEvent(Event)} to handle the event.
|
||||
* * After the loop, it prints the final statistics.
|
||||
*/
|
||||
public void run() {
|
||||
System.out.println("Starting simulation...");
|
||||
double duration = config.getSimulationDuration();
|
||||
|
||||
while (!eventQueue.isEmpty() && currentTime < duration) {
|
||||
// Get the next event in chronological order
|
||||
Event event = eventQueue.poll();
|
||||
|
||||
// Advance simulation time to this event's time
|
||||
currentTime = event.getTimestamp();
|
||||
|
||||
// Process the event
|
||||
processEvent(event);
|
||||
}
|
||||
|
||||
System.out.println("\nSimulation completed at t=" + String.format("%.2f", currentTime) + "s");
|
||||
printFinalStatistics();
|
||||
}
|
||||
|
||||
/**
|
||||
* Main event processing logic.
|
||||
* Delegates the event to the appropriate handler method based on its {@link EventType}.
|
||||
*
|
||||
* @param event The {@link Event} to be processed.
|
||||
*/
|
||||
private void processEvent(Event event) {
|
||||
switch (event.getType()) {
|
||||
case VEHICLE_GENERATION -> handleVehicleGeneration();
|
||||
|
||||
case VEHICLE_ARRIVAL -> handleVehicleArrival(event);
|
||||
|
||||
case TRAFFIC_LIGHT_CHANGE -> handleTrafficLightChange(event);
|
||||
|
||||
case CROSSING_START -> handleCrossingStart(event);
|
||||
|
||||
case CROSSING_END -> handleCrossingEnd(event);
|
||||
|
||||
case STATISTICS_UPDATE -> handleStatisticsUpdate();
|
||||
|
||||
default -> System.err.println("Unknown event type: " + event.getType());
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Handles {@link EventType#VEHICLE_GENERATION}.
|
||||
* 1. Creates a new {@link Vehicle} using the {@link #vehicleGenerator}.
|
||||
* 2. Records the generation event with the {@link #statisticsCollector}.
|
||||
* 3. Schedules a {@link EventType#VEHICLE_ARRIVAL} event for the vehicle
|
||||
* at its first destination intersection.
|
||||
* 4. Schedules the *next* {@link EventType#VEHICLE_GENERATION} event.
|
||||
* (Note: This line is commented out in the original, which might be a bug,
|
||||
* as it implies only one vehicle is ever generated. It should likely be active.)
|
||||
*/
|
||||
private void handleVehicleGeneration() {
|
||||
Vehicle vehicle = vehicleGenerator.generateVehicle("V" + (++vehicleCounter), currentTime);
|
||||
|
||||
System.out.printf("[t=%.2f] Vehicle %s generated (type=%s, route=%s)%n",
|
||||
currentTime, vehicle.getId(), vehicle.getType(), vehicle.getRoute());
|
||||
|
||||
// Register with statistics collector
|
||||
statisticsCollector.recordVehicleGeneration(vehicle, currentTime);
|
||||
|
||||
// Schedule arrival at first intersection
|
||||
String firstIntersection = vehicle.getCurrentDestination();
|
||||
if (firstIntersection != null && !firstIntersection.equals("S")) {
|
||||
// Assume minimal travel time to first intersection (e.g., 1-3 seconds)
|
||||
double arrivalTime = currentTime + 1.0 + Math.random() * 2.0;
|
||||
Event arrivalEvent = new Event(arrivalTime, EventType.VEHICLE_ARRIVAL, vehicle, firstIntersection);
|
||||
eventQueue.offer(arrivalEvent);
|
||||
}
|
||||
|
||||
// Schedule next vehicle generation
|
||||
// This was commented out in the original file.
|
||||
// For a continuous simulation, it should be enabled:
|
||||
scheduleNextVehicleGeneration(currentTime);
|
||||
}
|
||||
|
||||
/**
|
||||
* Handles {@link EventType#VEHICLE_ARRIVAL} at an intersection.
|
||||
* 1. Records the arrival for statistics.
|
||||
* 2. Advances the vehicle's internal route planner to its *next* destination.
|
||||
* 3. If the next destination is the exit ("S") or null,
|
||||
* the vehicle exits the system via {@link #handleVehicleExit(Vehicle)}.
|
||||
* 4. Otherwise, the vehicle is placed in the correct queue at the
|
||||
* current intersection using {@link Intersection#receiveVehicle(Vehicle)}.
|
||||
* 5. Attempts to process the vehicle immediately if its light is green.
|
||||
*
|
||||
* @param event The arrival event, containing the {@link Vehicle} and intersection ID.
|
||||
*/
|
||||
private void handleVehicleArrival(Event event) {
|
||||
Vehicle vehicle = (Vehicle) event.getData();
|
||||
String intersectionId = event.getLocation();
|
||||
|
||||
Intersection intersection = intersections.get(intersectionId);
|
||||
if (intersection == null) {
|
||||
System.err.println("Unknown intersection: " + intersectionId);
|
||||
return;
|
||||
}
|
||||
|
||||
System.out.printf("[t=%.2f] Vehicle %s arrived at %s%n",
|
||||
currentTime, vehicle.getId(), intersectionId);
|
||||
|
||||
// Record arrival time (used to calculate waiting time later)
|
||||
statisticsCollector.recordVehicleArrival(vehicle, intersectionId, currentTime);
|
||||
|
||||
// Advance the vehicle's route to the *next* stop
|
||||
// (it has now arrived at its *current* destination)
|
||||
boolean hasNext = vehicle.advanceRoute();
|
||||
|
||||
if (!hasNext) {
|
||||
// This was the last stop
|
||||
handleVehicleExit(vehicle);
|
||||
return;
|
||||
}
|
||||
|
||||
String nextDestination = vehicle.getCurrentDestination();
|
||||
if (nextDestination == null || "S".equals(nextDestination)) {
|
||||
// Next stop is the exit
|
||||
handleVehicleExit(vehicle);
|
||||
return;
|
||||
}
|
||||
|
||||
// Add vehicle to the appropriate traffic light queue based on its next destination
|
||||
intersection.receiveVehicle(vehicle);
|
||||
|
||||
// Try to process the vehicle immediately if its light is already green
|
||||
tryProcessVehicle(vehicle, intersection);
|
||||
}
|
||||
|
||||
/**
|
||||
* Checks if a newly arrived vehicle (or a vehicle in a queue
|
||||
* that just turned green) can start crossing.
|
||||
*
|
||||
* @param vehicle The vehicle to process.
|
||||
* @param intersection The intersection where the vehicle is.
|
||||
*/
|
||||
private void tryProcessVehicle(Vehicle vehicle, Intersection intersection) { //FIXME
|
||||
// Find the direction (and light) this vehicle is queued at
|
||||
// This logic is a bit flawed: it just finds the *first* non-empty queue
|
||||
// A better approach would be to get the light from the vehicle's route
|
||||
String direction = intersection.getTrafficLights().stream()
|
||||
.filter(tl -> tl.getQueueSize() > 0)
|
||||
.map(TrafficLight::getDirection)
|
||||
.findFirst()
|
||||
.orElse(null);
|
||||
|
||||
if (direction != null) {
|
||||
TrafficLight light = intersection.getTrafficLight(direction);
|
||||
// If the light is green and it's the correct one...
|
||||
if (light != null && light.getState() == TrafficLightState.GREEN) {
|
||||
// ...remove the vehicle from the queue (if it's at the front)
|
||||
Vehicle v = light.removeVehicle();
|
||||
if (v != null) {
|
||||
// ...and schedule its crossing.
|
||||
scheduleCrossing(v, intersection);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Schedules the crossing for a vehicle that has just been dequeued
|
||||
* from a green light.
|
||||
* 1. Calculates and records the vehicle's waiting time.
|
||||
* 2. Schedules an immediate {@link EventType#CROSSING_START} event.
|
||||
*
|
||||
* @param vehicle The {@link Vehicle} that is crossing.
|
||||
* @param intersection The {@link Intersection} it is crossing.
|
||||
*/
|
||||
private void scheduleCrossing(Vehicle vehicle, Intersection intersection) {
|
||||
// Calculate time spent waiting at the red light
|
||||
double waitTime = currentTime - statisticsCollector.getArrivalTime(vehicle);
|
||||
vehicle.addWaitingTime(waitTime);
|
||||
|
||||
// Schedule crossing start event *now*
|
||||
Event crossingStart = new Event(currentTime, EventType.CROSSING_START, vehicle, intersection.getId());
|
||||
processEvent(crossingStart); // Process immediately
|
||||
}
|
||||
|
||||
/**
|
||||
* Handles {@link EventType#CROSSING_START}.
|
||||
* 1. Determines the crossing time based on vehicle type.
|
||||
* 2. Schedules a {@link EventType#CROSSING_END} event to occur
|
||||
* at {@code currentTime + crossingTime}.
|
||||
*
|
||||
* @param event The crossing start event.
|
||||
*/
|
||||
private void handleCrossingStart(Event event) {
|
||||
Vehicle vehicle = (Vehicle) event.getData();
|
||||
String intersectionId = event.getLocation();
|
||||
|
||||
double crossingTime = getCrossingTime(vehicle.getType());
|
||||
|
||||
System.out.printf("[t=%.2f] Vehicle %s started crossing at %s (duration=%.2fs)%n",
|
||||
currentTime, vehicle.getId(), intersectionId, crossingTime);
|
||||
|
||||
// Schedule the *end* of the crossing
|
||||
double endTime = currentTime + crossingTime;
|
||||
Event crossingEnd = new Event(endTime, EventType.CROSSING_END, vehicle, intersectionId);
|
||||
eventQueue.offer(crossingEnd);
|
||||
}
|
||||
|
||||
/**
|
||||
* Handles {@link EventType#CROSSING_END}.
|
||||
* 1. Updates intersection and vehicle statistics.
|
||||
* 2. Checks the vehicle's *next* destination.
|
||||
* 3. If the next destination is the exit ("S"), call {@link #handleVehicleExit(Vehicle)}.
|
||||
* 4. Otherwise, schedule a {@link EventType#VEHICLE_ARRIVAL} event at the
|
||||
* *next* intersection, after some travel time.
|
||||
*
|
||||
* @param event The crossing end event.
|
||||
*/
|
||||
private void handleCrossingEnd(Event event) {
|
||||
Vehicle vehicle = (Vehicle) event.getData();
|
||||
String intersectionId = event.getLocation();
|
||||
|
||||
// Update stats
|
||||
Intersection intersection = intersections.get(intersectionId);
|
||||
if (intersection != null) {
|
||||
intersection.incrementVehiclesSent();
|
||||
}
|
||||
|
||||
double crossingTime = getCrossingTime(vehicle.getType());
|
||||
vehicle.addCrossingTime(crossingTime);
|
||||
|
||||
System.out.printf("[t=%.2f] Vehicle %s finished crossing at %s%n",
|
||||
currentTime, vehicle.getId(), intersectionId);
|
||||
|
||||
// Decide what to do next
|
||||
String nextDest = vehicle.getCurrentDestination();
|
||||
if (nextDest != null && !nextDest.equals("S")) {
|
||||
// Route to the *next* intersection
|
||||
// Assume 5-10 seconds travel time between intersections
|
||||
double travelTime = 5.0 + Math.random() * 5.0;
|
||||
double arrivalTime = currentTime + travelTime;
|
||||
Event arrivalEvent = new Event(arrivalTime, EventType.VEHICLE_ARRIVAL, vehicle, nextDest);
|
||||
eventQueue.offer(arrivalEvent);
|
||||
} else {
|
||||
// Reached the exit
|
||||
handleVehicleExit(vehicle);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Handles a vehicle exiting the simulation.
|
||||
* Records final statistics for the vehicle.
|
||||
*
|
||||
* @param vehicle The {@link Vehicle} that has completed its route.
|
||||
*/
|
||||
private void handleVehicleExit(Vehicle vehicle) {
|
||||
System.out.printf("[t=%.2f] Vehicle %s exited the system (wait=%.2fs, travel=%.2fs)%n",
|
||||
currentTime, vehicle.getId(),
|
||||
vehicle.getTotalWaitingTime(),
|
||||
vehicle.getTotalTravelTime(currentTime));
|
||||
|
||||
// Record the exit for final statistics calculation
|
||||
statisticsCollector.recordVehicleExit(vehicle, currentTime);
|
||||
}
|
||||
|
||||
/**
|
||||
* Handles {@link EventType#TRAFFIC_LIGHT_CHANGE}.
|
||||
* 1. Toggles the light's state (RED to GREEN or GREEN to RED).
|
||||
* 2. If the light just turned GREEN, call {@link #processGreenLight(TrafficLight, Intersection)}
|
||||
* to process any waiting vehicles.
|
||||
* 3. Schedules the *next* state change for this light based on its
|
||||
* green/red time duration.
|
||||
*
|
||||
* @param event The light change event.
|
||||
*/
|
||||
private void handleTrafficLightChange(Event event) {
|
||||
TrafficLight light = (TrafficLight) event.getData();
|
||||
String intersectionId = event.getLocation();
|
||||
|
||||
// Toggle state
|
||||
TrafficLightState newState = (light.getState() == TrafficLightState.RED)
|
||||
? TrafficLightState.GREEN
|
||||
: TrafficLightState.RED;
|
||||
|
||||
light.changeState(newState);
|
||||
|
||||
System.out.printf("[t=%.2f] Traffic light %s changed to %s%n",
|
||||
currentTime, light.getId(), newState);
|
||||
|
||||
// If changed to GREEN, process waiting vehicles
|
||||
if (newState == TrafficLightState.GREEN) {
|
||||
Intersection intersection = intersections.get(intersectionId);
|
||||
if (intersection != null) {
|
||||
processGreenLight(light, intersection);
|
||||
}
|
||||
}
|
||||
|
||||
// Schedule the *next* state change for this same light
|
||||
double nextChangeDelay = (newState == TrafficLightState.GREEN)
|
||||
? light.getGreenTime()
|
||||
: light.getRedTime();
|
||||
|
||||
scheduleTrafficLightChange(light, intersectionId, nextChangeDelay);
|
||||
}
|
||||
|
||||
/**
|
||||
* Processes vehicles when a light turns green.
|
||||
* It loops as long as the light is green and there are vehicles in the queue,
|
||||
* dequeuing one vehicle at a time and scheduling its crossing.
|
||||
* * *Note*: This is a simplified model. A real simulation would
|
||||
* account for the *time* it takes each vehicle to cross, processing
|
||||
* one vehicle every {@code crossingTime} seconds. This implementation
|
||||
* processes the entire queue "instantaneously" at the moment
|
||||
* the light turns green.
|
||||
*
|
||||
* @param light The {@link TrafficLight} that just turned green.
|
||||
* @param intersection The {@link Intersection} where the light is.
|
||||
*/
|
||||
private void processGreenLight(TrafficLight light, Intersection intersection) {
|
||||
// While the light is green and vehicles are waiting...
|
||||
while (light.getState() == TrafficLightState.GREEN && light.getQueueSize() > 0) {
|
||||
Vehicle vehicle = light.removeVehicle();
|
||||
if (vehicle != null) {
|
||||
// Dequeue one vehicle and schedule its crossing
|
||||
scheduleCrossing(vehicle, intersection);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Handles {@link EventType#STATISTICS_UPDATE}.
|
||||
* Calls the {@link StatisticsCollector} to print the current
|
||||
* state of the simulation (queue sizes, averages, etc.).
|
||||
*/
|
||||
private void handleStatisticsUpdate() {
|
||||
System.out.printf("\n=== Statistics at t=%.2f ===%n", currentTime);
|
||||
statisticsCollector.printCurrentStatistics(intersections, currentTime);
|
||||
System.out.println();
|
||||
}
|
||||
|
||||
/**
|
||||
* Utility method to get the configured crossing time for a given {@link VehicleType}.
|
||||
*
|
||||
* @param type The type of vehicle.
|
||||
* @return The crossing time in seconds.
|
||||
*/
|
||||
private double getCrossingTime(VehicleType type) {
|
||||
return switch (type) {
|
||||
case BIKE -> config.getBikeVehicleCrossingTime();
|
||||
case LIGHT -> config.getLightVehicleCrossingTime();
|
||||
case HEAVY -> config.getHeavyVehicleCrossingTime();
|
||||
default -> 2.0;
|
||||
}; // Default fallback
|
||||
}
|
||||
|
||||
/**
|
||||
* Prints the final summary of statistics at the end of the simulation.
|
||||
*/
|
||||
private void printFinalStatistics() {
|
||||
System.out.println("\n" + "=".repeat(60));
|
||||
System.out.println("FINAL SIMULATION STATISTICS");
|
||||
System.out.println("=".repeat(60));
|
||||
|
||||
statisticsCollector.printFinalStatistics(intersections, currentTime);
|
||||
|
||||
System.out.println("=".repeat(60));
|
||||
}
|
||||
|
||||
// --- Public Getters ---
|
||||
|
||||
/**
|
||||
* Gets the current simulation time.
|
||||
* @return The time in virtual seconds.
|
||||
*/
|
||||
public double getCurrentTime() {
|
||||
return currentTime;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets a map of all intersections in the simulation.
|
||||
* Returns a copy to prevent external modification.
|
||||
* @return A {@link Map} of intersection IDs to {@link Intersection} objects.
|
||||
*/
|
||||
public Map<String, Intersection> getIntersections() {
|
||||
return new HashMap<>(intersections);
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the statistics collector instance.
|
||||
* @return The {@link StatisticsCollector}.
|
||||
*/
|
||||
public StatisticsCollector getStatisticsCollector() {
|
||||
return statisticsCollector;
|
||||
}
|
||||
}
|
||||
@@ -3,17 +3,52 @@ package sd.model;
|
||||
import java.io.Serializable;
|
||||
|
||||
/**
|
||||
* Represents an event in the discrete event simulation.
|
||||
* Events are ordered by timestamp for sequential processing.
|
||||
* Represents a single event in the discrete event simulation.
|
||||
* * An Event is the fundamental unit of action in the simulation. It contains:
|
||||
* - A {@code timestamp} (when the event should occur).
|
||||
* - A {@link EventType} (what kind of event it is).
|
||||
* - Associated {@code data} (e.g., the {@link Vehicle} or {@link TrafficLight} involved).
|
||||
* - An optional {@code location} (e.g., the ID of the {@link Intersection}).
|
||||
* * Events are {@link Comparable}, allowing them to be sorted in a
|
||||
* {@link java.util.PriorityQueue}. The primary sorting key is the
|
||||
* {@code timestamp}. If timestamps are equal, {@code EventType} is used
|
||||
* as a tie-breaker to ensure a consistent, deterministic order.
|
||||
* * Implements {@link Serializable} so events could (in theory) be sent
|
||||
* across a network in a distributed simulation.
|
||||
*/
|
||||
public class Event implements Comparable<Event>, Serializable {
|
||||
private static final long serialVersionUID = 1L;
|
||||
|
||||
private final double timestamp; // Time when the event occurs
|
||||
private final EventType type;
|
||||
private final Object data; // Data associated with the event (e.g., Vehicle, traffic light id, etc.)
|
||||
private final String location; // Intersection or location where the event occurs
|
||||
/**
|
||||
* The simulation time (in seconds) when this event is scheduled to occur.
|
||||
*/
|
||||
private final double timestamp;
|
||||
|
||||
/**
|
||||
* The type of event (e.g., VEHICLE_ARRIVAL, TRAFFIC_LIGHT_CHANGE).
|
||||
*/
|
||||
private final EventType type;
|
||||
|
||||
/**
|
||||
* The data payload associated with this event.
|
||||
* This could be a {@link Vehicle}, {@link TrafficLight}, or null.
|
||||
*/
|
||||
private final Object data;
|
||||
|
||||
/**
|
||||
* The ID of the location where the event occurs (e.g., "Cr1").
|
||||
* Can be null if the event is not location-specific (like VEHICLE_GENERATION).
|
||||
*/
|
||||
private final String location;
|
||||
|
||||
/**
|
||||
* Constructs a new Event.
|
||||
*
|
||||
* @param timestamp The simulation time when the event occurs.
|
||||
* @param type The {@link EventType} of the event.
|
||||
* @param data The associated data (e.g., a Vehicle object).
|
||||
* @param location The ID of the location (e.g., an Intersection ID).
|
||||
*/
|
||||
public Event(double timestamp, EventType type, Object data, String location) {
|
||||
this.timestamp = timestamp;
|
||||
this.type = type;
|
||||
@@ -21,38 +56,73 @@ public class Event implements Comparable<Event>, Serializable {
|
||||
this.location = location;
|
||||
}
|
||||
|
||||
/**
|
||||
* Convenience constructor for an Event without a specific location.
|
||||
*
|
||||
* @param timestamp The simulation time when the event occurs.
|
||||
* @param type The {@link EventType} of the event.
|
||||
* @param data The associated data (e.g., a Vehicle object).
|
||||
*/
|
||||
public Event(double timestamp, EventType type, Object data) {
|
||||
this(timestamp, type, data, null);
|
||||
}
|
||||
|
||||
/**
|
||||
* Compares this event to another event for ordering.
|
||||
* * Events are ordered primarily by {@link #timestamp} (ascending).
|
||||
* If timestamps are identical, they are ordered by {@link #type} (alphabetical)
|
||||
* to provide a stable, deterministic tie-breaking mechanism.
|
||||
*
|
||||
* @param other The other Event to compare against.
|
||||
* @return A negative integer if this event comes before {@code other},
|
||||
* zero if they are "equal" in sorting (though this is rare),
|
||||
* or a positive integer if this event comes after {@code other}.
|
||||
*/
|
||||
@Override
|
||||
public int compareTo(Event other) {
|
||||
// Sort by timestamp (earlier events have priority)
|
||||
// Primary sort: timestamp (earlier events come first)
|
||||
int cmp = Double.compare(this.timestamp, other.timestamp);
|
||||
if (cmp == 0) {
|
||||
// If timestamps are equal, sort by event type
|
||||
// Tie-breaker: event type (ensures deterministic order)
|
||||
return this.type.compareTo(other.type);
|
||||
}
|
||||
return cmp;
|
||||
}
|
||||
|
||||
// Getters
|
||||
// --- Getters ---
|
||||
|
||||
/**
|
||||
* @return The simulation time when the event occurs.
|
||||
*/
|
||||
public double getTimestamp() {
|
||||
return timestamp;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return The {@link EventType} of the event.
|
||||
*/
|
||||
public EventType getType() {
|
||||
return type;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return The data payload (e.g., {@link Vehicle}, {@link TrafficLight}).
|
||||
* The caller must cast this to the expected type.
|
||||
*/
|
||||
public Object getData() {
|
||||
return data;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return The location ID (e.g., "Cr1"), or null if not applicable.
|
||||
*/
|
||||
public String getLocation() {
|
||||
return location;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return A string representation of the event for logging.
|
||||
*/
|
||||
@Override
|
||||
public String toString() {
|
||||
return String.format("Event{t=%.2f, type=%s, loc=%s}",
|
||||
|
||||
@@ -1,13 +1,45 @@
|
||||
package sd.model;
|
||||
|
||||
/**
|
||||
* Enumeration representing event types in the simulation.
|
||||
* Enumeration representing all possible event types in the discrete event simulation.
|
||||
* These types are used by the {@link sd.engine.SimulationEngine} to determine
|
||||
* how to process a given {@link Event}.
|
||||
*/
|
||||
public enum EventType {
|
||||
VEHICLE_ARRIVAL, // Vehicle arrives at an intersection
|
||||
TRAFFIC_LIGHT_CHANGE, // Traffic light changes state (green/red)
|
||||
CROSSING_START, // Vehicle starts crossing the intersection
|
||||
CROSSING_END, // Vehicle finishes crossing
|
||||
VEHICLE_GENERATION, // New vehicle is generated in the system
|
||||
STATISTICS_UPDATE // Time to send statistics to dashboard
|
||||
|
||||
/**
|
||||
* Fired when a {@link Vehicle} arrives at an {@link Intersection}.
|
||||
* Data: {@link Vehicle}, Location: Intersection ID
|
||||
*/
|
||||
VEHICLE_ARRIVAL,
|
||||
|
||||
/**
|
||||
* Fired when a {@link TrafficLight} is scheduled to change its state.
|
||||
* Data: {@link TrafficLight}, Location: Intersection ID
|
||||
*/
|
||||
TRAFFIC_LIGHT_CHANGE,
|
||||
|
||||
/**
|
||||
* Fired when a {@link Vehicle} begins to cross an {@link Intersection}.
|
||||
* Data: {@link Vehicle}, Location: Intersection ID
|
||||
*/
|
||||
CROSSING_START,
|
||||
|
||||
/**
|
||||
* Fired when a {@link Vehicle} finishes crossing an {@link Intersection}.
|
||||
* Data: {@link Vehicle}, Location: Intersection ID
|
||||
*/
|
||||
CROSSING_END,
|
||||
|
||||
/**
|
||||
* Fired when a new {@link Vehicle} should be created and added to the system.
|
||||
* Data: null, Location: null
|
||||
*/
|
||||
VEHICLE_GENERATION,
|
||||
|
||||
/**
|
||||
* Fired periodically to trigger the printing or sending of simulation statistics.
|
||||
* Data: null, Location: null
|
||||
*/
|
||||
STATISTICS_UPDATE
|
||||
}
|
||||
255
main/src/main/java/sd/model/Intersection.java
Normal file
255
main/src/main/java/sd/model/Intersection.java
Normal file
@@ -0,0 +1,255 @@
|
||||
package sd.model;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
|
||||
/**
|
||||
* Represents an intersection in the traffic simulation.
|
||||
* * An Intersection acts as a central hub. It does not control logic itself,
|
||||
* but it *owns* and *manages* a set of {@link TrafficLight} objects.
|
||||
* * Its primary responsibilities are:
|
||||
* 1. Holding a {@link TrafficLight} for each direction ("North", "East", etc.).
|
||||
* 2. Maintaining a {@code routing} table that maps a vehicle's *next*
|
||||
* destination (e.g., "Cr3") to a specific *direction* at *this*
|
||||
* intersection (e.g., "East").
|
||||
* 3. Receiving incoming vehicles and placing them in the correct
|
||||
* traffic light's queue based on the routing table.
|
||||
* 4. Tracking aggregate statistics for all traffic passing through it.
|
||||
*/
|
||||
public class Intersection {
|
||||
|
||||
// --- Identity and configuration ---
|
||||
|
||||
/**
|
||||
* Unique identifier for the intersection (e.g., "Cr1", "Cr2").
|
||||
*/
|
||||
private final String id;
|
||||
|
||||
/**
|
||||
* A map holding all traffic lights managed by this intersection.
|
||||
* Key: Direction (String, e.g., "North", "East").
|
||||
* Value: The {@link TrafficLight} object for that direction.
|
||||
*/
|
||||
private final Map<String, TrafficLight> trafficLights;
|
||||
|
||||
/**
|
||||
* The routing table for this intersection.
|
||||
* Key: The *next* destination ID (String, e.g., "Cr3", "S" for exit).
|
||||
* Value: The *direction* (String, e.g., "East") a vehicle must take
|
||||
* at *this* intersection to reach that destination.
|
||||
*/
|
||||
private final Map<String, String> routing;
|
||||
|
||||
// --- Statistics ---
|
||||
|
||||
/**
|
||||
* Total number of vehicles that have been received by this intersection.
|
||||
*/
|
||||
private int totalVehiclesReceived;
|
||||
|
||||
/**
|
||||
* Total number of vehicles that have successfully passed through (sent from) this intersection.
|
||||
*/
|
||||
private int totalVehiclesSent;
|
||||
|
||||
/**
|
||||
* A running average of the waiting time for vehicles at this intersection.
|
||||
* Note: This calculation might be simplified.
|
||||
*/
|
||||
private double averageWaitingTime;
|
||||
|
||||
/**
|
||||
* Constructs a new Intersection with a given ID.
|
||||
* Initializes empty maps for traffic lights and routing.
|
||||
*
|
||||
* @param id The unique identifier for this intersection (e.g., "Cr1").
|
||||
*/
|
||||
public Intersection(String id) {
|
||||
this.id = id;
|
||||
this.trafficLights = new HashMap<>();
|
||||
this.routing = new HashMap<>();
|
||||
this.totalVehiclesReceived = 0;
|
||||
this.totalVehiclesSent = 0;
|
||||
this.averageWaitingTime = 0.0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Registers a new {@link TrafficLight} with this intersection.
|
||||
* The light is mapped by its direction.
|
||||
*
|
||||
* @param trafficLight The {@link TrafficLight} object to add.
|
||||
*/
|
||||
public void addTrafficLight(TrafficLight trafficLight) {
|
||||
trafficLights.put(trafficLight.getDirection(), trafficLight);
|
||||
}
|
||||
|
||||
/**
|
||||
* Defines a routing rule for this intersection.
|
||||
* * This method builds the routing table. For example, calling
|
||||
* {@code configureRoute("Cr3", "East")} means "Any vehicle
|
||||
* arriving here whose next destination is 'Cr3' should be sent to
|
||||
* the 'East' traffic light queue."
|
||||
*
|
||||
* @param nextDestination The ID of the *next* intersection or exit (e.g., "Cr3", "S").
|
||||
* @param direction The direction (and thus, the traffic light)
|
||||
* at *this* intersection to use (e.g., "East").
|
||||
*/
|
||||
public void configureRoute(String nextDestination, String direction) {
|
||||
routing.put(nextDestination, direction);
|
||||
}
|
||||
|
||||
/**
|
||||
* Accepts an incoming vehicle and places it in the correct queue.
|
||||
* * This method:
|
||||
* 1. Increments the {@link #totalVehiclesReceived} counter.
|
||||
* 2. Advances the vehicle's route (since it just arrived here)
|
||||
* 3. Gets the vehicle's *next* destination (from {@link Vehicle#getCurrentDestination()}).
|
||||
* 4. Uses the {@link #routing} map to find the correct *direction* for that destination.
|
||||
* 5. Adds the vehicle to the queue of the {@link TrafficLight} for that direction.
|
||||
*
|
||||
* @param vehicle The {@link Vehicle} arriving at the intersection.
|
||||
*/
|
||||
public void receiveVehicle(Vehicle vehicle) {
|
||||
totalVehiclesReceived++;
|
||||
|
||||
// Advance route since vehicle just arrived at this intersection
|
||||
vehicle.advanceRoute();
|
||||
|
||||
String nextDestination = vehicle.getCurrentDestination();
|
||||
|
||||
// Check if vehicle reached final destination
|
||||
if (nextDestination == null) {
|
||||
System.out.printf("[%s] Vehicle %s reached final destination%n",
|
||||
this.id, vehicle.getId());
|
||||
return;
|
||||
}
|
||||
|
||||
String direction = routing.get(nextDestination);
|
||||
|
||||
if (direction != null && trafficLights.containsKey(direction)) {
|
||||
// Found a valid route and light, add vehicle to the queue
|
||||
trafficLights.get(direction).addVehicle(vehicle);
|
||||
} else {
|
||||
// Routing error: No rule for this destination or no light for that direction
|
||||
System.err.printf(
|
||||
"Routing error at %s: could not place vehicle %s (destination: %s, found direction: %s)%n",
|
||||
this.id, vehicle.getId(), nextDestination, direction
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the traffic light controlling the given direction.
|
||||
*
|
||||
* @param direction The direction (e.g., "North").
|
||||
* @return The {@link TrafficLight} object, or null if no light exists
|
||||
* for that direction.
|
||||
*/
|
||||
public TrafficLight getTrafficLight(String direction) {
|
||||
return trafficLights.get(direction);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a list of all traffic lights managed by this intersection.
|
||||
*
|
||||
* @return A new {@link List} containing all {@link TrafficLight} objects.
|
||||
*/
|
||||
public List<TrafficLight> getTrafficLights() {
|
||||
// Return a copy to prevent external modification of the internal map's values
|
||||
return new ArrayList<>(trafficLights.values());
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the total number of vehicles currently queued across *all*
|
||||
* traffic lights at this intersection.
|
||||
*
|
||||
* @return The sum of all queue sizes.
|
||||
*/
|
||||
public int getTotalQueueSize() {
|
||||
// Uses Java Stream API:
|
||||
// 1. trafficLights.values().stream() - Get a stream of TrafficLight objects
|
||||
// 2. .mapToInt(TrafficLight::getQueueSize) - Convert each light to its queue size (an int)
|
||||
// 3. .sum() - Sum all the integers
|
||||
return trafficLights.values().stream()
|
||||
.mapToInt(TrafficLight::getQueueSize)
|
||||
.sum();
|
||||
}
|
||||
|
||||
// --- Stats and getters ---
|
||||
|
||||
/**
|
||||
* @return The unique ID of this intersection.
|
||||
*/
|
||||
public String getId() {
|
||||
return id;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return The total number of vehicles that have arrived at this intersection.
|
||||
*/
|
||||
public int getTotalVehiclesReceived() {
|
||||
return totalVehiclesReceived;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return The total number of vehicles that have successfully
|
||||
* departed from this intersection.
|
||||
*/
|
||||
public int getTotalVehiclesSent() {
|
||||
return totalVehiclesSent;
|
||||
}
|
||||
|
||||
/**
|
||||
* Increments the counter for vehicles that have successfully departed.
|
||||
* This is typically called by the {@link sd.engine.SimulationEngine}
|
||||
* after a vehicle finishes crossing.
|
||||
*/
|
||||
public void incrementVehiclesSent() {
|
||||
totalVehiclesSent++;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return The running average of vehicle waiting time at this intersection.
|
||||
*/
|
||||
public double getAverageWaitingTime() {
|
||||
return averageWaitingTime;
|
||||
}
|
||||
|
||||
/**
|
||||
* Updates the running average waiting time with a new sample (a new
|
||||
* vehicle's wait time).
|
||||
* * Uses an incremental/weighted average formula:
|
||||
* NewAvg = (OldAvg * (N-1) + NewValue) / N
|
||||
* where N is the total number of vehicles sent.
|
||||
*
|
||||
* @param newTime The waiting time (in seconds) of the vehicle that just
|
||||
* departed.
|
||||
*/
|
||||
public void updateAverageWaitingTime(double newTime) {
|
||||
// Avoid division by zero if this is called before any vehicle is sent
|
||||
if (totalVehiclesSent > 0) {
|
||||
averageWaitingTime = (averageWaitingTime * (totalVehiclesSent - 1) + newTime)
|
||||
/ totalVehiclesSent;
|
||||
} else if (totalVehiclesSent == 1) {
|
||||
// This is the first vehicle
|
||||
averageWaitingTime = newTime;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @return A string summary of the intersection's current state.
|
||||
*/
|
||||
@Override
|
||||
public String toString() {
|
||||
return String.format(
|
||||
"Intersection{id='%s', lights=%d, queues=%d, received=%d, sent=%d}",
|
||||
id,
|
||||
trafficLights.size(),
|
||||
getTotalQueueSize(),
|
||||
totalVehiclesReceived,
|
||||
totalVehiclesSent
|
||||
);
|
||||
}
|
||||
}
|
||||
142
main/src/main/java/sd/model/Message.java
Normal file
142
main/src/main/java/sd/model/Message.java
Normal file
@@ -0,0 +1,142 @@
|
||||
package sd.model;
|
||||
|
||||
import java.io.Serializable;
|
||||
import java.util.UUID;
|
||||
|
||||
/**
|
||||
* Represents a message exchanged between processes in the distributed simulation.
|
||||
* Each message has a unique ID, a type, a sender, a destination, and a payload.
|
||||
* This class implements {@link Serializable} to allow transmission over the network.
|
||||
*/
|
||||
public class Message implements Serializable {
|
||||
|
||||
private static final long serialVersionUID = 1L;
|
||||
|
||||
/**
|
||||
* Unique identifier for this message.
|
||||
*/
|
||||
private final String messageId;
|
||||
|
||||
/**
|
||||
* The type of this message (e.g., VEHICLE_TRANSFER, STATS_UPDATE).
|
||||
*/
|
||||
private final MessageType type;
|
||||
|
||||
/**
|
||||
* Identifier of the process that sent this message.
|
||||
*/
|
||||
private final String senderId;
|
||||
|
||||
/**
|
||||
* Identifier of the destination process. Can be null for broadcast messages.
|
||||
*/
|
||||
private final String destinationId;
|
||||
|
||||
/**
|
||||
* The actual data being transmitted. Type depends on the message type.
|
||||
*/
|
||||
private final Object payload;
|
||||
|
||||
/**
|
||||
* Timestamp when this message was created (simulation time or real time).
|
||||
*/
|
||||
private final long timestamp;
|
||||
|
||||
/**
|
||||
* Creates a new message with all parameters.
|
||||
*
|
||||
* @param type The message type
|
||||
* @param senderId The ID of the sending process
|
||||
* @param destinationId The ID of the destination process (null for broadcast)
|
||||
* @param payload The message payload
|
||||
* @param timestamp The timestamp of message creation
|
||||
*/
|
||||
public Message(MessageType type, String senderId, String destinationId,
|
||||
Object payload, long timestamp) {
|
||||
this.messageId = UUID.randomUUID().toString();
|
||||
this.type = type;
|
||||
this.senderId = senderId;
|
||||
this.destinationId = destinationId;
|
||||
this.payload = payload;
|
||||
this.timestamp = timestamp;
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new message with current system time as timestamp.
|
||||
*
|
||||
* @param type The message type
|
||||
* @param senderId The ID of the sending process
|
||||
* @param destinationId The ID of the destination process
|
||||
* @param payload The message payload
|
||||
*/
|
||||
public Message(MessageType type, String senderId, String destinationId, Object payload) {
|
||||
this(type, senderId, destinationId, payload, System.currentTimeMillis());
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a broadcast message (no specific destination).
|
||||
*
|
||||
* @param type The message type
|
||||
* @param senderId The ID of the sending process
|
||||
* @param payload The message payload
|
||||
*/
|
||||
public Message(MessageType type, String senderId, Object payload) {
|
||||
this(type, senderId, null, payload, System.currentTimeMillis());
|
||||
}
|
||||
|
||||
//Getters
|
||||
|
||||
public String getMessageId() {
|
||||
return messageId;
|
||||
}
|
||||
|
||||
public MessageType getType() {
|
||||
return type;
|
||||
}
|
||||
|
||||
public String getSenderId() {
|
||||
return senderId;
|
||||
}
|
||||
|
||||
public String getDestinationId() {
|
||||
return destinationId;
|
||||
}
|
||||
|
||||
public Object getPayload() {
|
||||
return payload;
|
||||
}
|
||||
|
||||
public long getTimestamp() {
|
||||
return timestamp;
|
||||
}
|
||||
|
||||
/**
|
||||
* Checks if this is a broadcast message (no specific destination).
|
||||
*
|
||||
* @return true if destinationId is null, false otherwise
|
||||
*/
|
||||
public boolean isBroadcast() {
|
||||
return destinationId == null;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the payload cast to a specific type.
|
||||
* Use with caution and ensure type safety.
|
||||
*
|
||||
* @param <T> The expected payload type
|
||||
* @return The payload cast to type T
|
||||
* @throws ClassCastException if the payload is not of type T
|
||||
*/
|
||||
@SuppressWarnings("unchecked")
|
||||
public <T> T getPayloadAs(Class<T> clazz) {
|
||||
return (T) payload;
|
||||
}
|
||||
|
||||
@Override
|
||||
public String toString() {
|
||||
return String.format("Message[id=%s, type=%s, from=%s, to=%s, timestamp=%d]",
|
||||
messageId, type, senderId,
|
||||
destinationId != null ? destinationId : "BROADCAST",
|
||||
timestamp);
|
||||
}
|
||||
}
|
||||
81
main/src/main/java/sd/model/MessageType.java
Normal file
81
main/src/main/java/sd/model/MessageType.java
Normal file
@@ -0,0 +1,81 @@
|
||||
package sd.model;
|
||||
|
||||
/**
|
||||
* Enumeration representing all possible message types for distributed communication.
|
||||
* These types are used for inter-process communication between different components
|
||||
* of the distributed traffic simulation system.
|
||||
*/
|
||||
public enum MessageType {
|
||||
|
||||
/**
|
||||
* Message to transfer a vehicle between intersections or processes.
|
||||
* Payload: Vehicle object with current state
|
||||
*/
|
||||
VEHICLE_TRANSFER,
|
||||
|
||||
/**
|
||||
* Message to update statistics across the distributed system.
|
||||
* Payload: Statistics data (waiting times, queue sizes, etc.)
|
||||
*/
|
||||
STATS_UPDATE,
|
||||
|
||||
/**
|
||||
* Message to synchronize traffic light states between processes.
|
||||
* Payload: TrafficLight state and timing information
|
||||
*/
|
||||
TRAFFIC_LIGHT_SYNC,
|
||||
|
||||
/**
|
||||
* Heartbeat message to check if a process is alive.
|
||||
* Payload: Process ID and timestamp
|
||||
*/
|
||||
HEARTBEAT,
|
||||
|
||||
/**
|
||||
* Request to join the distributed simulation.
|
||||
* Payload: Process information and capabilities
|
||||
*/
|
||||
JOIN_REQUEST,
|
||||
|
||||
/**
|
||||
* Response to a join request.
|
||||
* Payload: Acceptance status and configuration
|
||||
*/
|
||||
JOIN_RESPONSE,
|
||||
|
||||
/**
|
||||
* Message to notify about a new vehicle generation.
|
||||
* Payload: Vehicle generation parameters
|
||||
*/
|
||||
VEHICLE_SPAWN,
|
||||
|
||||
/**
|
||||
* Message to request the current state of an intersection.
|
||||
* Payload: Intersection ID
|
||||
*/
|
||||
STATE_REQUEST,
|
||||
|
||||
/**
|
||||
* Response containing the current state of an intersection.
|
||||
* Payload: Complete intersection state
|
||||
*/
|
||||
STATE_RESPONSE,
|
||||
|
||||
/**
|
||||
* Message to signal shutdown of a process.
|
||||
* Payload: Process ID and reason
|
||||
*/
|
||||
SHUTDOWN,
|
||||
|
||||
/**
|
||||
* Acknowledgment message for reliable communication.
|
||||
* Payload: Message ID being acknowledged
|
||||
*/
|
||||
ACK,
|
||||
|
||||
/**
|
||||
* Error message to report problems in the distributed system.
|
||||
* Payload: Error description and context
|
||||
*/
|
||||
ERROR
|
||||
}
|
||||
315
main/src/main/java/sd/model/TrafficLight.java
Normal file
315
main/src/main/java/sd/model/TrafficLight.java
Normal file
@@ -0,0 +1,315 @@
|
||||
package sd.model;
|
||||
|
||||
import java.util.LinkedList;
|
||||
import java.util.Queue;
|
||||
import java.util.concurrent.locks.Condition;
|
||||
import java.util.concurrent.locks.Lock;
|
||||
import java.util.concurrent.locks.ReentrantLock;
|
||||
|
||||
/**
|
||||
* Represents a single traffic light controlling one direction at an intersection.
|
||||
* * Each light maintains its own queue of {@link Vehicle} objects and
|
||||
* alternates between {@link TrafficLightState#GREEN} and
|
||||
* {@link TrafficLightState#RED} states.
|
||||
* * This class is designed to be thread-safe for a potential concurrent
|
||||
* simulation (though the current engine {@link sd.engine.SimulationEngine}
|
||||
* is single-threaded). It uses a {@link ReentrantLock} to protect its
|
||||
* internal state (the queue and the light state) from simultaneous access.
|
||||
* * The {@link Condition} variables ({@code vehicleAdded}, {@code lightGreen})
|
||||
* are included for a concurrent model where:
|
||||
* - A "vehicle" thread might wait on {@code lightGreen} until the light changes.
|
||||
* - A "controller" thread might wait on {@code vehicleAdded} to know when to
|
||||
* process a queue.
|
||||
* (Note: These Conditions are *not* used by the current discrete-event engine).
|
||||
*/
|
||||
public class TrafficLight {
|
||||
|
||||
// --- Identity and configuration ---
|
||||
|
||||
/**
|
||||
* Unique identifier for the light (e.g., "Cr1-N").
|
||||
*/
|
||||
private final String id;
|
||||
|
||||
/**
|
||||
* The direction this light controls (e.g., "North", "South").
|
||||
*/
|
||||
private final String direction;
|
||||
|
||||
/**
|
||||
* The current state of the light (GREEN or RED).
|
||||
*/
|
||||
private TrafficLightState state;
|
||||
|
||||
// --- Vehicle management ---
|
||||
|
||||
/**
|
||||
* The queue of vehicles waiting at this light.
|
||||
* {@link LinkedList} is used as it's a standard {@link Queue} implementation.
|
||||
*/
|
||||
private final Queue<Vehicle> queue;
|
||||
|
||||
// --- Synchronization primitives (for thread-safety) ---
|
||||
|
||||
/**
|
||||
* A lock to protect all mutable state ({@link #queue} and {@link #state})
|
||||
* from concurrent access. Any method reading or writing these fields
|
||||
* *must* acquire this lock first.
|
||||
*/
|
||||
private final Lock lock;
|
||||
|
||||
/**
|
||||
* A condition variable for a potential concurrent model.
|
||||
* It could be used to signal threads (e.g., a controller) that
|
||||
* a new vehicle has been added to the queue.
|
||||
* (Not used in the current discrete-event engine).
|
||||
*/
|
||||
private final Condition vehicleAdded;
|
||||
|
||||
/**
|
||||
* A condition variable for a potential concurrent model.
|
||||
* It could be used to signal waiting vehicle threads that the
|
||||
* light has just turned GREEN.
|
||||
* (Not used in the current discrete-event engine).
|
||||
*/
|
||||
private final Condition lightGreen;
|
||||
|
||||
// --- Timing configuration ---
|
||||
|
||||
/**
|
||||
* The duration (in seconds) this light stays GREEN.
|
||||
*/
|
||||
private double greenTime;
|
||||
|
||||
/**
|
||||
* The duration (in seconds) this light stays RED.
|
||||
*/
|
||||
private double redTime;
|
||||
|
||||
// --- Statistics ---
|
||||
|
||||
/**
|
||||
* Counter for the total number of vehicles that have
|
||||
* been dequeued (processed) by this light.
|
||||
*/
|
||||
private int totalVehiclesProcessed;
|
||||
|
||||
/**
|
||||
* Constructs a new TrafficLight.
|
||||
*
|
||||
* @param id The unique ID (e.g., "Cr1-N").
|
||||
* @param direction The direction (e.g., "North").
|
||||
* @param greenTime The duration of the GREEN state in seconds.
|
||||
* @param redTime The duration of the RED state in seconds.
|
||||
*/
|
||||
public TrafficLight(String id, String direction, double greenTime, double redTime) {
|
||||
this.id = id;
|
||||
this.direction = direction;
|
||||
this.state = TrafficLightState.RED; // All lights start RED
|
||||
this.queue = new LinkedList<>();
|
||||
|
||||
// Initialize synchronization objects
|
||||
this.lock = new ReentrantLock();
|
||||
this.vehicleAdded = lock.newCondition();
|
||||
this.lightGreen = lock.newCondition();
|
||||
|
||||
this.greenTime = greenTime;
|
||||
this.redTime = redTime;
|
||||
this.totalVehiclesProcessed = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Adds a vehicle to the *end* of the waiting queue.
|
||||
* This method is thread-safe.
|
||||
*
|
||||
* @param vehicle The {@link Vehicle} to add.
|
||||
*/
|
||||
public void addVehicle(Vehicle vehicle) {
|
||||
lock.lock(); // Acquire the lock
|
||||
try {
|
||||
queue.offer(vehicle); // Add vehicle to queue
|
||||
vehicleAdded.signalAll(); // Signal (for concurrent models)
|
||||
} finally {
|
||||
lock.unlock(); // Always release the lock
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Removes and returns the {@link Vehicle} from the *front* of the queue.
|
||||
* * This only succeeds if:
|
||||
* 1. The light's state is {@link TrafficLightState#GREEN}.
|
||||
* 2. The queue is not empty.
|
||||
* * If these conditions are not met, it returns {@code null}.
|
||||
* This method is thread-safe.
|
||||
*
|
||||
* @return The {@link Vehicle} at the front of the queue, or {@code null}
|
||||
* if the light is RED or the queue is empty.
|
||||
*/
|
||||
public Vehicle removeVehicle() {
|
||||
lock.lock(); // Acquire the lock
|
||||
try {
|
||||
if (state == TrafficLightState.GREEN && !queue.isEmpty()) {
|
||||
Vehicle vehicle = queue.poll(); // Remove vehicle from queue
|
||||
if (vehicle != null) {
|
||||
totalVehiclesProcessed++;
|
||||
}
|
||||
return vehicle;
|
||||
}
|
||||
return null; // Light is RED or queue is empty
|
||||
} finally {
|
||||
lock.unlock(); // Always release the lock
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Changes the light’s state (e.g., RED -> GREEN).
|
||||
* If the new state is GREEN, it signals any waiting threads
|
||||
* (for a potential concurrent model).
|
||||
* This method is thread-safe.
|
||||
*
|
||||
* @param newState The {@link TrafficLightState} to set.
|
||||
*/
|
||||
public void changeState(TrafficLightState newState) {
|
||||
lock.lock(); // Acquire the lock
|
||||
try {
|
||||
this.state = newState;
|
||||
if (newState == TrafficLightState.GREEN) {
|
||||
lightGreen.signalAll(); // Signal (for concurrent models)
|
||||
}
|
||||
} finally {
|
||||
lock.unlock(); // Always release the lock
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns how many vehicles are currently in the queue.
|
||||
* This method is thread-safe.
|
||||
* * @return The size of the queue.
|
||||
*/
|
||||
public int getQueueSize() {
|
||||
lock.lock(); // Acquire the lock
|
||||
try {
|
||||
return queue.size();
|
||||
} finally {
|
||||
lock.unlock(); // Always release the lock
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Checks whether the queue is empty.
|
||||
* This method is thread-safe.
|
||||
*
|
||||
* @return {@code true} if the queue has no vehicles, {@code false} otherwise.
|
||||
*/
|
||||
public boolean isQueueEmpty() {
|
||||
lock.lock(); // Acquire the lock
|
||||
try {
|
||||
return queue.isEmpty();
|
||||
} finally {
|
||||
lock.unlock(); // Always release the lock
|
||||
}
|
||||
}
|
||||
|
||||
// --- Getters & Setters ---
|
||||
|
||||
/**
|
||||
* @return The unique ID of this light (e.g., "Cr1-N").
|
||||
*/
|
||||
public String getId() {
|
||||
return id;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return The direction this light controls (e.g., "North").
|
||||
*/
|
||||
public String getDirection() {
|
||||
return direction;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the current state of the light (GREEN or RED).
|
||||
* This method is thread-safe.
|
||||
*
|
||||
* @return The current {@link TrafficLightState}.
|
||||
*/
|
||||
public TrafficLightState getState() {
|
||||
lock.lock(); // Acquire the lock
|
||||
try {
|
||||
return state;
|
||||
} finally {
|
||||
lock.unlock(); // Always release the lock
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @return The configured GREEN light duration in seconds.
|
||||
*/
|
||||
public double getGreenTime() {
|
||||
return greenTime;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the GREEN light duration.
|
||||
* @param greenTime The new duration in seconds.
|
||||
*/
|
||||
public void setGreenTime(double greenTime) {
|
||||
this.greenTime = greenTime;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return The configured RED light duration in seconds.
|
||||
*/
|
||||
public double getRedTime() {
|
||||
return redTime;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the RED light duration.
|
||||
* @param redTime The new duration in seconds.
|
||||
*/
|
||||
public void setRedTime(double redTime) {
|
||||
this.redTime = redTime;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return The total number of vehicles processed (dequeued) by this light.
|
||||
*/
|
||||
public int getTotalVehiclesProcessed() {
|
||||
// Note: This read is not locked, assuming it's okay
|
||||
// for it to be "eventually consistent" for stats.
|
||||
// For strict accuracy, it should also be locked.
|
||||
return totalVehiclesProcessed;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return The {@link Lock} object for advanced synchronization.
|
||||
*/
|
||||
public Lock getLock() {
|
||||
return lock;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return The {@link Condition} for vehicle additions.
|
||||
*/
|
||||
public Condition getVehicleAdded() {
|
||||
return vehicleAdded;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return The {@link Condition} for the light turning green.
|
||||
*/
|
||||
public Condition getLightGreen() {
|
||||
return lightGreen;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return A string summary of the light's current state.
|
||||
*/
|
||||
@Override
|
||||
public String toString() {
|
||||
return String.format(
|
||||
"TrafficLight{id='%s', direction='%s', state=%s, queueSize=%d}",
|
||||
id, direction, getState(), getQueueSize() // Use getters for thread-safety
|
||||
);
|
||||
}
|
||||
}
|
||||
@@ -1,9 +1,17 @@
|
||||
package sd.model;
|
||||
|
||||
/**
|
||||
* Enumeration representing the state of a traffic light.
|
||||
* Enumeration representing the two possible states of a {@link TrafficLight}.
|
||||
*/
|
||||
public enum TrafficLightState {
|
||||
GREEN, // Allows passage
|
||||
RED // Blocks passage
|
||||
|
||||
/**
|
||||
* The light is GREEN, allowing vehicles to pass (be dequeued).
|
||||
*/
|
||||
GREEN,
|
||||
|
||||
/**
|
||||
* The light is RED, blocking vehicles (they remain in the queue).
|
||||
*/
|
||||
RED
|
||||
}
|
||||
218
main/src/main/java/sd/model/Vehicle.java
Normal file
218
main/src/main/java/sd/model/Vehicle.java
Normal file
@@ -0,0 +1,218 @@
|
||||
package sd.model;
|
||||
|
||||
import java.io.Serializable;
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* Represents a single vehicle moving through the simulation.
|
||||
*
|
||||
* This class is a data object that holds the state of a vehicle, including:
|
||||
* - Its unique ID, type, and entry time.
|
||||
* - Its complete, pre-determined {@code route} (a list of intersection IDs).
|
||||
* - Its current position in the route ({@code currentRouteIndex}).
|
||||
* - Metrics for total time spent waiting at red lights and time spent crossing.
|
||||
* * This object is passed around the simulation, primarily inside {@link Event}
|
||||
* payloads and stored in {@link TrafficLight} queues.
|
||||
* * Implements {@link Serializable} so it can be sent between processes
|
||||
* or nodes (e.g., over a socket in a distributed version of the simulation).
|
||||
*/
|
||||
public class Vehicle implements Serializable {
|
||||
private static final long serialVersionUID = 1L;
|
||||
|
||||
// --- Identity and configuration ---
|
||||
|
||||
/**
|
||||
* Unique identifier for the vehicle (e.g., "V1", "V2").
|
||||
*/
|
||||
private final String id;
|
||||
|
||||
/**
|
||||
* The type of vehicle (BIKE, LIGHT, HEAVY).
|
||||
*/
|
||||
private final VehicleType type;
|
||||
|
||||
/**
|
||||
* The simulation time (in seconds) when the vehicle was generated.
|
||||
*/
|
||||
private final double entryTime;
|
||||
|
||||
/**
|
||||
* The complete, ordered list of destinations (intersection IDs and the
|
||||
* final exit "S"). Example: ["Cr1", "Cr3", "S"].
|
||||
*/
|
||||
private final List<String> route;
|
||||
|
||||
/**
|
||||
* An index that tracks the vehicle's progress along its {@link #route}.
|
||||
* {@code route.get(currentRouteIndex)} is the vehicle's *current*
|
||||
* destination (i.e., the one it is traveling *towards* or *arriving at*).
|
||||
*/
|
||||
private int currentRouteIndex;
|
||||
|
||||
// --- Metrics ---
|
||||
|
||||
/**
|
||||
* The total accumulated time (in seconds) this vehicle has spent
|
||||
* waiting at red lights.
|
||||
*/
|
||||
private double totalWaitingTime;
|
||||
|
||||
/**
|
||||
* The total accumulated time (in seconds) this vehicle has spent
|
||||
* actively crossing intersections.
|
||||
*/
|
||||
private double totalCrossingTime;
|
||||
|
||||
/**
|
||||
* Constructs a new Vehicle.
|
||||
*
|
||||
* @param id The unique ID for the vehicle.
|
||||
* @param type The {@link VehicleType}.
|
||||
* @param entryTime The simulation time when the vehicle is created.
|
||||
* @param route The complete list of destination IDs (e.t., ["Cr1", "Cr2", "S"]).
|
||||
*/
|
||||
public Vehicle(String id, VehicleType type, double entryTime, List<String> route) {
|
||||
this.id = id;
|
||||
this.type = type;
|
||||
this.entryTime = entryTime;
|
||||
// Create a copy of the route list to ensure immutability
|
||||
this.route = new ArrayList<>(route);
|
||||
this.currentRouteIndex = 0; // Starts at the first destination
|
||||
this.totalWaitingTime = 0.0;
|
||||
this.totalCrossingTime = 0.0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Advances the vehicle to the next stop in its route by
|
||||
* incrementing the {@link #currentRouteIndex}.
|
||||
* * This is typically called *after* a vehicle *arrives* at an intersection,
|
||||
* to set its *next* destination before it is queued.
|
||||
*
|
||||
* @return {@code true} if there is still at least one more destination
|
||||
* in the route, {@code false} if the vehicle has passed its
|
||||
* final destination.
|
||||
*/
|
||||
public boolean advanceRoute() {
|
||||
currentRouteIndex++;
|
||||
return currentRouteIndex < route.size();
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the current destination (the next intersection or exit) that
|
||||
* the vehicle is heading towards.
|
||||
*
|
||||
* @return The ID of the current destination (e.g., "Cr1"), or
|
||||
* {@code null} if the route is complete.
|
||||
*/
|
||||
public String getCurrentDestination() {
|
||||
return (currentRouteIndex < route.size()) ? route.get(currentRouteIndex) : null;
|
||||
}
|
||||
|
||||
/**
|
||||
* Checks if the vehicle has completed its entire route.
|
||||
*
|
||||
* @return {@code true} if the route index is at or past the end
|
||||
* of the route list, {@code false} otherwise.
|
||||
*/
|
||||
public boolean hasReachedEnd() {
|
||||
return currentRouteIndex >= route.size();
|
||||
}
|
||||
|
||||
// --- Getters and metrics management ---
|
||||
|
||||
/**
|
||||
* @return The vehicle's unique ID.
|
||||
*/
|
||||
public String getId() {
|
||||
return id;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return The vehicle's {@link VehicleType}.
|
||||
*/
|
||||
public VehicleType getType() {
|
||||
return type;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return The simulation time when the vehicle entered the system.
|
||||
*/
|
||||
public double getEntryTime() {
|
||||
return entryTime;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return A *copy* of the vehicle's complete route.
|
||||
*/
|
||||
public List<String> getRoute() {
|
||||
// Return a copy to prevent external modification
|
||||
return new ArrayList<>(route);
|
||||
}
|
||||
|
||||
/**
|
||||
* @return The current index pointing to the vehicle's destination in its route list.
|
||||
*/
|
||||
public int getCurrentRouteIndex() {
|
||||
return currentRouteIndex;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return The total accumulated waiting time in seconds.
|
||||
*/
|
||||
public double getTotalWaitingTime() {
|
||||
return totalWaitingTime;
|
||||
}
|
||||
|
||||
/**
|
||||
* Adds a duration to the vehicle's total waiting time.
|
||||
* This is called by the simulation engine when a vehicle
|
||||
* starts crossing an intersection.
|
||||
*
|
||||
* @param time The duration (in seconds) to add.
|
||||
*/
|
||||
public void addWaitingTime(double time) {
|
||||
totalWaitingTime += time;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return The total accumulated crossing time in seconds.
|
||||
*/
|
||||
public double getTotalCrossingTime() {
|
||||
return totalCrossingTime;
|
||||
}
|
||||
|
||||
/**
|
||||
* Adds a duration to the vehicle's total crossing time.
|
||||
* This is called by the simulation engine when a vehicle
|
||||
* finishes crossing an intersection.
|
||||
*
|
||||
* @param time The duration (in seconds) to add.
|
||||
*/
|
||||
public void addCrossingTime(double time) {
|
||||
totalCrossingTime += time;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the vehicle's total time spent in the system so far.
|
||||
* This is a "live" calculation.
|
||||
*
|
||||
* @param currentTime The current simulation time.
|
||||
* @return The total elapsed time (in seconds) since the vehicle
|
||||
* was generated ({@code currentTime - entryTime}).
|
||||
*/
|
||||
public double getTotalTravelTime(double currentTime) {
|
||||
return currentTime - entryTime;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return A string summary of the vehicle's current state.
|
||||
*/
|
||||
@Override
|
||||
public String toString() {
|
||||
return String.format(
|
||||
"Vehicle{id='%s', type=%s, next='%s', route=%s}",
|
||||
id, type, getCurrentDestination(), route
|
||||
);
|
||||
}
|
||||
}
|
||||
@@ -1,10 +1,27 @@
|
||||
package sd.model;
|
||||
|
||||
/**
|
||||
* Enumeration representing vehicle types in the simulation.
|
||||
* Enumeration representing the different types of vehicles in the simulation.
|
||||
* Each type can have different properties, such as crossing time
|
||||
* and generation probability, defined in {@link sd.config.SimulationConfig}.
|
||||
*/
|
||||
public enum VehicleType {
|
||||
BIKE, // Motorcycle
|
||||
LIGHT, // Light vehicle (car)
|
||||
HEAVY // Heavy vehicle (truck, bus)
|
||||
|
||||
/**
|
||||
* A bike or motorcycle.
|
||||
* Typically has a short crossing time.
|
||||
*/
|
||||
BIKE,
|
||||
|
||||
/**
|
||||
* A standard light vehicle, such as a car.
|
||||
* This is usually the most common type.
|
||||
*/
|
||||
LIGHT,
|
||||
|
||||
/**
|
||||
* A heavy vehicle, such as a truck or bus.
|
||||
* Typically has a long crossing time.
|
||||
*/
|
||||
HEAVY
|
||||
}
|
||||
41
main/src/main/java/sd/protocol/MessageProtocol.java
Normal file
41
main/src/main/java/sd/protocol/MessageProtocol.java
Normal file
@@ -0,0 +1,41 @@
|
||||
package sd.protocol;
|
||||
|
||||
import java.io.Serializable;
|
||||
import sd.model.MessageType; // Assuming MessageType is in sd.model or sd.protocol
|
||||
|
||||
/**
|
||||
* Interface defining the contract for all messages exchanged in the simulator.
|
||||
* Ensures that any message can be identified and routed.
|
||||
* * This interface extends Serializable to allow objects that implement it
|
||||
* to be sent over Sockets (ObjectOutputStream).
|
||||
*
|
||||
*/
|
||||
public interface MessageProtocol extends Serializable {
|
||||
|
||||
/**
|
||||
* Returns the type of the message, indicating its purpose.
|
||||
* @return The MessageType (e.g., VEHICLE_TRANSFER, STATS_UPDATE).
|
||||
*/
|
||||
MessageType getType();
|
||||
|
||||
/**
|
||||
* Returns the data object (payload) that this message carries.
|
||||
* The type of object will depend on the MessageType.
|
||||
* * - If getType() == VEHICLE_TRANSFER, the payload will be a {@link sd.model.Vehicle} object.
|
||||
* - If getType() == STATS_UPDATE, the payload will be a statistics object.
|
||||
* * @return The data object (payload), which must also be Serializable.
|
||||
*/
|
||||
Object getPayload();
|
||||
|
||||
/**
|
||||
* Returns the ID of the node (Process) that sent this message.
|
||||
* @return String (e.g., "Cr1", "Cr5", "S").
|
||||
*/
|
||||
String getSourceNode();
|
||||
|
||||
/**
|
||||
* Returns the ID of the destination node (Process) for this message.
|
||||
* @return String (e.g., "Cr2", "DashboardServer").
|
||||
*/
|
||||
String getDestinationNode();
|
||||
}
|
||||
183
main/src/main/java/sd/protocol/SocketConnection.java
Normal file
183
main/src/main/java/sd/protocol/SocketConnection.java
Normal file
@@ -0,0 +1,183 @@
|
||||
package sd.protocol;
|
||||
|
||||
import java.io.Closeable;
|
||||
import java.io.IOException;
|
||||
import java.io.ObjectInputStream;
|
||||
import java.io.ObjectOutputStream;
|
||||
import java.net.ConnectException;
|
||||
import java.net.Socket;
|
||||
import java.net.SocketTimeoutException;
|
||||
import java.net.UnknownHostException;
|
||||
import java.util.concurrent.TimeUnit;
|
||||
|
||||
/**
|
||||
* Wrapper class that simplifies communication via Sockets.
|
||||
* Includes connection retry logic for robustness.
|
||||
*/
|
||||
public class SocketConnection implements Closeable {
|
||||
|
||||
private final Socket socket;
|
||||
private final ObjectOutputStream outputStream;
|
||||
private final ObjectInputStream inputStream;
|
||||
|
||||
// --- Configuration for Retry Logic ---
|
||||
/** Maximum number of connection attempts. */
|
||||
private static final int MAX_RETRIES = 5;
|
||||
/** Delay between retry attempts in milliseconds. */
|
||||
private static final long RETRY_DELAY_MS = 1000;
|
||||
|
||||
/**
|
||||
* Constructor for the "Client" (who initiates the connection).
|
||||
* Tries to connect to a process that is already listening (Server).
|
||||
* Includes retry logic in case of initial connection failure.
|
||||
*
|
||||
* @param host The host address (e.g., "localhost" from your simulation.properties)
|
||||
* @param port The port (e.g., 8001 from your simulation.properties)
|
||||
* @throws IOException If connection fails after all retries.
|
||||
* @throws UnknownHostException If the host is not found (this error usually doesn't need retry).
|
||||
* @throws InterruptedException If the thread is interrupted while waiting between retries.
|
||||
*/
|
||||
public SocketConnection(String host, int port) throws IOException, UnknownHostException, InterruptedException {
|
||||
Socket tempSocket = null;
|
||||
IOException lastException = null;
|
||||
|
||||
System.out.printf("[SocketConnection] Attempting to connect to %s:%d...%n", host, port);
|
||||
|
||||
// --- Retry Loop ---
|
||||
for (int attempt = 1; attempt <= MAX_RETRIES; attempt++) {
|
||||
try {
|
||||
// Try to establish the connection
|
||||
tempSocket = new Socket(host, port);
|
||||
|
||||
// If successful, break out of the retry loop
|
||||
System.out.printf("[SocketConnection] Connected successfully on attempt %d.%n", attempt);
|
||||
lastException = null; // Clear last error on success
|
||||
break;
|
||||
|
||||
} catch (ConnectException | SocketTimeoutException e) {
|
||||
// These are common errors indicating the server might not be ready.
|
||||
lastException = e;
|
||||
System.out.printf("[SocketConnection] Attempt %d/%d failed: %s. Retrying in %d ms...%n",
|
||||
attempt, MAX_RETRIES, e.getMessage(), RETRY_DELAY_MS);
|
||||
|
||||
if (attempt < MAX_RETRIES) {
|
||||
// Wait before the next attempt
|
||||
TimeUnit.MILLISECONDS.sleep(RETRY_DELAY_MS);
|
||||
}
|
||||
} catch (IOException e) {
|
||||
// Other IOExceptions might be more permanent, but we retry anyway.
|
||||
lastException = e;
|
||||
System.out.printf("[SocketConnection] Attempt %d/%d failed with IOException: %s. Retrying in %d ms...%n",
|
||||
attempt, MAX_RETRIES, e.getMessage(), RETRY_DELAY_MS);
|
||||
if (attempt < MAX_RETRIES) {
|
||||
TimeUnit.MILLISECONDS.sleep(RETRY_DELAY_MS);
|
||||
}
|
||||
}
|
||||
} // --- End of Retry Loop ---
|
||||
|
||||
// If after all retries tempSocket is still null, it means connection failed permanently.
|
||||
if (tempSocket == null) {
|
||||
System.err.printf("[SocketConnection] Failed to connect to %s:%d after %d attempts.%n", host, port, MAX_RETRIES);
|
||||
if (lastException != null) {
|
||||
throw lastException; // Throw the last exception encountered
|
||||
} else {
|
||||
// Should not happen if loop ran, but as a fallback
|
||||
throw new IOException("Failed to connect after " + MAX_RETRIES + " attempts, reason unknown.");
|
||||
}
|
||||
}
|
||||
|
||||
// If connection was successful, assign to final variable and create streams
|
||||
this.socket = tempSocket;
|
||||
try {
|
||||
// IMPORTANT: The order is crucial. OutputStream first.
|
||||
this.outputStream = new ObjectOutputStream(socket.getOutputStream());
|
||||
this.inputStream = new ObjectInputStream(socket.getInputStream());
|
||||
} catch (IOException e) {
|
||||
// If stream creation fails even after successful socket connection, clean up.
|
||||
System.err.println("[SocketConnection] Failed to create streams after connection: " + e.getMessage());
|
||||
try { socket.close(); } catch (IOException closeEx) { /* ignore */ }
|
||||
throw e; // Re-throw the stream creation exception
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Constructor for the "Server" (who accepts the connection).
|
||||
* Receives a Socket that has already been accepted by a ServerSocket.
|
||||
* No retry logic needed here as the connection is already established.
|
||||
*
|
||||
* @param acceptedSocket The Socket returned by serverSocket.accept().
|
||||
* @throws IOException If stream creation fails.
|
||||
*/
|
||||
public SocketConnection(Socket acceptedSocket) throws IOException {
|
||||
this.socket = acceptedSocket;
|
||||
|
||||
// IMPORTANT: The order is crucial. OutputStream first.
|
||||
this.outputStream = new ObjectOutputStream(socket.getOutputStream());
|
||||
this.inputStream = new ObjectInputStream(socket.getInputStream());
|
||||
System.out.printf("[SocketConnection] Connection accepted from %s:%d.%n",
|
||||
acceptedSocket.getInetAddress().getHostAddress(), acceptedSocket.getPort());
|
||||
}
|
||||
|
||||
/**
|
||||
* Sends (serializes) a MessageProtocol object over the socket.
|
||||
*
|
||||
* @param message The "envelope" (which contains the Vehicle) to be sent.
|
||||
* @throws IOException If writing to the stream fails or socket is not connected.
|
||||
*/
|
||||
public void sendMessage(MessageProtocol message) throws IOException {
|
||||
if (!isConnected()) {
|
||||
throw new IOException("Socket is not connected.");
|
||||
}
|
||||
synchronized (outputStream) {
|
||||
outputStream.writeObject(message);
|
||||
outputStream.flush(); // Ensures the message is sent immediately.
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Tries to read (deserialize) a MessageProtocol object from the socket.
|
||||
* This call is "blocked" until an object is received.
|
||||
*
|
||||
* @return The "envelope" (MessageProtocol) that was received.
|
||||
* @throws IOException If the connection is lost, the stream is corrupted, or socket is not connected.
|
||||
* @throws ClassNotFoundException If the received object is unknown.
|
||||
*/
|
||||
public MessageProtocol receiveMessage() throws IOException, ClassNotFoundException {
|
||||
if (!isConnected()) {
|
||||
throw new IOException("Socket is not connected.");
|
||||
}
|
||||
synchronized (inputStream) {
|
||||
return (MessageProtocol) inputStream.readObject();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Closes the socket and all streams (Input and Output).
|
||||
* It is called automatically if you use 'try-with-resources'.
|
||||
*/
|
||||
@Override
|
||||
public void close() throws IOException {
|
||||
System.out.printf("[SocketConnection] Closing connection to %s:%d.%n",
|
||||
socket != null ? socket.getInetAddress().getHostAddress() : "N/A",
|
||||
socket != null ? socket.getPort() : -1);
|
||||
try {
|
||||
if (inputStream != null) inputStream.close();
|
||||
} catch (IOException e) { /* ignore */ }
|
||||
|
||||
try {
|
||||
if (outputStream != null) outputStream.close();
|
||||
} catch (IOException e) { /* ignore */ }
|
||||
|
||||
if (socket != null && !socket.isClosed()) {
|
||||
socket.close();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @return true if the socket is still connected and not closed.
|
||||
*/
|
||||
public boolean isConnected() {
|
||||
return socket != null && socket.isConnected() && !socket.isClosed();
|
||||
}
|
||||
}
|
||||
114
main/src/main/java/sd/serialization/JsonMessageSerializer.java
Normal file
114
main/src/main/java/sd/serialization/JsonMessageSerializer.java
Normal file
@@ -0,0 +1,114 @@
|
||||
package sd.serialization;
|
||||
|
||||
import com.google.gson.Gson;
|
||||
import com.google.gson.GsonBuilder;
|
||||
import com.google.gson.JsonSyntaxException;
|
||||
|
||||
import java.nio.charset.StandardCharsets;
|
||||
|
||||
/**
|
||||
* JSON-based implementation of {@link MessageSerializer} using Google's Gson library.
|
||||
*
|
||||
* This serializer converts objects to JSON format for transmission, providing:
|
||||
* - Human-readable message format (easy debugging)
|
||||
* - Cross-platform compatibility
|
||||
* - Smaller message sizes compared to Java native serialization
|
||||
* - Better security (no code execution during deserialization)
|
||||
*
|
||||
* The serializer is configured with pretty printing disabled by default for
|
||||
* production use, but can be enabled for debugging purposes.
|
||||
*
|
||||
* Thread-safety: This class is thread-safe as Gson instances are thread-safe.
|
||||
*
|
||||
* @see MessageSerializer
|
||||
*/
|
||||
public class JsonMessageSerializer implements MessageSerializer {
|
||||
|
||||
private final Gson gson;
|
||||
private final boolean prettyPrint;
|
||||
|
||||
/**
|
||||
* Creates a new JSON serializer with default configuration (no pretty printing).
|
||||
*/
|
||||
public JsonMessageSerializer() {
|
||||
this(false);
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new JSON serializer with optional pretty printing.
|
||||
*
|
||||
* @param prettyPrint If true, JSON output will be formatted with indentation
|
||||
*/
|
||||
public JsonMessageSerializer(boolean prettyPrint) {
|
||||
this.prettyPrint = prettyPrint;
|
||||
GsonBuilder builder = new GsonBuilder();
|
||||
|
||||
if (prettyPrint) {
|
||||
builder.setPrettyPrinting();
|
||||
}
|
||||
|
||||
// Register custom type adapters here if needed
|
||||
// builder.registerTypeAdapter(Vehicle.class, new VehicleAdapter());
|
||||
|
||||
this.gson = builder.create();
|
||||
}
|
||||
|
||||
@Override
|
||||
public byte[] serialize(Object object) throws SerializationException {
|
||||
if (object == null) {
|
||||
throw new IllegalArgumentException("Cannot serialize null object");
|
||||
}
|
||||
|
||||
try {
|
||||
String json = gson.toJson(object);
|
||||
return json.getBytes(StandardCharsets.UTF_8);
|
||||
} catch (Exception e) {
|
||||
throw new SerializationException(
|
||||
"Failed to serialize object of type " + object.getClass().getName(), e);
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public <T> T deserialize(byte[] data, Class<T> clazz) throws SerializationException {
|
||||
if (data == null) {
|
||||
throw new IllegalArgumentException("Cannot deserialize null data");
|
||||
}
|
||||
if (clazz == null) {
|
||||
throw new IllegalArgumentException("Class type cannot be null");
|
||||
}
|
||||
|
||||
try {
|
||||
String json = new String(data, StandardCharsets.UTF_8);
|
||||
return gson.fromJson(json, clazz);
|
||||
} catch (JsonSyntaxException e) {
|
||||
throw new SerializationException(
|
||||
"Failed to parse JSON for type " + clazz.getName(), e);
|
||||
} catch (Exception e) {
|
||||
throw new SerializationException(
|
||||
"Failed to deserialize object of type " + clazz.getName(), e);
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public String getName() {
|
||||
return "JSON (Gson)";
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the underlying Gson instance for advanced usage.
|
||||
*
|
||||
* @return The Gson instance
|
||||
*/
|
||||
public Gson getGson() {
|
||||
return gson;
|
||||
}
|
||||
|
||||
/**
|
||||
* Checks if pretty printing is enabled.
|
||||
*
|
||||
* @return true if pretty printing is enabled
|
||||
*/
|
||||
public boolean isPrettyPrint() {
|
||||
return prettyPrint;
|
||||
}
|
||||
}
|
||||
48
main/src/main/java/sd/serialization/MessageSerializer.java
Normal file
48
main/src/main/java/sd/serialization/MessageSerializer.java
Normal file
@@ -0,0 +1,48 @@
|
||||
package sd.serialization;
|
||||
|
||||
/**
|
||||
* Interface for serializing and deserializing objects for network transmission.
|
||||
*
|
||||
* This interface provides a common abstraction for different serialization strategies
|
||||
* allowing the system to switch between implementations without changing the communication layer.
|
||||
*
|
||||
* Implementations must ensure:
|
||||
* - Thread-safety if used in concurrent contexts
|
||||
* - Proper exception handling with meaningful error messages
|
||||
* - Preservation of object state during round-trip serialization
|
||||
*
|
||||
* @see JsonMessageSerializer
|
||||
*/
|
||||
public interface MessageSerializer {
|
||||
|
||||
/**
|
||||
* Serializes an object into a byte array for transmission.
|
||||
*
|
||||
* @param object The object to serialize (must not be null)
|
||||
* @return A byte array containing the serialized representation
|
||||
* @throws SerializationException If serialization fails
|
||||
* @throws IllegalArgumentException If object is null
|
||||
*/
|
||||
byte[] serialize(Object object) throws SerializationException;
|
||||
|
||||
/**
|
||||
* Deserializes a byte array back into an object of the specified type.
|
||||
*
|
||||
* @param <T> The expected type of the deserialized object
|
||||
* @param data The byte array containing serialized data (must not be null)
|
||||
* @param clazz The class of the expected object type (must not be null)
|
||||
* @return The deserialized object
|
||||
* @throws SerializationException If deserialization fails
|
||||
* @throws IllegalArgumentException If data or clazz is null
|
||||
*/
|
||||
<T> T deserialize(byte[] data, Class<T> clazz) throws SerializationException;
|
||||
|
||||
/**
|
||||
* Gets the name of this serialization strategy (e.g., "JSON", "Java Native").
|
||||
* Useful for logging and debugging.
|
||||
*
|
||||
* @return The serializer name
|
||||
*/
|
||||
String getName();
|
||||
|
||||
}
|
||||
134
main/src/main/java/sd/serialization/SerializationExample.java
Normal file
134
main/src/main/java/sd/serialization/SerializationExample.java
Normal file
@@ -0,0 +1,134 @@
|
||||
package sd.serialization;
|
||||
|
||||
import sd.model.Message;
|
||||
import sd.model.MessageType;
|
||||
import sd.model.Vehicle;
|
||||
import sd.model.VehicleType;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* Demonstration of JSON serialization usage in the traffic simulation system.
|
||||
*
|
||||
* This class shows practical examples of how to use JSON (Gson) serialization
|
||||
* for network communication between simulation processes.
|
||||
*/
|
||||
public class SerializationExample {
|
||||
|
||||
public static void main(String[] args) {
|
||||
System.out.println("=== JSON Serialization Example ===\n");
|
||||
|
||||
// Create a sample vehicle
|
||||
List<String> route = Arrays.asList("Cr1", "Cr2", "Cr5", "S");
|
||||
Vehicle vehicle = new Vehicle("V001", VehicleType.LIGHT, 10.5, route);
|
||||
vehicle.addWaitingTime(2.3);
|
||||
vehicle.addCrossingTime(1.2);
|
||||
|
||||
// Create a message containing the vehicle
|
||||
Message message = new Message(
|
||||
MessageType.VEHICLE_TRANSFER,
|
||||
"Cr1",
|
||||
"Cr2",
|
||||
vehicle
|
||||
);
|
||||
|
||||
// ===== JSON Serialization =====
|
||||
demonstrateJsonSerialization(message);
|
||||
|
||||
// ===== Factory Usage =====
|
||||
demonstrateFactoryUsage(message);
|
||||
|
||||
// ===== Performance Test =====
|
||||
performanceTest(message);
|
||||
}
|
||||
|
||||
private static void demonstrateJsonSerialization(Message message) {
|
||||
System.out.println("--- JSON Serialization ---");
|
||||
|
||||
try {
|
||||
// Create JSON serializer with pretty printing for readability
|
||||
MessageSerializer serializer = new JsonMessageSerializer(true);
|
||||
|
||||
// Serialize to bytes
|
||||
byte[] data = serializer.serialize(message);
|
||||
|
||||
// Display the JSON
|
||||
String json = new String(data);
|
||||
System.out.println("Serialized JSON (" + data.length + " bytes):");
|
||||
System.out.println(json);
|
||||
|
||||
// Deserialize back
|
||||
Message deserialized = serializer.deserialize(data, Message.class);
|
||||
System.out.println("\nDeserialized: " + deserialized);
|
||||
System.out.println("✓ JSON serialization successful\n");
|
||||
|
||||
} catch (SerializationException e) {
|
||||
System.err.println("❌ JSON serialization failed: " + e.getMessage());
|
||||
}
|
||||
}
|
||||
|
||||
private static void demonstrateFactoryUsage(Message message) {
|
||||
System.out.println("--- Using SerializerFactory ---");
|
||||
|
||||
try {
|
||||
// Get default serializer (JSON)
|
||||
MessageSerializer serializer = SerializerFactory.createDefault();
|
||||
System.out.println("Default serializer: " + serializer.getName());
|
||||
|
||||
// Use it
|
||||
byte[] data = serializer.serialize(message);
|
||||
Message deserialized = serializer.deserialize(data, Message.class);
|
||||
|
||||
System.out.println("Message type: " + deserialized.getType());
|
||||
System.out.println("From: " + deserialized.getSenderId() +
|
||||
" → To: " + deserialized.getDestinationId());
|
||||
System.out.println("✓ Factory usage successful\n");
|
||||
|
||||
} catch (SerializationException e) {
|
||||
System.err.println("❌ Factory usage failed: " + e.getMessage());
|
||||
}
|
||||
}
|
||||
|
||||
private static void performanceTest(Message message) {
|
||||
System.out.println("--- Performance Test ---");
|
||||
|
||||
int iterations = 1000;
|
||||
|
||||
try {
|
||||
MessageSerializer compactSerializer = new JsonMessageSerializer(false);
|
||||
MessageSerializer prettySerializer = new JsonMessageSerializer(true);
|
||||
|
||||
// Warm up
|
||||
for (int i = 0; i < 100; i++) {
|
||||
compactSerializer.serialize(message);
|
||||
}
|
||||
|
||||
// Test compact JSON
|
||||
long compactStart = System.nanoTime();
|
||||
byte[] compactData = null;
|
||||
for (int i = 0; i < iterations; i++) {
|
||||
compactData = compactSerializer.serialize(message);
|
||||
}
|
||||
long compactTime = System.nanoTime() - compactStart;
|
||||
|
||||
// Test pretty JSON
|
||||
byte[] prettyData = prettySerializer.serialize(message);
|
||||
|
||||
// Results
|
||||
System.out.println("Iterations: " + iterations);
|
||||
System.out.println("\nJSON Compact:");
|
||||
System.out.println(" Size: " + compactData.length + " bytes");
|
||||
System.out.println(" Time: " + (compactTime / 1_000_000.0) + " ms total");
|
||||
System.out.println(" Avg: " + (compactTime / iterations / 1_000.0) + " μs/operation");
|
||||
|
||||
System.out.println("\nJSON Pretty-Print:");
|
||||
System.out.println(" Size: " + prettyData.length + " bytes");
|
||||
System.out.println(" Size increase: " +
|
||||
String.format("%.1f%%", ((double)prettyData.length / compactData.length - 1) * 100));
|
||||
|
||||
} catch (SerializationException e) {
|
||||
System.err.println("❌ Performance test failed: " + e.getMessage());
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,41 @@
|
||||
package sd.serialization;
|
||||
|
||||
/**
|
||||
* Exception thrown when serialization or deserialization operations fail.
|
||||
*
|
||||
* This exception wraps underlying errors (I/O exceptions, parsing errors, etc.)
|
||||
* and provides context about what went wrong during the serialization process.
|
||||
*/
|
||||
public class SerializationException extends Exception {
|
||||
|
||||
private static final long serialVersionUID = 1L; // Long(64bits) instead of int(32bits)
|
||||
|
||||
/**
|
||||
* Constructs a new serialization exception with the specified detail message.
|
||||
*
|
||||
* @param message The detail message
|
||||
*/
|
||||
public SerializationException(String message) {
|
||||
super(message);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a new serialization exception with the specified detail message
|
||||
* and cause.
|
||||
*
|
||||
* @param message The detail message
|
||||
* @param cause The cause of this exception
|
||||
*/
|
||||
public SerializationException(String message, Throwable cause) {
|
||||
super(message, cause);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a new serialization exception with the specified cause.
|
||||
*
|
||||
* @param cause The cause of this exception
|
||||
*/
|
||||
public SerializationException(Throwable cause) {
|
||||
super(cause);
|
||||
}
|
||||
}
|
||||
66
main/src/main/java/sd/serialization/SerializerFactory.java
Normal file
66
main/src/main/java/sd/serialization/SerializerFactory.java
Normal file
@@ -0,0 +1,66 @@
|
||||
package sd.serialization;
|
||||
|
||||
/**
|
||||
* Factory for creating {@link MessageSerializer} instances.
|
||||
*
|
||||
* This factory provides a centralized way to create and configure JSON serializers
|
||||
* using Gson, making it easy to configure serialization throughout the application.
|
||||
*
|
||||
* The factory can be configured via system properties for easy deployment configuration.
|
||||
*
|
||||
* Example usage:
|
||||
* <pre>
|
||||
* MessageSerializer serializer = SerializerFactory.createDefault();
|
||||
* byte[] data = serializer.serialize(myObject);
|
||||
* </pre>
|
||||
*/
|
||||
public class SerializerFactory {
|
||||
|
||||
/**
|
||||
* System property key for enabling pretty-print in JSON serialization.
|
||||
* Set to "true" for debugging, "false" for production.
|
||||
*/
|
||||
public static final String JSON_PRETTY_PRINT_PROPERTY = "sd.serialization.json.prettyPrint";
|
||||
|
||||
// Default configuration
|
||||
private static final boolean DEFAULT_JSON_PRETTY_PRINT = false;
|
||||
|
||||
/**
|
||||
* Private constructor to prevent instantiation.
|
||||
*/
|
||||
private SerializerFactory() {
|
||||
throw new UnsupportedOperationException("Factory class cannot be instantiated");
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a JSON serializer based on system configuration.
|
||||
*
|
||||
* Pretty-print is determined by checking the system property
|
||||
* {@value #JSON_PRETTY_PRINT_PROPERTY}. If not set, defaults to false.
|
||||
*
|
||||
* @return A configured JsonMessageSerializer instance
|
||||
*/
|
||||
public static MessageSerializer createDefault() {
|
||||
boolean prettyPrint = Boolean.getBoolean(JSON_PRETTY_PRINT_PROPERTY);
|
||||
return new JsonMessageSerializer(prettyPrint);
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a JSON serializer with default configuration (no pretty printing).
|
||||
*
|
||||
* @return A JsonMessageSerializer instance
|
||||
*/
|
||||
public static MessageSerializer createSerializer() {
|
||||
return createSerializer(DEFAULT_JSON_PRETTY_PRINT);
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a JSON serializer with specified pretty-print setting.
|
||||
*
|
||||
* @param prettyPrint Whether to enable pretty printing
|
||||
* @return A JsonMessageSerializer instance
|
||||
*/
|
||||
public static MessageSerializer createSerializer(boolean prettyPrint) {
|
||||
return new JsonMessageSerializer(prettyPrint);
|
||||
}
|
||||
}
|
||||
103
main/src/main/java/sd/util/RandomGenerator.java
Normal file
103
main/src/main/java/sd/util/RandomGenerator.java
Normal file
@@ -0,0 +1,103 @@
|
||||
package sd.util;
|
||||
|
||||
import java.util.Random;
|
||||
|
||||
/**
|
||||
* Utility class for generating random values used throughout the simulation.
|
||||
* * Provides static methods for:
|
||||
* - Generating exponentially distributed intervals (for Poisson processes).
|
||||
* - Generating random integers and doubles in a range.
|
||||
* - Making decisions based on probability.
|
||||
* - Choosing random elements from an array.
|
||||
* * It uses a single, static {@link Random} instance.
|
||||
*/
|
||||
public class RandomGenerator {
|
||||
|
||||
/**
|
||||
* The single, shared Random instance for the entire simulation.
|
||||
*/
|
||||
private static final Random random = new Random();
|
||||
|
||||
/**
|
||||
* Returns a random time interval that follows an exponential distribution.
|
||||
* * This is a key component for modeling a Poisson process, where the
|
||||
* *inter-arrival times* (time between events) are exponentially distributed.
|
||||
* The formula used is the inverse transform sampling method:
|
||||
* {@code Time = -ln(1 - U) / λ}
|
||||
* where U is a uniform random number [0, 1) and λ (lambda) is the
|
||||
* average arrival rate.
|
||||
*
|
||||
* @param lambda The average arrival rate (λ) (e.g., 0.5 vehicles per second).
|
||||
* @return The time interval (in seconds) until the next arrival.
|
||||
*/
|
||||
public static double generateExponentialInterval(double lambda) {
|
||||
// Math.log is the natural logarithm (ln)
|
||||
// random.nextDouble() returns a value in [0.0, 1.0)
|
||||
return Math.log(1 - random.nextDouble()) / -lambda;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a random integer between {@code min} and {@code max}, inclusive.
|
||||
*
|
||||
* @param min The minimum possible value.
|
||||
* @param max The maximum possible value.
|
||||
* @return A random integer in the range [min, max].
|
||||
*/
|
||||
public static int generateRandomInt(int min, int max) {
|
||||
// random.nextInt(N) returns a value from 0 to N-1
|
||||
// (max - min + 1) is the total number of integers in the range
|
||||
// + min offsets the range
|
||||
return random.nextInt(max - min + 1) + min;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a random double between {@code min} (inclusive) and {@code max} (exclusive).
|
||||
*
|
||||
* @param min The minimum possible value.
|
||||
* @param max The maximum possible value.
|
||||
* @return A random double in the range [min, max).
|
||||
*/
|
||||
public static double generateRandomDouble(double min, double max) {
|
||||
return min + (max - min) * random.nextDouble();
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns {@code true} with a given probability.
|
||||
* * This is useful for making weighted decisions. For example,
|
||||
* {@code occursWithProbability(0.3)} will return {@code true}
|
||||
* approximately 30% of the time.
|
||||
*
|
||||
* @param probability A value between 0.0 (never) and 1.0 (always).
|
||||
* @return {@code true} or {@code false}, based on the probability.
|
||||
*/
|
||||
public static boolean occursWithProbability(double probability) {
|
||||
return random.nextDouble() < probability;
|
||||
}
|
||||
|
||||
/**
|
||||
* Picks a random element from the given array.
|
||||
*
|
||||
* @param <T> The generic type of the array.
|
||||
* @param array The array to choose from.
|
||||
* @return A randomly selected element from the array.
|
||||
* @throws IllegalArgumentException if the array is null or empty.
|
||||
*/
|
||||
public static <T> T chooseRandom(T[] array) {
|
||||
if (array == null || array.length == 0) {
|
||||
throw new IllegalArgumentException("Array cannot be null or empty.");
|
||||
}
|
||||
return array[random.nextInt(array.length)];
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the seed of the shared random number generator.
|
||||
* This is extremely useful for debugging and testing, as it allows
|
||||
* the simulation to be run multiple times with the *exact same*
|
||||
* sequence of "random" events, making the results reproducible.
|
||||
*
|
||||
* @param seed The seed to use.
|
||||
*/
|
||||
public static void setSeed(long seed) {
|
||||
random.setSeed(seed);
|
||||
}
|
||||
}
|
||||
379
main/src/main/java/sd/util/StatisticsCollector.java
Normal file
379
main/src/main/java/sd/util/StatisticsCollector.java
Normal file
@@ -0,0 +1,379 @@
|
||||
package sd.util;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
|
||||
import sd.config.SimulationConfig;
|
||||
import sd.model.Intersection;
|
||||
import sd.model.Vehicle;
|
||||
import sd.model.VehicleType;
|
||||
|
||||
/**
|
||||
* Collects, manages, and reports statistics throughout the simulation.
|
||||
* * This class acts as the central bookkeeper for simulation metrics. It tracks:
|
||||
* - Overall system statistics (total vehicles, completion time, wait time).
|
||||
* - Per-vehicle-type statistics (counts, average wait time by type).
|
||||
* - Per-intersection statistics (arrivals, departures).
|
||||
* * It also maintains "in-flight" data, such as the arrival time of a
|
||||
* vehicle at its *current* intersection, which is necessary to
|
||||
* calculate waiting time when the vehicle later departs.
|
||||
*/
|
||||
public class StatisticsCollector {
|
||||
|
||||
// --- Vehicle tracking (for in-flight vehicles) ---
|
||||
|
||||
/**
|
||||
* Tracks the simulation time when a vehicle arrives at its *current* intersection.
|
||||
* This is used later to calculate waiting time (Depart_Time - Arrive_Time).
|
||||
* Key: Vehicle ID (String)
|
||||
* Value: Arrival Time (Double)
|
||||
*/
|
||||
private final Map<String, Double> vehicleArrivalTimes;
|
||||
|
||||
/**
|
||||
* Tracks the sequence of intersections a vehicle has visited.
|
||||
* Key: Vehicle ID (String)
|
||||
* Value: List of Intersection IDs (String)
|
||||
*/
|
||||
private final Map<String, List<String>> vehicleIntersectionHistory;
|
||||
|
||||
// --- Overall system statistics ---
|
||||
|
||||
/** Total number of vehicles created by the {@link VehicleGenerator}. */
|
||||
private int totalVehiclesGenerated;
|
||||
|
||||
/** Total number of vehicles that have reached their final destination ("S"). */
|
||||
private int totalVehiclesCompleted;
|
||||
|
||||
/** The sum of all *completed* vehicles' total travel times. Used for averaging. */
|
||||
private double totalSystemTime;
|
||||
|
||||
/** The sum of all *completed* vehicles' total waiting times. Used for averaging. */
|
||||
private double totalWaitingTime;
|
||||
|
||||
// --- Per-vehicle-type statistics ---
|
||||
|
||||
/**
|
||||
* Tracks the total number of vehicles generated, broken down by type.
|
||||
* Key: {@link VehicleType}
|
||||
* Value: Count (Integer)
|
||||
*/
|
||||
private final Map<VehicleType, Integer> vehicleTypeCount;
|
||||
|
||||
/**
|
||||
* Tracks the total waiting time, broken down by vehicle type.
|
||||
* Key: {@link VehicleType}
|
||||
* Value: Total Wait Time (Double)
|
||||
*/
|
||||
private final Map<VehicleType, Double> vehicleTypeWaitTime;
|
||||
|
||||
// --- Per-intersection statistics ---
|
||||
|
||||
/**
|
||||
* A map to hold statistics objects for each intersection.
|
||||
* Key: Intersection ID (String)
|
||||
* Value: {@link IntersectionStats} object
|
||||
*/
|
||||
private final Map<String, IntersectionStats> intersectionStats;
|
||||
|
||||
/**
|
||||
* Constructs a new StatisticsCollector.
|
||||
* Initializes all maps and counters.
|
||||
*
|
||||
* @param config The {@link SimulationConfig} (not currently used, but
|
||||
* could be for configuration-dependent stats).
|
||||
*/
|
||||
public StatisticsCollector(SimulationConfig config) {
|
||||
this.vehicleArrivalTimes = new HashMap<>();
|
||||
this.vehicleIntersectionHistory = new HashMap<>();
|
||||
this.totalVehiclesGenerated = 0;
|
||||
this.totalVehiclesCompleted = 0;
|
||||
this.totalSystemTime = 0.0;
|
||||
this.totalWaitingTime = 0.0;
|
||||
this.vehicleTypeCount = new HashMap<>();
|
||||
this.vehicleTypeWaitTime = new HashMap<>();
|
||||
this.intersectionStats = new HashMap<>();
|
||||
|
||||
// Initialize vehicle type counters to 0
|
||||
for (VehicleType type : VehicleType.values()) {
|
||||
vehicleTypeCount.put(type, 0);
|
||||
vehicleTypeWaitTime.put(type, 0.0);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Records that a new vehicle has been generated.
|
||||
* This is called by the {@link sd.engine.SimulationEngine}
|
||||
* during a {@code VEHICLE_GENERATION} event.
|
||||
*
|
||||
* @param vehicle The {@link Vehicle} that was just created.
|
||||
* @param currentTime The simulation time of the event.
|
||||
*/
|
||||
public void recordVehicleGeneration(Vehicle vehicle, double currentTime) {
|
||||
totalVehiclesGenerated++;
|
||||
|
||||
// Track by vehicle type
|
||||
VehicleType type = vehicle.getType();
|
||||
vehicleTypeCount.put(type, vehicleTypeCount.get(type) + 1);
|
||||
|
||||
// Initialize history tracking for this vehicle
|
||||
vehicleIntersectionHistory.put(vehicle.getId(), new ArrayList<>());
|
||||
}
|
||||
|
||||
/**
|
||||
* Records that a vehicle has arrived at an intersection queue.
|
||||
* This is called by the {@link sd.engine.SimulationEngine}
|
||||
* during a {@code VEHICLE_ARRIVAL} event.
|
||||
*
|
||||
* @param vehicle The {@link Vehicle} that arrived.
|
||||
* @param intersectionId The ID of the intersection it arrived at.
|
||||
* @param currentTime The simulation time of the arrival.
|
||||
*/
|
||||
public void recordVehicleArrival(Vehicle vehicle, String intersectionId, double currentTime) {
|
||||
// Store arrival time - this is the "start waiting" time
|
||||
vehicleArrivalTimes.put(vehicle.getId(), currentTime);
|
||||
|
||||
// Track intersection history
|
||||
List<String> history = vehicleIntersectionHistory.get(vehicle.getId());
|
||||
if (history != null) {
|
||||
history.add(intersectionId);
|
||||
}
|
||||
|
||||
// Update per-intersection statistics
|
||||
getOrCreateIntersectionStats(intersectionId).recordArrival();
|
||||
}
|
||||
|
||||
/**
|
||||
* Records that a vehicle has completed its route and exited the system.
|
||||
* This is where final metrics for the vehicle are aggregated.
|
||||
* This is called by the {@link sd.engine.SimulationEngine}
|
||||
* when a vehicle reaches destination "S".
|
||||
*
|
||||
* @param vehicle The {@link Vehicle} that is exiting.
|
||||
* @param currentTime The simulation time of the exit.
|
||||
*/
|
||||
public void recordVehicleExit(Vehicle vehicle, double currentTime) {
|
||||
totalVehiclesCompleted++;
|
||||
|
||||
// Calculate and aggregate total system time
|
||||
double systemTime = vehicle.getTotalTravelTime(currentTime);
|
||||
totalSystemTime += systemTime;
|
||||
|
||||
// Aggregate waiting time
|
||||
double waitTime = vehicle.getTotalWaitingTime();
|
||||
totalWaitingTime += waitTime;
|
||||
|
||||
// Aggregate waiting time by vehicle type
|
||||
VehicleType type = vehicle.getType();
|
||||
vehicleTypeWaitTime.put(type, vehicleTypeWaitTime.get(type) + waitTime);
|
||||
|
||||
// Clean up tracking maps to save memory
|
||||
vehicleArrivalTimes.remove(vehicle.getId());
|
||||
vehicleIntersectionHistory.remove(vehicle.getId());
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the time a vehicle arrived at its *current* intersection.
|
||||
* This is used by the {@link sd.engine.SimulationEngine} to calculate
|
||||
* wait time just before the vehicle crosses.
|
||||
*
|
||||
* @param vehicle The {@link Vehicle} to check.
|
||||
* @return The arrival time, or 0.0 if not found.
|
||||
*/
|
||||
public double getArrivalTime(Vehicle vehicle) {
|
||||
return vehicleArrivalTimes.getOrDefault(vehicle.getId(), 0.0);
|
||||
}
|
||||
|
||||
/**
|
||||
* Prints a "snapshot" of the current simulation statistics.
|
||||
* This is called periodically by the {@link sd.engine.SimulationEngine}
|
||||
* during a {@code STATISTICS_UPDATE} event.
|
||||
*
|
||||
* @param intersections A map of all intersections (to get queue data).
|
||||
* @param currentTime The current simulation time.
|
||||
*/
|
||||
public void printCurrentStatistics(Map<String, Intersection> intersections, double currentTime) {
|
||||
System.out.printf("--- Statistics at t=%.2f ---%n", currentTime);
|
||||
System.out.printf("Vehicles: Generated=%d, Completed=%d, In-System=%d%n",
|
||||
totalVehiclesGenerated,
|
||||
totalVehiclesCompleted,
|
||||
totalVehiclesGenerated - totalVehiclesCompleted);
|
||||
|
||||
if (totalVehiclesCompleted > 0) {
|
||||
System.out.printf("Average System Time (so far): %.2fs%n", totalSystemTime / totalVehiclesCompleted);
|
||||
System.out.printf("Average Waiting Time (so far): %.2fs%n", totalWaitingTime / totalVehiclesCompleted);
|
||||
}
|
||||
|
||||
// Print per-intersection queue sizes
|
||||
System.out.println("\nIntersection Queues:");
|
||||
for (Map.Entry<String, Intersection> entry : intersections.entrySet()) {
|
||||
String id = entry.getKey();
|
||||
Intersection intersection = entry.getValue();
|
||||
System.out.printf(" %s: Queue=%d, Received=%d, Sent=%d%n",
|
||||
id,
|
||||
intersection.getTotalQueueSize(),
|
||||
intersection.getTotalVehiclesReceived(),
|
||||
intersection.getTotalVehiclesSent());
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Prints the final simulation summary statistics at the end of the run.
|
||||
*
|
||||
* @param intersections A map of all intersections.
|
||||
* @param currentTime The final simulation time.
|
||||
*/
|
||||
public void printFinalStatistics(Map<String, Intersection> intersections, double currentTime) {
|
||||
System.out.println("\n=== SIMULATION SUMMARY ===");
|
||||
System.out.printf("Duration: %.2f seconds%n", currentTime);
|
||||
System.out.printf("Total Vehicles Generated: %d%n", totalVehiclesGenerated);
|
||||
System.out.printf("Total Vehicles Completed: %d%n", totalVehiclesCompleted);
|
||||
System.out.printf("Vehicles Still in System: %d%n", totalVehiclesGenerated - totalVehiclesCompleted);
|
||||
|
||||
// Overall averages
|
||||
if (totalVehiclesCompleted > 0) {
|
||||
System.out.printf("%nAVERAGE METRICS (for completed vehicles):%n");
|
||||
System.out.printf(" System Time: %.2f seconds%n", totalSystemTime / totalVehiclesCompleted);
|
||||
System.out.printf(" Waiting Time: %.2f seconds%n", totalWaitingTime / totalVehiclesCompleted);
|
||||
System.out.printf(" Throughput: %.2f vehicles/second%n", totalVehiclesCompleted / currentTime);
|
||||
}
|
||||
|
||||
// Vehicle type breakdown
|
||||
System.out.println("\nVEHICLE TYPE DISTRIBUTION:");
|
||||
for (VehicleType type : VehicleType.values()) {
|
||||
int count = vehicleTypeCount.get(type);
|
||||
if (count > 0) {
|
||||
double percentage = (count * 100.0) / totalVehiclesGenerated;
|
||||
// Calculate avg wait *only* for this type
|
||||
// This assumes all generated vehicles of this type *completed*
|
||||
// A more accurate way would be to track completed vehicle types
|
||||
double avgWait = vehicleTypeWaitTime.get(type) / count;
|
||||
System.out.printf(" %s: %d (%.1f%%), Avg Wait: %.2fs%n",
|
||||
type, count, percentage, avgWait);
|
||||
}
|
||||
}
|
||||
|
||||
// Per-intersection statistics
|
||||
System.out.println("\nINTERSECTION STATISTICS:");
|
||||
for (Map.Entry<String, Intersection> entry : intersections.entrySet()) {
|
||||
String id = entry.getKey();
|
||||
Intersection intersection = entry.getValue();
|
||||
|
||||
System.out.printf(" %s:%n", id);
|
||||
System.out.printf(" Vehicles Received: %d%n", intersection.getTotalVehiclesReceived());
|
||||
System.out.printf(" Vehicles Sent: %d%n", intersection.getTotalVehiclesSent());
|
||||
System.out.printf(" Final Queue Size: %d%n", intersection.getTotalQueueSize());
|
||||
|
||||
// Traffic light details
|
||||
intersection.getTrafficLights().forEach(light -> {
|
||||
System.out.printf(" Light %s: State=%s, Queue=%d, Processed=%d%n",
|
||||
light.getDirection(),
|
||||
light.getState(),
|
||||
light.getQueueSize(),
|
||||
light.getTotalVehiclesProcessed());
|
||||
});
|
||||
}
|
||||
|
||||
// System health indicators
|
||||
System.out.println("\nSYSTEM HEALTH:");
|
||||
int totalQueuedVehicles = intersections.values().stream()
|
||||
.mapToInt(Intersection::getTotalQueueSize)
|
||||
.sum();
|
||||
System.out.printf(" Total Queued Vehicles (at end): %d%n", totalQueuedVehicles);
|
||||
|
||||
if (totalVehiclesGenerated > 0) {
|
||||
double completionRate = (totalVehiclesCompleted * 100.0) / totalVehiclesGenerated;
|
||||
System.out.printf(" Completion Rate: %.1f%%%n", completionRate);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets or creates the statistics object for a given intersection.
|
||||
* Uses {@code computeIfAbsent} for efficient, thread-safe-like instantiation.
|
||||
*
|
||||
* @param intersectionId The ID of the intersection.
|
||||
* @return The {@link IntersectionStats} object for that ID.
|
||||
*/
|
||||
private IntersectionStats getOrCreateIntersectionStats(String intersectionId) {
|
||||
// If 'intersectionId' is not in the map, create a new IntersectionStats()
|
||||
// and put it in the map, then return it.
|
||||
// Otherwise, just return the one that's already there.
|
||||
return intersectionStats.computeIfAbsent(intersectionId, k -> new IntersectionStats());
|
||||
}
|
||||
|
||||
/**
|
||||
* Inner class to track per-intersection statistics.
|
||||
* This is a simple data holder.
|
||||
*/
|
||||
private static class IntersectionStats {
|
||||
private int totalArrivals;
|
||||
private int totalDepartures;
|
||||
|
||||
public IntersectionStats() {
|
||||
this.totalArrivals = 0;
|
||||
this.totalDepartures = 0;
|
||||
}
|
||||
|
||||
public void recordArrival() {
|
||||
totalArrivals++;
|
||||
}
|
||||
|
||||
public void recordDeparture() {
|
||||
totalDepartures++;
|
||||
}
|
||||
|
||||
public int getTotalArrivals() {
|
||||
return totalArrivals;
|
||||
}
|
||||
|
||||
public int getTotalDepartures() {
|
||||
return totalDepartures;
|
||||
}
|
||||
}
|
||||
|
||||
// --- Public Getters for Final Statistics ---
|
||||
|
||||
/**
|
||||
* @return Total vehicles generated during the simulation.
|
||||
*/
|
||||
public int getTotalVehiclesGenerated() {
|
||||
return totalVehiclesGenerated;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return Total vehicles that completed their route.
|
||||
*/
|
||||
public int getTotalVehiclesCompleted() {
|
||||
return totalVehiclesCompleted;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return The sum of all travel times for *completed* vehicles.
|
||||
*/
|
||||
public double getTotalSystemTime() {
|
||||
return totalSystemTime;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return The sum of all waiting times for *completed* vehicles.
|
||||
*/
|
||||
public double getTotalWaitingTime() {
|
||||
return totalWaitingTime;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return The average travel time for *completed* vehicles.
|
||||
*/
|
||||
public double getAverageSystemTime() {
|
||||
return totalVehiclesCompleted > 0 ? totalSystemTime / totalVehiclesCompleted : 0.0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return The average waiting time for *completed* vehicles.
|
||||
*/
|
||||
public double getAverageWaitingTime() {
|
||||
return totalVehiclesCompleted > 0 ? totalWaitingTime / totalVehiclesCompleted : 0.0;
|
||||
}
|
||||
}
|
||||
229
main/src/main/java/sd/util/VehicleGenerator.java
Normal file
229
main/src/main/java/sd/util/VehicleGenerator.java
Normal file
@@ -0,0 +1,229 @@
|
||||
package sd.util;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
|
||||
import sd.config.SimulationConfig;
|
||||
import sd.model.Vehicle;
|
||||
import sd.model.VehicleType;
|
||||
|
||||
/**
|
||||
* Generates vehicles for the simulation.
|
||||
* * This class is responsible for two key tasks:
|
||||
* 1. Determining *when* the next vehicle should arrive, based on the
|
||||
* arrival model (POISSON or FIXED) from the {@link SimulationConfig}.
|
||||
* 2. Creating a new {@link Vehicle} object with a randomly selected
|
||||
* type (e.g., BIKE, LIGHT) and a randomly selected route.
|
||||
* * Routes are predefined and organized by entry point (E1, E2, E3).
|
||||
*/
|
||||
public class VehicleGenerator {
|
||||
|
||||
private final SimulationConfig config;
|
||||
private final String arrivalModel;
|
||||
private final double arrivalRate; // Lambda (λ) for POISSON
|
||||
private final double fixedInterval; // Interval for FIXED
|
||||
|
||||
// --- Predefined Routes ---
|
||||
// These lists store all possible routes, grouped by where they start.
|
||||
|
||||
/** Routes starting from entry point E1. */
|
||||
private final List<RouteWithProbability> e1Routes;
|
||||
/** Routes starting from entry point E2. */
|
||||
private final List<RouteWithProbability> e2Routes;
|
||||
/** Routes starting from entry point E3. */
|
||||
private final List<RouteWithProbability> e3Routes;
|
||||
|
||||
/**
|
||||
* Constructs a new VehicleGenerator.
|
||||
* It reads the necessary configuration and initializes the
|
||||
* predefined routes.
|
||||
*
|
||||
* @param config The {@link SimulationConfig} object.
|
||||
*/
|
||||
public VehicleGenerator(SimulationConfig config) {
|
||||
this.config = config;
|
||||
|
||||
// Cache configuration values for performance
|
||||
this.arrivalModel = config.getArrivalModel();
|
||||
this.arrivalRate = config.getArrivalRate();
|
||||
this.fixedInterval = config.getFixedArrivalInterval();
|
||||
|
||||
// Initialize route lists
|
||||
this.e1Routes = new ArrayList<>();
|
||||
this.e2Routes = new ArrayList<>();
|
||||
this.e3Routes = new ArrayList<>();
|
||||
initializePossibleRoutes();
|
||||
}
|
||||
|
||||
/**
|
||||
* Defines all possible routes that vehicles can take, organized by
|
||||
* their entry point (E1, E2, E3). Each route is given a
|
||||
* probability, which determines how often it's chosen.
|
||||
*/
|
||||
private void initializePossibleRoutes() {
|
||||
// E1 routes (Starts at Cr1)
|
||||
e1Routes.add(new RouteWithProbability(
|
||||
Arrays.asList("Cr1", "Cr4", "Cr5", "S"), 0.34)); // E1 -> Cr1 -> Cr4 -> Cr5 -> Exit
|
||||
e1Routes.add(new RouteWithProbability(
|
||||
Arrays.asList("Cr1", "Cr2", "Cr5", "S"), 0.33)); // E1 -> Cr1 -> Cr2 -> Cr5 -> Exit
|
||||
e1Routes.add(new RouteWithProbability(
|
||||
Arrays.asList("Cr1", "Cr2", "Cr3", "S"), 0.33)); // E1 -> Cr1 -> Cr2 -> Cr3 -> Exit
|
||||
|
||||
// E2 routes (Starts at Cr2)
|
||||
e2Routes.add(new RouteWithProbability(
|
||||
Arrays.asList("Cr2", "Cr5", "S"), 0.34)); // E2 -> Cr2 -> Cr5 -> Exit
|
||||
e2Routes.add(new RouteWithProbability(
|
||||
Arrays.asList("Cr2", "Cr3", "S"), 0.33)); // E2 -> Cr2 -> Cr3 -> Exit
|
||||
e2Routes.add(new RouteWithProbability(
|
||||
Arrays.asList("Cr2", "Cr1", "Cr4", "Cr5", "S"), 0.33)); // E2 -> Cr2 -> ... -> Exit
|
||||
|
||||
// E3 routes (Starts at Cr3)
|
||||
e3Routes.add(new RouteWithProbability(
|
||||
Arrays.asList("Cr3", "S"), 0.34)); // E3 -> Cr3 -> Exit
|
||||
e3Routes.add(new RouteWithProbability(
|
||||
Arrays.asList("Cr3", "Cr2", "Cr5", "S"), 0.33)); // E3 -> Cr3 -> Cr2 -> Cr5 -> Exit
|
||||
e3Routes.add(new RouteWithProbability(
|
||||
Arrays.asList("Cr3", "Cr2", "Cr1", "Cr4", "Cr5", "S"), 0.33)); // E3 -> Cr3 -> ... -> Exit
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the *absolute* time of the next vehicle arrival
|
||||
* based on the configured model.
|
||||
* * @param currentTime The current simulation time, used as the base.
|
||||
* @return The absolute time (e.g., {@code currentTime + interval})
|
||||
* when the next vehicle should be generated.
|
||||
*/
|
||||
public double getNextArrivalTime(double currentTime) {
|
||||
if ("POISSON".equalsIgnoreCase(arrivalModel)) {
|
||||
// For a Poisson process, the time *between* arrivals
|
||||
// follows an exponential distribution.
|
||||
double interval = RandomGenerator.generateExponentialInterval(arrivalRate);
|
||||
return currentTime + interval;
|
||||
} else {
|
||||
// For a Fixed model, the interval is constant.
|
||||
return currentTime + fixedInterval;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Generates a new {@link Vehicle} object.
|
||||
* This involves:
|
||||
* 1. Selecting a random {@link VehicleType} based on probabilities.
|
||||
* 2. Selecting a random route (entry point + path) based on probabilities.
|
||||
*
|
||||
* @param vehicleId The unique identifier for the new vehicle (e.g., "V123").
|
||||
* @param entryTime The simulation time when this vehicle is being created.
|
||||
* @return A new, configured {@link Vehicle} object.
|
||||
*/
|
||||
public Vehicle generateVehicle(String vehicleId, double entryTime) {
|
||||
VehicleType type = selectVehicleType();
|
||||
List<String> route = selectRandomRoute();
|
||||
|
||||
return new Vehicle(vehicleId, type, entryTime, route);
|
||||
}
|
||||
|
||||
/**
|
||||
* Selects a {@link VehicleType} (BIKE, LIGHT, HEAVY) based on the
|
||||
* probabilities defined in the {@link SimulationConfig}.
|
||||
* * Uses a standard "cumulative probability" technique:
|
||||
* 1. Get a random number {@code rand} from [0, 1).
|
||||
* 2. If {@code rand < P(Bike)}, return BIKE.
|
||||
* 3. Else if {@code rand < P(Bike) + P(Light)}, return LIGHT.
|
||||
* 4. Else, return HEAVY.
|
||||
*
|
||||
* @return The selected {@link VehicleType}.
|
||||
*/
|
||||
private VehicleType selectVehicleType() {
|
||||
double bikeProbability = config.getBikeVehicleProbability();
|
||||
double lightProbability = config.getLightVehicleProbability();
|
||||
double heavyProbability = config.getHeavyVehicleProbability();
|
||||
|
||||
// Normalize probabilities in case they don't sum to exactly 1.0
|
||||
double total = bikeProbability + lightProbability + heavyProbability;
|
||||
if (total == 0) return VehicleType.LIGHT; // Avoid division by zero
|
||||
bikeProbability /= total;
|
||||
lightProbability /= total;
|
||||
|
||||
double rand = Math.random();
|
||||
|
||||
if (rand < bikeProbability) {
|
||||
return VehicleType.BIKE;
|
||||
} else if (rand < bikeProbability + lightProbability) {
|
||||
return VehicleType.LIGHT;
|
||||
} else {
|
||||
return VehicleType.HEAVY;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Selects a random route for a new vehicle.
|
||||
* This is a two-step process:
|
||||
* 1. Randomly select an entry point (E1, E2, or E3) with equal probability.
|
||||
* 2. From the chosen entry point's list of routes, select one
|
||||
* based on their defined probabilities (using cumulative probability).
|
||||
*
|
||||
* @return A {@link List} of strings representing the chosen route (e.g., ["Cr1", "Cr4", "S"]).
|
||||
*/
|
||||
private List<String> selectRandomRoute() {
|
||||
// Step 1: Randomly select an entry point (E1, E2, or E3)
|
||||
double entryRandom = Math.random();
|
||||
List<RouteWithProbability> selectedRoutes;
|
||||
|
||||
if (entryRandom < 0.333) {
|
||||
selectedRoutes = e1Routes;
|
||||
} else if (entryRandom < 0.666) {
|
||||
selectedRoutes = e2Routes;
|
||||
} else {
|
||||
selectedRoutes = e3Routes;
|
||||
}
|
||||
|
||||
// Step 2: Select a route from the chosen list based on cumulative probabilities
|
||||
double routeRand = Math.random();
|
||||
double cumulative = 0.0;
|
||||
|
||||
for (RouteWithProbability routeWithProb : selectedRoutes) {
|
||||
cumulative += routeWithProb.probability;
|
||||
if (routeRand <= cumulative) {
|
||||
// Return a *copy* of the route to prevent modification
|
||||
return new ArrayList<>(routeWithProb.route);
|
||||
}
|
||||
}
|
||||
|
||||
// Fallback: This should only be reached if probabilities don't sum to 1
|
||||
// (due to floating point errors)
|
||||
return new ArrayList<>(selectedRoutes.get(0).route);
|
||||
}
|
||||
|
||||
/**
|
||||
* @return A string providing information about the generator's configuration.
|
||||
*/
|
||||
public String getInfo() {
|
||||
int totalRoutes = e1Routes.size() + e2Routes.size() + e3Routes.size();
|
||||
return String.format(
|
||||
"VehicleGenerator{model=%s, rate=%.2f, interval=%.2f, routes=%d (E1:%d, E2:%d, E3:%d)}",
|
||||
arrivalModel, arrivalRate, fixedInterval, totalRoutes,
|
||||
e1Routes.size(), e2Routes.size(), e3Routes.size()
|
||||
);
|
||||
}
|
||||
|
||||
/**
|
||||
* A private inner "struct-like" class to hold a route (a List of strings)
|
||||
* and its associated selection probability.
|
||||
*/
|
||||
private static class RouteWithProbability {
|
||||
final List<String> route;
|
||||
final double probability;
|
||||
|
||||
/**
|
||||
* Constructs a new RouteWithProbability pair.
|
||||
* @param route The list of intersection IDs.
|
||||
* @param probability The probability (0.0 to 1.0) of this route
|
||||
* being chosen *from its entry group*.
|
||||
*/
|
||||
RouteWithProbability(List<String> route, double probability) {
|
||||
this.route = route;
|
||||
this.probability = probability;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,8 +1,13 @@
|
||||
# Traffic simulation configuration
|
||||
# This file contains all the necessary configurations to run the simulation
|
||||
# =========================================================
|
||||
# Traffic Simulation Configuration
|
||||
# ---------------------------------------------------------
|
||||
# All parameters controlling network layout, timing,
|
||||
# and simulation behavior.
|
||||
# =========================================================
|
||||
|
||||
# === NETWORK CONFIGURATIONS ===
|
||||
# Intersections
|
||||
# === NETWORK CONFIGURATION ===
|
||||
|
||||
# Intersections (each with its host and port)
|
||||
intersection.Cr1.host=localhost
|
||||
intersection.Cr1.port=8001
|
||||
intersection.Cr2.host=localhost
|
||||
@@ -14,30 +19,32 @@ intersection.Cr4.port=8004
|
||||
intersection.Cr5.host=localhost
|
||||
intersection.Cr5.port=8005
|
||||
|
||||
# Exit Node
|
||||
# Exit node
|
||||
exit.host=localhost
|
||||
exit.port=9001
|
||||
|
||||
# Dashboard
|
||||
# Dashboard server
|
||||
dashboard.host=localhost
|
||||
dashboard.port=9000
|
||||
|
||||
# === SIMULATION CONFIGURATIONS ===
|
||||
# Simulation duration in seconds (3600 = 1 hour)
|
||||
simulation.duration=3600.0
|
||||
|
||||
# === SIMULATION CONFIGURATION ===
|
||||
|
||||
# Total duration in seconds (3600 = 1 hour)
|
||||
simulation.duration=60.0
|
||||
|
||||
# Vehicle arrival model: FIXED or POISSON
|
||||
simulation.arrival.model=POISSON
|
||||
|
||||
# Arrival rate (λ) for Poisson model (vehicles per second)
|
||||
# λ (lambda): average arrival rate (vehicles per second)
|
||||
simulation.arrival.rate=0.5
|
||||
|
||||
# Fixed interval between arrivals (used if model = FIXED)
|
||||
# Fixed interval between arrivals (only used if model=FIXED)
|
||||
simulation.arrival.fixed.interval=2.0
|
||||
|
||||
# === TRAFFIC LIGHT CONFIGURATIONS ===
|
||||
# Times in seconds for each traffic light (green and red)
|
||||
# Format: trafficlight.<intersection>.<direction>.<state>
|
||||
|
||||
# === TRAFFIC LIGHT TIMINGS ===
|
||||
# Format: trafficlight.<intersection>.<direction>.<state>=<seconds>
|
||||
|
||||
# Intersection 1
|
||||
trafficlight.Cr1.North.green=30.0
|
||||
@@ -89,15 +96,18 @@ trafficlight.Cr5.East.red=30.0
|
||||
trafficlight.Cr5.West.green=30.0
|
||||
trafficlight.Cr5.West.red=30.0
|
||||
|
||||
# === VEHICLE CONFIGURATIONS ===
|
||||
# Probability of generating a light vehicle (0.0 to 1.0)
|
||||
# The rest will be heavy vehicles
|
||||
vehicle.probability.light=0.7
|
||||
# === VEHICLE CONFIGURATION ===
|
||||
# Probability distribution for vehicle types (must sum to 1.0)
|
||||
vehicle.probability.bike=0.2
|
||||
vehicle.probability.light=0.6
|
||||
vehicle.probability.heavy=0.2
|
||||
|
||||
# Crossing time in seconds
|
||||
# Average crossing times (in seconds)
|
||||
vehicle.crossing.time.bike=1.5
|
||||
vehicle.crossing.time.light=2.0
|
||||
vehicle.crossing.time.heavy=4.0
|
||||
|
||||
# === STATISTICS CONFIGURATIONS ===
|
||||
# Interval to send updates to the dashboard (in seconds)
|
||||
# === STATISTICS ===
|
||||
|
||||
# Interval between dashboard updates (seconds)
|
||||
statistics.update.interval=10.0
|
||||
|
||||
473
main/src/test/java/IntersectionProcessTest.java
Normal file
473
main/src/test/java/IntersectionProcessTest.java
Normal file
@@ -0,0 +1,473 @@
|
||||
import java.io.IOException;
|
||||
import java.io.ObjectOutputStream;
|
||||
import java.net.Socket;
|
||||
import java.nio.file.Files;
|
||||
import java.nio.file.Path;
|
||||
import java.util.Arrays;
|
||||
|
||||
import org.junit.jupiter.api.AfterEach;
|
||||
import static org.junit.jupiter.api.Assertions.assertDoesNotThrow;
|
||||
import static org.junit.jupiter.api.Assertions.assertNotNull;
|
||||
import static org.junit.jupiter.api.Assertions.assertThrows;
|
||||
import static org.junit.jupiter.api.Assertions.assertTrue;
|
||||
import org.junit.jupiter.api.BeforeEach;
|
||||
import org.junit.jupiter.api.Test;
|
||||
import org.junit.jupiter.api.Timeout;
|
||||
import org.junit.jupiter.api.io.TempDir;
|
||||
|
||||
import sd.IntersectionProcess;
|
||||
import sd.model.MessageType;
|
||||
import sd.model.Vehicle;
|
||||
import sd.model.VehicleType;
|
||||
|
||||
/**
|
||||
* Tests for IntersectionProcess - covers initialization, traffic lights,
|
||||
* vehicle transfer and network stuff
|
||||
*/
|
||||
public class IntersectionProcessTest {
|
||||
|
||||
@TempDir
|
||||
Path tempDir;
|
||||
|
||||
private Path configFile;
|
||||
private IntersectionProcess intersectionProcess;
|
||||
|
||||
// setup test config before each test
|
||||
@BeforeEach
|
||||
public void setUp() throws IOException {
|
||||
// create temp config file
|
||||
configFile = tempDir.resolve("test-simulation.properties");
|
||||
|
||||
String configContent = """
|
||||
# Test Simulation Configuration
|
||||
|
||||
# Intersection Network Configuration
|
||||
intersection.Cr1.host=localhost
|
||||
intersection.Cr1.port=18001
|
||||
intersection.Cr2.host=localhost
|
||||
intersection.Cr2.port=18002
|
||||
intersection.Cr3.host=localhost
|
||||
intersection.Cr3.port=18003
|
||||
intersection.Cr4.host=localhost
|
||||
intersection.Cr4.port=18004
|
||||
intersection.Cr5.host=localhost
|
||||
intersection.Cr5.port=18005
|
||||
|
||||
# Exit Configuration
|
||||
exit.host=localhost
|
||||
exit.port=18099
|
||||
|
||||
# Dashboard Configuration
|
||||
dashboard.host=localhost
|
||||
dashboard.port=18100
|
||||
|
||||
# Traffic Light Timing (seconds)
|
||||
trafficLight.Cr1.East.greenTime=5.0
|
||||
trafficLight.Cr1.East.redTime=5.0
|
||||
trafficLight.Cr1.South.greenTime=5.0
|
||||
trafficLight.Cr1.South.redTime=5.0
|
||||
trafficLight.Cr1.West.greenTime=5.0
|
||||
trafficLight.Cr1.West.redTime=5.0
|
||||
|
||||
trafficLight.Cr2.West.greenTime=4.0
|
||||
trafficLight.Cr2.West.redTime=6.0
|
||||
trafficLight.Cr2.East.greenTime=4.0
|
||||
trafficLight.Cr2.East.redTime=6.0
|
||||
trafficLight.Cr2.South.greenTime=4.0
|
||||
trafficLight.Cr2.South.redTime=6.0
|
||||
|
||||
trafficLight.Cr3.West.greenTime=3.0
|
||||
trafficLight.Cr3.West.redTime=7.0
|
||||
trafficLight.Cr3.East.greenTime=3.0
|
||||
trafficLight.Cr3.East.redTime=7.0
|
||||
|
||||
trafficLight.Cr4.East.greenTime=6.0
|
||||
trafficLight.Cr4.East.redTime=4.0
|
||||
|
||||
trafficLight.Cr5.East.greenTime=5.0
|
||||
trafficLight.Cr5.East.redTime=5.0
|
||||
|
||||
# Vehicle Crossing Times (seconds)
|
||||
vehicle.bike.crossingTime=2.0
|
||||
vehicle.light.crossingTime=3.0
|
||||
vehicle.heavy.crossingTime=5.0
|
||||
""";
|
||||
|
||||
Files.writeString(configFile, configContent);
|
||||
}
|
||||
|
||||
// cleanup after tests
|
||||
@AfterEach
|
||||
public void tearDown() {
|
||||
if (intersectionProcess != null) {
|
||||
intersectionProcess.shutdown();
|
||||
}
|
||||
}
|
||||
|
||||
// ==================== Initialization Tests ====================
|
||||
|
||||
@Test
|
||||
public void testConstructor_Success() throws IOException {
|
||||
intersectionProcess = new IntersectionProcess("Cr1", configFile.toString());
|
||||
assertNotNull(intersectionProcess);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testConstructor_InvalidConfig() {
|
||||
Exception exception = assertThrows(IOException.class, () -> {
|
||||
new IntersectionProcess("Cr1", "non-existent-config.properties");
|
||||
});
|
||||
assertNotNull(exception);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testInitialize_Cr1() throws IOException {
|
||||
intersectionProcess = new IntersectionProcess("Cr1", configFile.toString());
|
||||
assertDoesNotThrow(() -> intersectionProcess.initialize());
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testInitialize_Cr2() throws IOException {
|
||||
intersectionProcess = new IntersectionProcess("Cr2", configFile.toString());
|
||||
assertDoesNotThrow(() -> intersectionProcess.initialize());
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testInitialize_Cr3() throws IOException {
|
||||
intersectionProcess = new IntersectionProcess("Cr3", configFile.toString());
|
||||
assertDoesNotThrow(() -> intersectionProcess.initialize());
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testInitialize_Cr4() throws IOException {
|
||||
intersectionProcess = new IntersectionProcess("Cr4", configFile.toString());
|
||||
assertDoesNotThrow(() -> intersectionProcess.initialize());
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testInitialize_Cr5() throws IOException {
|
||||
intersectionProcess = new IntersectionProcess("Cr5", configFile.toString());
|
||||
assertDoesNotThrow(() -> intersectionProcess.initialize());
|
||||
}
|
||||
|
||||
// traffic light creation tests
|
||||
|
||||
@Test
|
||||
public void testTrafficLightCreation_Cr1_HasCorrectDirections() throws IOException {
|
||||
intersectionProcess = new IntersectionProcess("Cr1", configFile.toString());
|
||||
intersectionProcess.initialize();
|
||||
|
||||
// cant access private fields but initialization succeds
|
||||
assertNotNull(intersectionProcess);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testTrafficLightCreation_Cr3_HasCorrectDirections() throws IOException {
|
||||
intersectionProcess = new IntersectionProcess("Cr3", configFile.toString());
|
||||
intersectionProcess.initialize();
|
||||
|
||||
// Cr3 has west and south only
|
||||
assertNotNull(intersectionProcess);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testTrafficLightCreation_Cr4_HasSingleDirection() throws IOException {
|
||||
intersectionProcess = new IntersectionProcess("Cr4", configFile.toString());
|
||||
intersectionProcess.initialize();
|
||||
|
||||
// Cr4 only has east direction
|
||||
assertNotNull(intersectionProcess);
|
||||
}
|
||||
|
||||
// server startup tests
|
||||
|
||||
@Test
|
||||
@Timeout(5)
|
||||
public void testServerStart_BindsToCorrectPort() throws IOException, InterruptedException {
|
||||
intersectionProcess = new IntersectionProcess("Cr1", configFile.toString());
|
||||
intersectionProcess.initialize();
|
||||
|
||||
// start server in seperate thread
|
||||
Thread serverThread = new Thread(() -> {
|
||||
try {
|
||||
intersectionProcess.start();
|
||||
} catch (IOException e) {
|
||||
// expected on shutdown
|
||||
}
|
||||
});
|
||||
serverThread.start();
|
||||
|
||||
Thread.sleep(500); // wait for server to start
|
||||
|
||||
// try connecting to check if its running
|
||||
try (Socket clientSocket = new Socket("localhost", 18001)) {
|
||||
assertTrue(clientSocket.isConnected());
|
||||
}
|
||||
|
||||
intersectionProcess.shutdown();
|
||||
serverThread.join(2000);
|
||||
}
|
||||
|
||||
@Test
|
||||
@Timeout(5)
|
||||
public void testServerStart_MultipleIntersections() throws IOException, InterruptedException {
|
||||
// test 2 intersections on diferent ports
|
||||
IntersectionProcess cr1 = new IntersectionProcess("Cr1", configFile.toString());
|
||||
IntersectionProcess cr2 = new IntersectionProcess("Cr2", configFile.toString());
|
||||
|
||||
cr1.initialize();
|
||||
cr2.initialize();
|
||||
|
||||
Thread thread1 = new Thread(() -> {
|
||||
try { cr1.start(); } catch (IOException e) { }
|
||||
});
|
||||
|
||||
Thread thread2 = new Thread(() -> {
|
||||
try { cr2.start(); } catch (IOException e) { }
|
||||
});
|
||||
|
||||
thread1.start();
|
||||
thread2.start();
|
||||
|
||||
Thread.sleep(500);
|
||||
|
||||
// check both are running
|
||||
try (Socket socket1 = new Socket("localhost", 18001);
|
||||
Socket socket2 = new Socket("localhost", 18002)) {
|
||||
assertTrue(socket1.isConnected());
|
||||
assertTrue(socket2.isConnected());
|
||||
}
|
||||
|
||||
cr1.shutdown();
|
||||
cr2.shutdown();
|
||||
thread1.join(2000);
|
||||
thread2.join(2000);
|
||||
}
|
||||
|
||||
// vehicle transfer tests
|
||||
|
||||
@Test
|
||||
@Timeout(10)
|
||||
public void testVehicleTransfer_ReceiveVehicle() throws IOException, InterruptedException {
|
||||
// setup reciever intersection
|
||||
intersectionProcess = new IntersectionProcess("Cr2", configFile.toString());
|
||||
intersectionProcess.initialize();
|
||||
|
||||
Thread serverThread = new Thread(() -> {
|
||||
try {
|
||||
intersectionProcess.start();
|
||||
} catch (IOException e) { }
|
||||
});
|
||||
serverThread.start();
|
||||
|
||||
Thread.sleep(500);
|
||||
|
||||
// create test vehicle
|
||||
java.util.List<String> route = Arrays.asList("Cr2", "Cr3", "S");
|
||||
Vehicle vehicle = new Vehicle("V001", VehicleType.LIGHT, 0.0, route);
|
||||
|
||||
// send vehicle from Cr1 to Cr2
|
||||
try (Socket socket = new Socket("localhost", 18002)) {
|
||||
ObjectOutputStream out = new ObjectOutputStream(socket.getOutputStream());
|
||||
|
||||
TestVehicleMessage message = new TestVehicleMessage("Cr1", "Cr2", vehicle);
|
||||
out.writeObject(message);
|
||||
out.flush();
|
||||
|
||||
Thread.sleep(1000); // wait for procesing
|
||||
}
|
||||
|
||||
intersectionProcess.shutdown();
|
||||
serverThread.join(2000);
|
||||
}
|
||||
|
||||
// routing config tests
|
||||
|
||||
@Test
|
||||
public void testRoutingConfiguration_Cr1() throws IOException {
|
||||
intersectionProcess = new IntersectionProcess("Cr1", configFile.toString());
|
||||
intersectionProcess.initialize();
|
||||
|
||||
// indirect test - if init works routing should be ok
|
||||
assertNotNull(intersectionProcess);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testRoutingConfiguration_Cr5() throws IOException {
|
||||
intersectionProcess = new IntersectionProcess("Cr5", configFile.toString());
|
||||
intersectionProcess.initialize();
|
||||
|
||||
// Cr5 routes to exit
|
||||
assertNotNull(intersectionProcess);
|
||||
}
|
||||
|
||||
// shutdown tests
|
||||
|
||||
@Test
|
||||
@Timeout(5)
|
||||
public void testShutdown_GracefulTermination() throws IOException, InterruptedException {
|
||||
intersectionProcess = new IntersectionProcess("Cr1", configFile.toString());
|
||||
intersectionProcess.initialize();
|
||||
|
||||
Thread serverThread = new Thread(() -> {
|
||||
try {
|
||||
intersectionProcess.start();
|
||||
} catch (IOException e) { }
|
||||
});
|
||||
serverThread.start();
|
||||
|
||||
Thread.sleep(500);
|
||||
|
||||
// shutdown should be fast
|
||||
assertDoesNotThrow(() -> intersectionProcess.shutdown());
|
||||
|
||||
serverThread.join(2000);
|
||||
}
|
||||
|
||||
@Test
|
||||
@Timeout(5)
|
||||
public void testShutdown_ClosesServerSocket() throws IOException, InterruptedException {
|
||||
intersectionProcess = new IntersectionProcess("Cr1", configFile.toString());
|
||||
intersectionProcess.initialize();
|
||||
|
||||
Thread serverThread = new Thread(() -> {
|
||||
try {
|
||||
intersectionProcess.start();
|
||||
} catch (IOException e) { }
|
||||
});
|
||||
serverThread.start();
|
||||
|
||||
Thread.sleep(500);
|
||||
|
||||
// verify server running
|
||||
try (Socket socket = new Socket("localhost", 18001)) {
|
||||
assertTrue(socket.isConnected());
|
||||
}
|
||||
|
||||
intersectionProcess.shutdown();
|
||||
serverThread.join(2000);
|
||||
|
||||
// after shutdown conection should fail
|
||||
Thread.sleep(500);
|
||||
Exception exception = assertThrows(IOException.class, () -> {
|
||||
Socket socket = new Socket("localhost", 18001);
|
||||
socket.close();
|
||||
});
|
||||
assertNotNull(exception);
|
||||
}
|
||||
|
||||
@Test
|
||||
@Timeout(5)
|
||||
public void testShutdown_StopsTrafficLightThreads() throws IOException, InterruptedException {
|
||||
intersectionProcess = new IntersectionProcess("Cr1", configFile.toString());
|
||||
intersectionProcess.initialize();
|
||||
|
||||
Thread serverThread = new Thread(() -> {
|
||||
try {
|
||||
intersectionProcess.start();
|
||||
} catch (IOException e) { }
|
||||
});
|
||||
serverThread.start();
|
||||
|
||||
Thread.sleep(500);
|
||||
|
||||
int threadCountBefore = Thread.activeCount();
|
||||
|
||||
intersectionProcess.shutdown();
|
||||
serverThread.join(2000);
|
||||
|
||||
Thread.sleep(500); // wait for threads to die
|
||||
|
||||
// thread count should decrese (traffic light threads stop)
|
||||
int threadCountAfter = Thread.activeCount();
|
||||
assertTrue(threadCountAfter <= threadCountBefore);
|
||||
}
|
||||
|
||||
// integration tests
|
||||
|
||||
@Test
|
||||
@Timeout(15)
|
||||
public void testIntegration_TwoIntersectionsVehicleTransfer() throws IOException, InterruptedException {
|
||||
// setup 2 intersections
|
||||
IntersectionProcess cr1 = new IntersectionProcess("Cr1", configFile.toString());
|
||||
IntersectionProcess cr2 = new IntersectionProcess("Cr2", configFile.toString());
|
||||
|
||||
cr1.initialize();
|
||||
cr2.initialize();
|
||||
|
||||
// start both
|
||||
Thread thread1 = new Thread(() -> {
|
||||
try { cr1.start(); } catch (IOException e) { }
|
||||
});
|
||||
|
||||
Thread thread2 = new Thread(() -> {
|
||||
try { cr2.start(); } catch (IOException e) { }
|
||||
});
|
||||
|
||||
thread1.start();
|
||||
thread2.start();
|
||||
|
||||
Thread.sleep(1000); // wait for servers
|
||||
|
||||
// send vehicle to Cr1 that goes to Cr2
|
||||
java.util.List<String> route = Arrays.asList("Cr1", "Cr2", "S");
|
||||
Vehicle vehicle = new Vehicle("V001", VehicleType.LIGHT, 0.0, route);
|
||||
|
||||
try (Socket socket = new Socket("localhost", 18001)) {
|
||||
ObjectOutputStream out = new ObjectOutputStream(socket.getOutputStream());
|
||||
|
||||
TestVehicleMessage message = new TestVehicleMessage("Entry", "Cr1", vehicle);
|
||||
out.writeObject(message);
|
||||
out.flush();
|
||||
|
||||
Thread.sleep(2000); // time for processing
|
||||
}
|
||||
|
||||
cr1.shutdown();
|
||||
cr2.shutdown();
|
||||
thread1.join(2000);
|
||||
thread2.join(2000);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testMain_MissingArguments() {
|
||||
// main needs intersection ID as argument
|
||||
// cant test System.exit easily in modern java
|
||||
assertTrue(true, "Main method expects intersection ID as first argument");
|
||||
}
|
||||
|
||||
// helper class for testing vehicle messages
|
||||
private static class TestVehicleMessage implements sd.protocol.MessageProtocol {
|
||||
private static final long serialVersionUID = 1L;
|
||||
|
||||
private final String sourceNode;
|
||||
private final String destinationNode;
|
||||
private final Vehicle payload;
|
||||
|
||||
public TestVehicleMessage(String sourceNode, String destinationNode, Vehicle vehicle) {
|
||||
this.sourceNode = sourceNode;
|
||||
this.destinationNode = destinationNode;
|
||||
this.payload = vehicle;
|
||||
}
|
||||
|
||||
@Override
|
||||
public MessageType getType() {
|
||||
return MessageType.VEHICLE_TRANSFER;
|
||||
}
|
||||
|
||||
@Override
|
||||
public Object getPayload() {
|
||||
return payload;
|
||||
}
|
||||
|
||||
@Override
|
||||
public String getSourceNode() {
|
||||
return sourceNode;
|
||||
}
|
||||
|
||||
@Override
|
||||
public String getDestinationNode() {
|
||||
return destinationNode;
|
||||
}
|
||||
}
|
||||
}
|
||||
125
main/src/test/java/SimulationTest.java
Normal file
125
main/src/test/java/SimulationTest.java
Normal file
@@ -0,0 +1,125 @@
|
||||
import java.io.IOException;
|
||||
|
||||
import static org.junit.jupiter.api.Assertions.assertEquals;
|
||||
import static org.junit.jupiter.api.Assertions.assertNotNull;
|
||||
import static org.junit.jupiter.api.Assertions.assertTrue;
|
||||
import org.junit.jupiter.api.Test;
|
||||
|
||||
import sd.config.SimulationConfig;
|
||||
import sd.engine.SimulationEngine;
|
||||
import sd.model.Event;
|
||||
import sd.model.EventType;
|
||||
import sd.model.Intersection;
|
||||
import sd.model.TrafficLight;
|
||||
import sd.model.TrafficLightState;
|
||||
import sd.model.Vehicle;
|
||||
import sd.model.VehicleType;
|
||||
import sd.util.StatisticsCollector;
|
||||
import sd.util.VehicleGenerator;
|
||||
|
||||
/**
|
||||
* Basic tests for the simulation components.
|
||||
*/
|
||||
class SimulationTest {
|
||||
|
||||
@Test
|
||||
void testConfigurationLoading() throws IOException {
|
||||
SimulationConfig config = new SimulationConfig("src/main/resources/simulation.properties");
|
||||
|
||||
assertEquals(60.0, config.getSimulationDuration());
|
||||
assertEquals("POISSON", config.getArrivalModel());
|
||||
assertEquals(0.5, config.getArrivalRate());
|
||||
assertEquals(10.0, config.getStatisticsUpdateInterval());
|
||||
}
|
||||
|
||||
@Test
|
||||
void testVehicleGeneration() throws IOException {
|
||||
SimulationConfig config = new SimulationConfig("src/main/resources/simulation.properties");
|
||||
VehicleGenerator generator = new VehicleGenerator(config);
|
||||
|
||||
Vehicle vehicle = generator.generateVehicle("TEST1", 0.0);
|
||||
|
||||
assertNotNull(vehicle);
|
||||
assertEquals("TEST1", vehicle.getId());
|
||||
assertNotNull(vehicle.getType());
|
||||
assertNotNull(vehicle.getRoute());
|
||||
assertTrue(!vehicle.getRoute().isEmpty());
|
||||
}
|
||||
|
||||
@Test
|
||||
void testEventOrdering() {
|
||||
Event e1 = new Event(5.0, EventType.VEHICLE_ARRIVAL, null, "Cr1");
|
||||
Event e2 = new Event(3.0, EventType.VEHICLE_ARRIVAL, null, "Cr2");
|
||||
Event e3 = new Event(7.0, EventType.TRAFFIC_LIGHT_CHANGE, null, "Cr1");
|
||||
|
||||
assertTrue(e2.compareTo(e1) < 0); // e2 should come before e1
|
||||
assertTrue(e1.compareTo(e3) < 0); // e1 should come before e3
|
||||
}
|
||||
|
||||
@Test
|
||||
void testIntersectionVehicleQueue() {
|
||||
Intersection intersection = new Intersection("TestCr");
|
||||
TrafficLight light = new TrafficLight("TestCr-N", "North", 30.0, 30.0);
|
||||
|
||||
intersection.addTrafficLight(light);
|
||||
|
||||
Vehicle v1 = new Vehicle("V1", VehicleType.LIGHT, 0.0,
|
||||
java.util.Arrays.asList("TestCr", "S"));
|
||||
|
||||
intersection.configureRoute("S", "North");
|
||||
|
||||
// Advance route to next destination
|
||||
v1.advanceRoute();
|
||||
|
||||
intersection.receiveVehicle(v1);
|
||||
|
||||
assertEquals(1, intersection.getTotalQueueSize());
|
||||
assertEquals(1, intersection.getTotalVehiclesReceived());
|
||||
}
|
||||
|
||||
@Test
|
||||
void testTrafficLightStateChange() {
|
||||
TrafficLight light = new TrafficLight("Test-Light", "North", 30.0, 30.0);
|
||||
|
||||
assertEquals(TrafficLightState.RED, light.getState());
|
||||
|
||||
light.changeState(TrafficLightState.GREEN);
|
||||
assertEquals(TrafficLightState.GREEN, light.getState());
|
||||
|
||||
light.changeState(TrafficLightState.RED);
|
||||
assertEquals(TrafficLightState.RED, light.getState());
|
||||
}
|
||||
|
||||
@Test
|
||||
void testSimulationEngineInitialization() throws IOException {
|
||||
SimulationConfig config = new SimulationConfig("src/main/resources/simulation.properties");
|
||||
SimulationEngine engine = new SimulationEngine(config);
|
||||
|
||||
engine.initialize();
|
||||
|
||||
assertNotNull(engine.getIntersections());
|
||||
assertEquals(5, engine.getIntersections().size());
|
||||
|
||||
// Check that intersections have traffic lights
|
||||
for (Intersection intersection : engine.getIntersections().values()) {
|
||||
assertEquals(3, intersection.getTrafficLights().size()); // North, South, East, West
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
void testStatisticsCollector() throws IOException {
|
||||
SimulationConfig config = new SimulationConfig("src/main/resources/simulation.properties");
|
||||
StatisticsCollector collector = new StatisticsCollector(config);
|
||||
|
||||
Vehicle v1 = new Vehicle("V1", VehicleType.LIGHT, 0.0,
|
||||
java.util.Arrays.asList("Cr1", "Cr2", "S"));
|
||||
|
||||
collector.recordVehicleGeneration(v1, 0.0);
|
||||
assertEquals(1, collector.getTotalVehiclesGenerated());
|
||||
|
||||
collector.recordVehicleArrival(v1, "Cr1", 1.0);
|
||||
|
||||
collector.recordVehicleExit(v1, 10.0);
|
||||
assertEquals(1, collector.getTotalVehiclesCompleted());
|
||||
}
|
||||
}
|
||||
140
main/src/test/java/sd/serialization/SerializationTest.java
Normal file
140
main/src/test/java/sd/serialization/SerializationTest.java
Normal file
@@ -0,0 +1,140 @@
|
||||
package sd.serialization;
|
||||
|
||||
import org.junit.jupiter.api.Test;
|
||||
import org.junit.jupiter.api.DisplayName;
|
||||
import sd.model.Message;
|
||||
import sd.model.Vehicle;
|
||||
import sd.model.VehicleType;
|
||||
|
||||
import java.util.Arrays;
|
||||
|
||||
import static org.junit.jupiter.api.Assertions.*;
|
||||
|
||||
/**
|
||||
* Test suite for JSON serialization.
|
||||
*
|
||||
* Tests JSON serialization to ensure:
|
||||
* - Correct serialization and deserialization
|
||||
* - Data integrity during round-trip conversion
|
||||
* - Proper error handling
|
||||
*/
|
||||
class SerializationTest {
|
||||
|
||||
private MessageSerializer jsonSerializer = new JsonMessageSerializer();
|
||||
|
||||
private Vehicle testVehicle = new Vehicle("V001", VehicleType.LIGHT, 10.5,
|
||||
Arrays.asList("Cr1", "Cr2", "Cr5", "S"));
|
||||
private Message testMessage = new Message(
|
||||
sd.model.MessageType.VEHICLE_TRANSFER,
|
||||
"Cr1",
|
||||
"Cr2",
|
||||
testVehicle
|
||||
);
|
||||
|
||||
|
||||
// ===== JSON Serialization Tests =====
|
||||
|
||||
@Test
|
||||
@DisplayName("JSON: Should serialize and deserialize Vehicle correctly")
|
||||
void testJsonVehicleRoundTrip() throws SerializationException {
|
||||
// Serialize
|
||||
byte[] data = jsonSerializer.serialize(testVehicle);
|
||||
assertNotNull(data);
|
||||
assertTrue(data.length > 0);
|
||||
|
||||
// Print JSON for inspection
|
||||
System.out.println("JSON Vehicle:");
|
||||
System.out.println(new String(data));
|
||||
|
||||
// Deserialize
|
||||
Vehicle deserialized = jsonSerializer.deserialize(data, Vehicle.class);
|
||||
|
||||
// Verify
|
||||
assertNotNull(deserialized);
|
||||
assertEquals(testVehicle.getId(), deserialized.getId());
|
||||
assertEquals(testVehicle.getType(), deserialized.getType());
|
||||
assertEquals(testVehicle.getEntryTime(), deserialized.getEntryTime());
|
||||
assertEquals(testVehicle.getRoute(), deserialized.getRoute());
|
||||
assertEquals(testVehicle.getTotalWaitingTime(), deserialized.getTotalWaitingTime());
|
||||
assertEquals(testVehicle.getTotalCrossingTime(), deserialized.getTotalCrossingTime());
|
||||
}
|
||||
|
||||
@Test
|
||||
@DisplayName("JSON: Should serialize and deserialize Message correctly")
|
||||
void testJsonMessageRoundTrip() throws SerializationException {
|
||||
// Serialize
|
||||
byte[] data = jsonSerializer.serialize(testMessage);
|
||||
assertNotNull(data);
|
||||
|
||||
// Print JSON for inspection
|
||||
System.out.println("\nJSON Message:");
|
||||
System.out.println(new String(data));
|
||||
|
||||
// Deserialize
|
||||
Message deserialized = jsonSerializer.deserialize(data, Message.class);
|
||||
|
||||
// Verify
|
||||
assertNotNull(deserialized);
|
||||
assertEquals(testMessage.getType(), deserialized.getType());
|
||||
assertEquals(testMessage.getSenderId(), deserialized.getSenderId());
|
||||
assertEquals(testMessage.getDestinationId(), deserialized.getDestinationId());
|
||||
}
|
||||
|
||||
@Test
|
||||
@DisplayName("JSON: Should throw exception on null object")
|
||||
void testJsonSerializeNull() {
|
||||
assertThrows(IllegalArgumentException.class, () -> {
|
||||
jsonSerializer.serialize(null);
|
||||
});
|
||||
}
|
||||
|
||||
@Test
|
||||
@DisplayName("JSON: Should throw exception on null data")
|
||||
void testJsonDeserializeNull() {
|
||||
assertThrows(IllegalArgumentException.class, () -> {
|
||||
jsonSerializer.deserialize(null, Vehicle.class);
|
||||
});
|
||||
}
|
||||
|
||||
@Test
|
||||
@DisplayName("JSON: Should throw exception on invalid JSON")
|
||||
void testJsonDeserializeInvalid() {
|
||||
byte[] invalidData = "{ invalid json }".getBytes();
|
||||
assertThrows(SerializationException.class, () -> {
|
||||
jsonSerializer.deserialize(invalidData, Vehicle.class);
|
||||
});
|
||||
}
|
||||
|
||||
@Test
|
||||
@DisplayName("JSON: Should preserve data integrity for complex objects")
|
||||
void testDataIntegrity() throws SerializationException {
|
||||
// Create a more complex vehicle
|
||||
Vehicle vehicle = new Vehicle("V999", VehicleType.HEAVY, 100.5,
|
||||
Arrays.asList("Cr1", "Cr2", "Cr3", "Cr4", "Cr5", "S"));
|
||||
vehicle.addWaitingTime(10.5);
|
||||
vehicle.addWaitingTime(5.3);
|
||||
vehicle.addCrossingTime(2.1);
|
||||
vehicle.advanceRoute();
|
||||
vehicle.advanceRoute();
|
||||
|
||||
// Serialize and deserialize
|
||||
byte[] jsonData = jsonSerializer.serialize(vehicle);
|
||||
Vehicle deserialized = jsonSerializer.deserialize(jsonData, Vehicle.class);
|
||||
|
||||
// Verify all fields match
|
||||
assertEquals(vehicle.getId(), deserialized.getId());
|
||||
assertEquals(vehicle.getType(), deserialized.getType());
|
||||
assertEquals(vehicle.getTotalWaitingTime(), deserialized.getTotalWaitingTime());
|
||||
assertEquals(vehicle.getCurrentRouteIndex(), deserialized.getCurrentRouteIndex());
|
||||
}
|
||||
|
||||
// ===== Factory Tests =====
|
||||
|
||||
@Test
|
||||
@DisplayName("Factory: Should create JSON serializer by default")
|
||||
void testFactoryDefault() {
|
||||
MessageSerializer serializer = SerializerFactory.createDefault();
|
||||
assertNotNull(serializer);
|
||||
assertEquals("JSON (Gson)", serializer.getName());
|
||||
}
|
||||
}
|
||||
Binary file not shown.
Reference in New Issue
Block a user