18 Commits

Author SHA1 Message Date
David Alves
534a880e3e Remove unused supports method from MessageSerializer 2025-10-24 12:02:03 +01:00
David Alves
ba3233eae1 Java serialization removed 2025-10-23 22:44:25 +01:00
David Alves
d20040835c README 2025-10-23 20:28:43 +01:00
David Alves
2399b4b472 Delete main/docs directory 2025-10-23 20:22:53 +01:00
David Alves
974debf7db Design serialization format
JSON
2025-10-23 20:08:26 +01:00
David Alves
af9b091e76 Define message types 2025-10-22 18:43:49 +01:00
David Alves
fc46b9b83b Update SimulationConfig.java
Modification to open properties file.
2025-10-22 15:44:51 +01:00
Leandro Afonso
a7c17ca9b9 proto-doc 2025-10-21 23:00:40 +01:00
Leandro Afonso
1c033880e7 basic core function 2025-10-21 20:26:57 +01:00
David Alves
30fc2d6554 Merge pull request #1 from davidalves04/leo
Feat: Implement core discrete-event simulation logic and external configuration
2025-10-21 11:32:16 +01:00
Leandro Afonso
d41973d27f added bike//heavy prob & cross time 2025-10-21 11:19:40 +01:00
Leandro Afonso
ce226f261a added intersect, vehicle and light logic + random poisson dist 2025-10-21 11:11:56 +01:00
874fd53a21 Diagrama de Arquitetura 2025-10-20 12:35:15 +01:00
Leandro Afonso
08b254b8de added config based traffic 2025-10-20 12:09:05 +01:00
David Alves
19bf313c81 Actualizar Diagrama de arquitetura - SD.drawio 2025-10-20 12:00:44 +01:00
David Alves
cfb24b21bf Diagrama de arquitetura - SD.drawio 2025-10-20 11:50:37 +01:00
David Alves
b9991ba6ba Adicionado Diagrama de arquitetura - SD.drawio 2025-10-20 11:49:32 +01:00
Leandro Afonso
651dc754b8 personal branch 2025-10-14 02:20:24 +01:00
69 changed files with 4786 additions and 3881 deletions

50
.gitignore vendored Normal file
View File

@@ -0,0 +1,50 @@
# Compiled class files
*.class
# Log files
*.log
# BlueJ files
*.ctxt
# Mobile Tools for Java (J2ME)
.mtj.tmp/
# Package Files #
*.jar
*.war
*.ear
# VS Code settings
.vscode/
# Eclipse files
*.pydevproject
.project
.classpath
.cproject
.settings/
bin/
tmp/
# IntelliJ IDEA files
*.iml
.idea/
out/
# Mac system files
.DS_Store
# Windows system files
Thumbs.db
# Maven
target/
# Gradle
.gradle/
build/
# Other
*.swp
*.pdf

View File

@@ -0,0 +1,27 @@
<mxfile host="app.diagrams.net" agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/141.0.0.0 Safari/537.36 Edg/141.0.0.0" version="28.2.7">
<diagram name="Página-1" id="B1_hHcevBzWlEwI7FSV6">
<mxGraphModel dx="778" dy="476" grid="1" gridSize="10" guides="1" tooltips="1" connect="1" arrows="1" fold="1" page="1" pageScale="1" pageWidth="827" pageHeight="1169" math="0" shadow="0">
<root>
<mxCell id="0" />
<mxCell id="1" parent="0" />
<mxCell id="vcp7vux32DhQR4tKQhnF-8" value="Dashboard" style="sketch=0;pointerEvents=1;shadow=0;dashed=0;html=1;strokeColor=#C73500;labelPosition=center;verticalLabelPosition=bottom;verticalAlign=top;align=center;fillColor=#fa6800;shape=mxgraph.mscae.oms.dashboard;fontColor=#000000;" vertex="1" parent="1">
<mxGeometry x="389" y="230" width="50" height="41" as="geometry" />
</mxCell>
<mxCell id="vcp7vux32DhQR4tKQhnF-12" value="Semaforo.java" style="shape=image;html=1;verticalAlign=top;verticalLabelPosition=bottom;labelBackgroundColor=#ffffff;imageAspect=0;aspect=fixed;image=https://icons.diagrams.net/icon-cache1/Strabo-2829/traffic_light-1068.png" vertex="1" parent="1">
<mxGeometry x="230" y="350" width="53" height="53" as="geometry" />
</mxCell>
<mxCell id="vcp7vux32DhQR4tKQhnF-13" value="" style="endArrow=classic;startArrow=classic;html=1;rounded=0;movable=1;resizable=1;rotatable=1;deletable=1;editable=1;locked=0;connectable=1;" edge="1" parent="1">
<mxGeometry width="50" height="50" relative="1" as="geometry">
<mxPoint x="310" y="330" as="sourcePoint" />
<mxPoint x="360" y="280" as="targetPoint" />
</mxGeometry>
</mxCell>
<mxCell id="vcp7vux32DhQR4tKQhnF-14" value="CruzamentoServer.java" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=1;points=[];movable=1;rotatable=1;deletable=1;editable=1;locked=0;connectable=1;" vertex="1" connectable="0" parent="vcp7vux32DhQR4tKQhnF-13">
<mxGeometry x="-0.3933" relative="1" as="geometry">
<mxPoint x="25" y="25" as="offset" />
</mxGeometry>
</mxCell>
</root>
</mxGraphModel>
</diagram>
</mxfile>

620
README.md Normal file
View File

@@ -0,0 +1,620 @@
# Sistema de Simulação de Tráfego Distribuído
Sistema distribuído de simulação de tráfego.
---
## Índice
- [Visão Geral](#visão-geral)
- [Arquitetura](#arquitetura)
- [Protocolo de Comunicação](#protocolo-de-comunicação)
- [Estrutura do Projeto](#estrutura-do-projeto)
- [Instalação e Execução](#instalação-e-execução)
- [Documentação](#documentação)
- [Desenvolvimento](#desenvolvimento)
---
## Visão Geral
Este projeto implementa uma simulação distribuída de tráfego veicular numa rede de cruzamentos. O sistema utiliza:
- **Processos independentes** para cada cruzamento
- **Threads** para controlar os semáforos dentro de cada cruzamento
- **Comunicação via sockets** para transferência de veículos entre cruzamentos
- **Simulação de eventos discretos** (DES) para gerir o tempo de simulação
### Características Principais
- Simulação determinística e reproduzível
- Comunicação assíncrona entre processos
- Protocolo de mensagens baseado em JSON
- Dashboard em tempo real (planeado)
- Estatísticas detalhadas de desempenho
---
## Arquitetura
### Visão Geral do Sistema
```
┌─────────────────────────────────────────────────────────────────┐
│ SISTEMA DISTRIBUÍDO │
├─────────────────────────────────────────────────────────────────┤
│ │
│ ┌──────────────┐ ┌──────────────┐ │
│ │ Coordenador │ ────────────────────────>│ Dashboard │ │
│ │ / Gerador │ │ │
│ └──────┬───────┘ └──────▲───────┘ │
│ │ │ │
│ │ Gera veículos Stats │ │
│ │ │ │
│ ▼ │ │
│ ┌─────────────────────────────────────────────────┴──────┐ │
│ │ Rede de Cruzamentos (Processos) │ │
│ │ │ │
│ │ ┌────┐ ┌────┐ ┌────┐ │ │
│ │ │Cr1 │◄───────►│Cr2 │◄───────►│Cr3 │ │ │
│ │ └─┬──┘ └─┬──┘ └─┬──┘ │ │
│ │ │ │ │ │ │
│ │ │ ┌────▼────┐ │ │ │
│ │ └────────►│ Cr4 │◄────────┘ │ │
│ │ └────┬────┘ │ │
│ │ │ │ │
│ │ ┌────▼────┐ │ │
│ │ │ Cr5 │ │ │
│ │ └────┬────┘ │ │
│ └───────────────────┼─────────────────────────────────────┤ │
│ │ │ │
│ ▼ │ │
│ ┌──────────────┐ │ │
│ │ Nó de Saída │ │ │
│ │ (S) │ │ │
│ └──────────────┘ │ │
│ │ │
└────────────────────────────────────────────────────────────┘ │
```
### Componentes
1. **Coordenador/Gerador**: Gera veículos e injeta no sistema
2. **Cruzamentos (Cr1-Cr5)**: Processos independentes que gerem tráfego local
3. **Nó de Saída (S)**: Recolhe estatísticas de veículos que saem do sistema
4. **Dashboard Server**: Agrega e exibe dados em tempo real
---
## Protocolo de Comunicação
### Formato de Serialização: JSON (Gson)
O sistema utiliza JSON como formato de serialização por ser mais rápido, seguro e legível que a serialização em Java.
### Estrutura de Mensagens
Todas as mensagens seguem o formato base:
```json
{
"messageId": "uuid",
"type": "MESSAGE_TYPE",
"senderId": "sender_id",
"destinationId": "destination_id",
"timestamp": 1729595234567,
"payload": { ... }
}
```
### Tipos de Mensagens
#### 1. VEHICLE_TRANSFER
Transfere um veículo entre cruzamentos.
**Estrutura:**
```json
{
"messageId": "a3c5e7f9-1234-5678-90ab-cdef12345678",
"type": "VEHICLE_TRANSFER",
"senderId": "Cr1",
"destinationId": "Cr2",
"timestamp": 1729595234567,
"payload": {
"id": "V123",
"type": "LIGHT",
"entryTime": 15.7,
"route": ["Cr1", "Cr2", "Cr5", "S"],
"currentRouteIndex": 1,
"totalWaitingTime": 3.2,
"totalCrossingTime": 1.8
}
}
```
**Fluxo:**
1. Veículo completa travessia no Cr1
2. Cr1 serializa mensagem VEHICLE_TRANSFER
3. Envia para Cr2 via socket
4. Cr2 desserializa e adiciona veículo à fila
#### 2. STATS_UPDATE
Envia estatísticas de um cruzamento para o Dashboard.
**Estrutura:**
```json
{
"messageId": "b4d6e8f0-2345-6789-01bc-def123456789",
"type": "STATS_UPDATE",
"senderId": "Cr3",
"destinationId": "Dashboard",
"timestamp": 1729595234789,
"payload": {
"intersectionId": "Cr3",
"queueLengths": {
"North": 5,
"South": 3,
"East": 7,
"West": 2
},
"vehiclesProcessed": 142,
"averageWaitTime": 4.5,
"currentTime": 123.45
}
}
```
**Frequência:** A cada 10 segundos (configurável)
#### 3. VEHICLE_EXIT
Notifica quando um veículo sai do sistema.
**Estrutura:**
```json
{
"messageId": "c5e7f9a1-3456-7890-12bc-def123456789",
"type": "VEHICLE_EXIT",
"senderId": "Cr5",
"destinationId": "ExitNode",
"timestamp": 1729595234890,
"payload": {
"id": "V123",
"type": "LIGHT",
"entryTime": 15.7,
"exitTime": 45.2,
"totalSystemTime": 29.5,
"totalWaitingTime": 8.3,
"totalCrossingTime": 4.8,
"routeTaken": ["Cr1", "Cr2", "Cr5", "S"]
}
}
```
#### 4. HEARTBEAT
Mantém a ligação ativa e monitoriza a saúde dos processos.
**Estrutura:**
```json
{
"messageId": "d6e8f0a2-4567-8901-23cd-ef1234567890",
"type": "HEARTBEAT",
"senderId": "Cr1",
"destinationId": "Coordinator",
"timestamp": 1729595235000,
"payload": {
"status": "RUNNING",
"uptime": 120.5,
"vehiclesInQueue": 12
}
}
```
**Frequência:** A cada 5 segundos
#### 5. LIGHT_CHANGE
Notifica mudança de estado de semáforo (para logging/debugging).
**Estrutura:**
```json
{
"messageId": "e7f9a1b3-5678-9012-34de-f12345678901",
"type": "LIGHT_CHANGE",
"senderId": "Cr1-North",
"destinationId": "Dashboard",
"timestamp": 1729595235100,
"payload": {
"lightId": "Cr1-North",
"previousState": "RED",
"newState": "GREEN",
"queueSize": 5
}
}
```
### Tipos de Veículos
```json
{
"BIKE": {
"probability": 0.20,
"crossingTime": 1.5
},
"LIGHT": {
"probability": 0.60,
"crossingTime": 2.0
},
"HEAVY": {
"probability": 0.20,
"crossingTime": 4.0
}
}
```
### Estados dos Semáforos
```
RED → Veículos aguardam na fila
GREEN → Veículos podem atravessar
```
### Exemplo de Comunicação Completa
```
Tempo Processo Ação Mensagem
------ --------- ------------------------------------- ------------------
15.7s Gerador Gera veículo V123 -
15.7s Gerador → Injeta V123 em Cr1 VEHICLE_TRANSFER
18.2s Cr1 V123 inicia travessia -
20.2s Cr1 V123 completa travessia -
20.2s Cr1 → Cr2 Transfere V123 para Cr2 VEHICLE_TRANSFER
23.5s Cr2 V123 inicia travessia -
25.5s Cr2 V123 completa travessia -
25.5s Cr2 → Cr5 Transfere V123 para Cr5 VEHICLE_TRANSFER
28.0s Cr5 V123 inicia travessia -
30.0s Cr5 V123 completa travessia -
30.0s Cr5 → Exit V123 sai do sistema VEHICLE_EXIT
30.0s Exit → Dash Estatísticas de V123 STATS_UPDATE
```
---
## Estrutura do Projeto
```
Trabalho-Pratico-SD/
├── README.md # Este ficheiro
├── TODO.md # Plano de desenvolvimento
├── main/
│ ├── pom.xml # Configuração do Maven
│ ├── docs/
│ │ ├── README.md # Índice da documentação
│ │ ├── SERIALIZATION_SPECIFICATION.md
│ │ ├── SERIALIZATION_DECISION.md
│ │ ├── SERIALIZATION_SUMMARY.md
│ │ └── SERIALIZATION_ARCHITECTURE.md
│ ├── src/
│ │ ├── main/java/sd/
│ │ │ ├── Entry.java # Ponto de entrada
│ │ │ ├── config/
│ │ │ │ └── SimulationConfig.java
│ │ │ ├── engine/
│ │ │ │ └── SimulationEngine.java
│ │ │ ├── model/
│ │ │ │ ├── Event.java
│ │ │ │ ├── EventType.java
│ │ │ │ ├── Intersection.java
│ │ │ │ ├── Message.java # Estrutura de mensagens
│ │ │ │ ├── MessageType.java # Tipos de mensagens
│ │ │ │ ├── TrafficLight.java
│ │ │ │ ├── Vehicle.java
│ │ │ │ └── VehicleType.java
│ │ │ ├── serialization/ # Sistema de serialização
│ │ │ │ ├── MessageSerializer.java
│ │ │ │ ├── SerializationException.java
│ │ │ │ ├── JsonMessageSerializer.java
│ │ │ │ ├── SerializerFactory.java
│ │ │ │ ├── SerializationExample.java
│ │ │ │ └── README.md
│ │ │ └── util/
│ │ │ ├── RandomGenerator.java
│ │ │ ├── StatisticsCollector.java
│ │ │ └── VehicleGenerator.java
│ │ └── test/java/
│ │ ├── SimulationTest.java
│ │ └── sd/serialization/
│ │ └── SerializationTest.java
│ └── target/ # Ficheiros compilados
└── .vscode/ # Configuração do VS Code
```
---
## Instalação e Execução
### Pré-requisitos
- **Java 17** ou superior
- **Maven 3.8+**
- **Git**
### Instalação
```bash
# Clonar o repositório
git clone https://github.com/davidalves04/Trabalho-Pratico-SD.git
cd Trabalho-Pratico-SD/main
# Compilar o projeto
mvn clean compile
# Executar os testes
mvn test
```
### Execução
#### Simulação Básica (Single Process)
```bash
mvn exec:java -Dexec.mainClass="sd.Entry"
```
#### Exemplo de Serialização
```bash
mvn exec:java -Dexec.mainClass="sd.serialization.SerializationExample"
```
#### Configuração
Editar `src/main/resources/simulation.properties`:
```properties
# Duração da simulação (segundos)
simulation.duration=60.0
# Modelo de chegada: FIXED ou POISSON
arrival.model=POISSON
# Taxa de chegada (veículos/segundo)
arrival.rate=0.5
# Intervalo de atualização de estatísticas (segundos)
stats.update.interval=10.0
# Distribuição de tipos de veículos
vehicle.type.bike.probability=0.20
vehicle.type.light.probability=0.60
vehicle.type.heavy.probability=0.20
# Tempos de travessia por tipo (segundos)
vehicle.type.bike.crossing.time=1.5
vehicle.type.light.crossing.time=2.0
vehicle.type.heavy.crossing.time=4.0
```
---
## Documentação
### Documentação de Serialização
A documentação completa sobre o protocolo de serialização está disponível em:
- **[Índice Completo](./main/docs/README.md)** - Navegação da documentação
- **[Especificação](./main/docs/SERIALIZATION_SPECIFICATION.md)** - Design detalhado
- **[Guia de Decisão](./main/docs/SERIALIZATION_DECISION.md)** - Porquê JSON?
- **[Resumo](./main/docs/SERIALIZATION_SUMMARY.md)** - Estado de implementação
- **[Arquitetura](./main/docs/SERIALIZATION_ARCHITECTURE.md)** - Diagramas visuais
### Guias de Utilização
- **[Serialization README](./main/src/main/java/sd/serialization/README.md)** - Como utilizar os serializers
### Exemplos de Código
```java
// Criar serializer
MessageSerializer serializer = SerializerFactory.createDefault();
// Serializar mensagem
Vehicle vehicle = new Vehicle("V123", VehicleType.LIGHT, 10.5, route);
Message message = new Message(
MessageType.VEHICLE_TRANSFER,
"Cr1",
"Cr2",
vehicle
);
byte[] data = serializer.serialize(message);
// Enviar via socket
outputStream.write(data);
// Receber e desserializar
byte[] received = inputStream.readAllBytes();
Message msg = serializer.deserialize(received, Message.class);
Vehicle v = msg.getPayloadAs(Vehicle.class);
```
---
## Desenvolvimento
### Estado do Projeto
| Componente | Estado | Notas |
|------------|--------|-------|
| Modelo de Dados | Completo | Vehicle, Message, Event, etc. |
| Simulação DES | Completo | Single-process funcional |
| Serialização | Completo | JSON e Java implementados |
| Testes | 14/14 | Suite de serialização |
| Processos Distribuídos | Planeado | Próxima etapa |
| Comunicação Sockets | Planeado | Em design |
| Dashboard | Planeado | UI web |
### Roteiro de Desenvolvimento
#### Fase 1: Fundações (Concluído)
- Modelação de classes
- Simulação DES single-process
- Design de protocolo de serialização
- Implementação JSON/Java serialization
- Testes unitários
#### Fase 2: Distribuição (Em Curso)
- Implementar comunicação via sockets
- Separar cruzamentos em processos
- Implementar threads de semáforos
- Testar comunicação entre processos
#### Fase 3: Dashboard e Monitorização
- Dashboard server
- UI web em tempo real
- Visualização de estatísticas
- Logs estruturados
#### Fase 4: Optimização e Análise
- Testes de carga
- Análise de diferentes políticas
- Recolha de métricas
- Relatório final
### Executar Testes
```bash
# Todos os testes
mvn test
# Apenas testes de serialização
mvn test -Dtest=SerializationTest
# Com relatório de cobertura
mvn test jacoco:report
```
### Contribuir
1. Fork o projeto
2. Criar uma branch para a funcionalidade (`git checkout -b feature/MinhaFuncionalidade`)
3. Commit das alterações (`git commit -m 'Adiciona MinhaFuncionalidade'`)
4. Push para a branch (`git push origin feature/MinhaFuncionalidade`)
5. Abrir um Pull Request
---
## Métricas de Desempenho
### Serialização
| Formato | Tamanho | Latência | Throughput |
|---------|---------|----------|------------|
| JSON | 300 bytes | 40.79 μs | ~24k msgs/s |
| Java | 657 bytes | 33.34 μs | ~30k msgs/s |
**Conclusão**: JSON é 54% menor com overhead desprezível (7 μs)
### Simulação
- **Veículos gerados/s**: ~0.5-1.0 (configurável)
- **Throughput**: ~0.2 veículos/s (saída)
- **Tempo de execução**: 140ms para 60s de simulação
- **Overhead**: < 0.25% do tempo simulado
---
## Protocolo de Mensagens - Resumo
### Formato Base
```
+------------------+
| Message Header |
|------------------|
| messageId | UUID único
| type | Enum MessageType
| senderId | ID do processo remetente
| destinationId | ID do processo destino (null = broadcast)
| timestamp | Tempo de criação (ms)
+------------------+
| Payload |
|------------------|
| Object | Dados específicos do tipo de mensagem
+------------------+
```
### Serialização
- **Formato**: JSON (UTF-8)
- **Biblioteca**: Gson 2.10.1
- **Codificação**: UTF-8
- **Compressão**: Opcional (gzip)
### Transporte
- **Protocolo**: TCP/IP
- **Porta base**: 5000+ (configurável)
- **Timeout**: 30s
- **Keep-alive**: Heartbeat a cada 5s
---
## Segurança
### Considerações
1. **Validação de Mensagens**
- Verificar tipos esperados
- Validar intervalos de valores
- Rejeitar mensagens malformadas
2. **Autenticação** (Planeado)
- Autenticação baseada em token
- Whitelist de processos
3. **Encriptação** (Opcional)
- TLS/SSL para produção
- Não necessário para ambiente de desenvolvimento local
---
## Licença
Este projeto é desenvolvido para fins académicos no âmbito da disciplina de Sistemas Distribuídos (SD) do Instituto Politécnico do Porto.
---
## Equipa
**Instituição**: Instituto Politécnico do Porto
**Curso**: Sistemas Distribuídos
**Ano Letivo**: 2025-2026 ( Semestre)
---
## Suporte
Para questões ou problemas:
1. Consultar a [documentação](./main/docs/README.md)
2. Ver [exemplos de código](./main/src/main/java/sd/serialization/SerializationExample.java)
3. Executar testes: `mvn test`
4. Abrir issue no GitHub
---
## Ligações Úteis
- [Documentação do Projeto](./main/docs/README.md)
- [Plano de Desenvolvimento](./TODO.md)
- [Especificação de Serialização](./main/docs/SERIALIZATION_SPECIFICATION.md)
- [Guia de Serialização](./main/src/main/java/sd/serialization/README.md)
---
**Última actualização**: 23 de outubro de 2025
**Versão**: 1.0.0
**Estado**: Em Desenvolvimento Activo

175
TODO.md Normal file
View File

@@ -0,0 +1,175 @@
### Compreender os Conceitos Fundamentais
Primeiro, as tecnologias e paradigmas chave necessários para este projeto devem ser totalmente compreendidos.
- **Processos vs. Threads:** O projeto especifica o uso de ambos.
- **Processos (para Cruzamentos)** são programas independentes, cada um com o seu próprio espaço de memória. Em Java, cada cruzamento será provavelmente executado como uma aplicação Java separada (uma instância distinta da JVM).
- **Threads (para Semáforos)** existem _dentro_ de um processo e partilham memória. Isto é adequado para os semáforos, pois eles precisam de ser coordenados e partilhar dados (como filas de veículos) dentro do mesmo cruzamento.
- **Comunicação Entre Processos (IPC - Inter-Process Communication):** Como os cruzamentos são processos separados, é necessário um método para que eles comuniquem. **Sockets** são o método especificado. Quando um veículo sai de um cruzamento (ex: `Cr1`) e vai para outro (ex: `Cr2`), o processo `Cr1` precisa de enviar uma mensagem contendo os dados do veículo para o processo `Cr2` através de uma conexão por socket.
- **Simulação de Eventos Discretos (DES - Discrete-Event Simulation):** Este é o paradigma de simulação que deve ser utilizado. Em vez de o tempo fluir continuamente, o relógio da simulação salta de um evento para o seguinte.
- Um **evento** é um objeto que representa algo que acontece num ponto específico no tempo (ex: "Veículo A chega ao Cr2 no tempo 15.7s").
- Uma **lista de eventos** central, frequentemente uma fila de prioridades, será necessária para armazenar eventos futuros, ordenados pelo seu timestamp. O ciclo principal da simulação retira o próximo evento da lista, processa-o e adiciona quaisquer novos eventos que resultem dele.
- **Processo de Poisson:** Para o modelo "mais realista" de chegadas de veículos, é especificado um processo de Poisson. A principal conclusão é que o tempo _entre_ chegadas consecutivas de veículos segue uma **distribuição exponencial**. Em Java, este intervalo pode ser gerado usando `Math.log(1 - Math.random()) / -lambda`, onde `lambda` (λi) é a taxa de chegada especificada.
---
### Uma Sugestão de Arquitetura de Alto Nível
Abaixo, é apresentada uma possível estrutura para a aplicação distribuída. Pode ser vista como um conjunto de programas independentes que comunicam através de uma rede.
1. **Processo Coordenador/Gerador (1 Processo):**
- **Propósito:** Iniciar a simulação, gerar veículos e gerir o relógio global da simulação ou os critérios de paragem.
- **Responsabilidades:**
- Lê a configuração da simulação (ex: carga de tráfego λi, tempos dos semáforos).
- Gera veículos de acordo com o modelo selecionado (intervalo fixo ou processo de Poisson).
- Atribui a cada novo veículo um percurso com base na distribuição uniforme especificada.
- Injeta o veículo no sistema enviando uma mensagem para o primeiro processo de cruzamento no seu percurso (ex: de um ponto de entrada E1 para Cr1).
2. **Processos de Cruzamento (5 Processos):**
- **Propósito:** Simular cada cruzamento (`Cr1` a `Cr5`) como um processo distinto.
- **Responsabilidades:**
- Escuta por veículos a chegar de outros processos.
- Gere as filas de veículos para os seus semáforos.
- Executa múltiplas **threads de Semáforo** internamente.
- Coordena estas threads para garantir que apenas uma direção de tráfego está aberta a cada momento.
- Quando um veículo atravessa, é encaminhado para o processo seguinte no seu percurso.
- Envia periodicamente as suas estatísticas (ex: comprimentos atuais das filas) para o Servidor do Dashboard.
3. **Processo de Nó de Saída (1 Processo):**
- **Propósito:** Representar o ponto de saída `S` e atuar como um coletor de dados para estatísticas globais.
- **Responsabilidades:**
- Recebe veículos que completaram o seu percurso.
- Calcula métricas globais como o tempo total de viagem (tempo de permanência) para cada veículo.
- Agrega e calcula as estatísticas finais (ex: tempo de viagem mínimo, máximo e médio por tipo de veículo).
- Envia estas estatísticas globais para o Servidor do Dashboard.
4. **Processo do Servidor do Dashboard (1 Processo):**
- **Propósito:** Agregar e exibir todos os dados da simulação em tempo real.
- **Responsabilidades:**
- Abre um socket de servidor e escuta por dados a chegar de todos os processos de Cruzamento e de Saída.
- Armazena e atualiza as estatísticas à medida que chegam.
- Apresenta os dados numa interface de utilizador, que deve exibir métricas e ser atualizada durante a simulação.
---
### Plano
Nem tudo deve ser construído de uma só vez. Os seguintes passos incrementais são recomendados.
#### **Passo 1: Modelação e Classes Principais (Não-distribuído)**
Antes de escrever qualquer lógica complexa, as estruturas de dados devem ser definidas. Devem ser criados Plain Old Java Objects (POJOs) para:
- `Veiculo`: Com atributos como um identificador único, tipo, tempo de entrada e o percurso realizado. Deve ser tornado `Serializable` para que possa ser enviado através de sockets.
- `Evento`: Com atributos como um timestamp e o tipo de evento (ex: `VEHICLE_ARRIVAL`), bem como dados associados.
- `Semaforo`: Para conter o seu estado (`VERDE`/`VERMELHO`) e a fila de veículos.
- `Cruzamento`: Para conter os seus semáforos e a lógica operacional.
#### **Passo 2: Construir um Protótipo de Processo Único**
Este é um passo crucial. Sockets e processos devem ser deixados de lado por agora para construir toda a simulação numa única aplicação Java.
- Deve ser criado um ciclo de simulação central baseado numa fila de prioridades para objetos `Evento`.
- Todos os objetos `Cruzamento` e `Semaforo` devem ser instanciados.
- A lógica principal deve ser tornada funcional: veículos a moverem-se entre filas, semáforos a mudar de estado e estatísticas básicas a serem recolhidas.
- **Objetivo:** Uma simulação totalmente funcional e não-distribuída. Isto torna a depuração significativamente mais fácil.
#### **Passo 3: Distribuir os Cruzamentos**
O protótipo pode agora ser convertido num sistema distribuído.
- A classe `Cruzamento` deve ser tornada executável como uma aplicação Java autónoma (com um método `main`). Serão lançadas cinco instâncias, uma para cada cruzamento.
- Devem ser configurados sockets TCP para comunicação. Cada processo de cruzamento precisa de saber o endereço/porta dos vizinhos para os quais pode enviar veículos.
- Um **protocolo de comunicação** claro deve ser definido. Por exemplo, quando `Cr1` envia um veículo para `Cr2`, o objeto `Veiculo` é serializado e escrito no socket conectado a `Cr2`. O processo `Cr2` terá uma thread dedicada para escutar estas conexões de entrada.
#### **Passo 4: Implementar as Threads dos Semáforos**
Dentro de cada processo `Cruzamento`, os semáforos devem ser implementados como threads.
- O principal desafio aqui é a **sincronização**. As threads dos semáforos num único cruzamento partilham as filas de veículos.
- As ferramentas de concorrência do Java (como `synchronized`, `ReentrantLock`, `Semaphore`) devem ser usadas para garantir que apenas um semáforo pode estar verde para um percurso conflituante e que o acesso às filas partilhadas é seguro (thread-safe).
#### **Passo 5: Implementar o Dashboard**
- O processo `DashboardServer` deve ser criado. Ele irá escutar numa porta específica por estatísticas a chegar.
- Nos processos `Cruzamento` e `Saida`, deve ser adicionado um mecanismo para enviar periodicamente um resumo das suas estatísticas atuais para o Servidor do Dashboard.
- A UI deve ser construída para exibir estes dados em tempo real.
#### **Passo 6: Testes e Análise**
Assim que o sistema completo estiver a funcionar, as experiências exigidas pela descrição do projeto podem ser realizadas.
- A simulação deve ser executada com diferentes taxas de chegada de veículos para simular cargas baixas, médias e altas.
- Diferentes políticas de temporização dos semáforos devem ser testadas para medir o seu impacto no congestionamento.
- Diferentes algoritmos de seleção de percurso e o seu impacto no desempenho do sistema devem ser avaliados.
- Para cada cenário, a simulação deve ser executada várias vezes para recolher estatísticas fiáveis (médias, desvios padrão, intervalos de confiança), conforme solicitado.
#### **Passo 7: Escrever o Relatório**
À medida que cada passo é concluído, deve ser documentado. Isto tornará a escrita do relatório final muito mais fácil. Todos os pontos mencionados nas secções "Entrega" e "Critérios de Avaliação" devem ser abordados.
---
### OBS:
- **Começar de Forma Simples:** O protótipo de processo único (Passo 2) evitará grandes dificuldades mais tarde.
- **Protocolo de Comunicação:** O protocolo de mensagens deve ser definido o mais cedo possível. A informação exata que um processo envia para outro deve ser clara//simples//consistente.
- **Debugging:** Debugging de sistemas distribuídos podem ser difíceis. Uma framework de logging (como Log4j 2 ou SLF4J) pode ser usada para registar eventos//alterações de estado nos diferentes processos.
- **Configuração:** Valores como endereços IP, números de porta ou parâmetros da simulação não devem ser "hardcoded". Um ficheiro de configuração (ex: um ficheiro `.properties` ou `.json`) torna a aplicação mais fácil de executar e testar.

View File

@@ -0,0 +1,172 @@
<?xml version='1.0' encoding='utf-8'?>
<mxfile host="app.diagrams.net" agent="Gemini" version="28.2.7">
<diagram name="Arquitetura-Sistema-Trafego" id="L-jWkP8vD7q_2fM6N-yC">
<mxGraphModel dx="1434" dy="746" grid="1" gridSize="10" guides="1" tooltips="1" connect="1" arrows="1" fold="1" page="1" pageScale="1" pageWidth="1654" pageHeight="1169" math="0" shadow="0">
<root>
<mxCell id="0" />
<mxCell id="1" parent="0" />
<mxCell id="E1-process" value="Processo Gerador E1" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#dae8fc;strokeColor=#6c8ebf;" vertex="1" parent="1">
<mxGeometry x="140" y="100" width="140" height="60" as="geometry" />
</mxCell>
<mxCell id="E2-process" value="Processo Gerador E2" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#dae8fc;strokeColor=#6c8ebf;" vertex="1" parent="1">
<mxGeometry x="430" y="100" width="140" height="60" as="geometry" />
</mxCell>
<mxCell id="E3-process" value="Processo Gerador E3" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#dae8fc;strokeColor=#6c8ebf;" vertex="1" parent="1">
<mxGeometry x="720" y="100" width="140" height="60" as="geometry" />
</mxCell>
<mxCell id="Cr1-process" value="Processo Cruzamento (Cr1)" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#fff2cc;strokeColor=#d6b656;verticalAlign=top;spacingTop=5;" vertex="1" parent="1">
<mxGeometry x="140" y="240" width="140" height="100" as="geometry" />
</mxCell>
<mxCell id="Cr1-thread1" value="Thread Semáforo" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#d5e8d4;strokeColor=#82b366;" vertex="1" parent="Cr1-process">
<mxGeometry x="20" y="30" width="100" height="30" as="geometry" />
</mxCell>
<mxCell id="Cr1-thread2" value="Thread Semáforo" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#d5e8d4;strokeColor=#82b366;" vertex="1" parent="Cr1-process">
<mxGeometry x="20" y="65" width="100" height="30" as="geometry" />
</mxCell>
<mxCell id="Cr2-process" value="Processo Cruzamento (Cr2)" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#fff2cc;strokeColor=#d6b656;verticalAlign=top;spacingTop=5;" vertex="1" parent="1">
<mxGeometry x="430" y="240" width="140" height="140" as="geometry" />
</mxCell>
<mxCell id="Cr2-thread1" value="Thread Semáforo" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#d5e8d4;strokeColor=#82b366;" vertex="1" parent="Cr2-process">
<mxGeometry x="20" y="30" width="100" height="30" as="geometry" />
</mxCell>
<mxCell id="Cr2-thread2" value="Thread Semáforo" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#d5e8d4;strokeColor=#82b366;" vertex="1" parent="Cr2-process">
<mxGeometry x="20" y="65" width="100" height="30" as="geometry" />
</mxCell>
<mxCell id="Cr2-thread3" value="Thread Semáforo" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#d5e8d4;strokeColor=#82b366;" vertex="1" parent="Cr2-process">
<mxGeometry x="20" y="100" width="100" height="30" as="geometry" />
</mxCell>
<mxCell id="Cr3-process" value="Processo Cruzamento (Cr3)" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#fff2cc;strokeColor=#d6b656;verticalAlign=top;spacingTop=5;" vertex="1" parent="1">
<mxGeometry x="720" y="240" width="140" height="140" as="geometry" />
</mxCell>
<mxCell id="Cr3-thread1" value="Thread Semáforo" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#d5e8d4;strokeColor=#82b366;" vertex="1" parent="Cr3-process">
<mxGeometry x="20" y="30" width="100" height="30" as="geometry" />
</mxCell>
<mxCell id="Cr3-thread2" value="Thread Semáforo" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#d5e8d4;strokeColor=#82b366;" vertex="1" parent="Cr3-process">
<mxGeometry x="20" y="65" width="100" height="30" as="geometry" />
</mxCell>
<mxCell id="Cr3-thread3" value="Thread Semáforo" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#d5e8d4;strokeColor=#82b366;" vertex="1" parent="Cr3-process">
<mxGeometry x="20" y="100" width="100" height="30" as="geometry" />
</mxCell>
<mxCell id="Cr4-process" value="Processo Cruzamento (Cr4)" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#fff2cc;strokeColor=#d6b656;verticalAlign=top;spacingTop=5;" vertex="1" parent="1">
<mxGeometry x="140" y="460" width="140" height="100" as="geometry" />
</mxCell>
<mxCell id="Cr4-thread1" value="Thread Semáforo" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#d5e8d4;strokeColor=#82b366;" vertex="1" parent="Cr4-process">
<mxGeometry x="20" y="30" width="100" height="30" as="geometry" />
</mxCell>
<mxCell id="Cr4-thread-peao" value="Thread Semáforo (Peões)" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#d5e8d4;strokeColor=#82b366;" vertex="1" parent="Cr4-process">
<mxGeometry x="20" y="65" width="100" height="30" as="geometry" />
</mxCell>
<mxCell id="Cr5-process" value="Processo Cruzamento (Cr5)" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#fff2cc;strokeColor=#d6b656;verticalAlign=top;spacingTop=5;" vertex="1" parent="1">
<mxGeometry x="430" y="460" width="140" height="100" as="geometry" />
</mxCell>
<mxCell id="Cr5-thread1" value="Thread Semáforo" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#d5e8d4;strokeColor=#82b366;" vertex="1" parent="Cr5-process">
<mxGeometry x="20" y="30" width="100" height="30" as="geometry" />
</mxCell>
<mxCell id="Cr5-thread2" value="Thread Semáforo" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#d5e8d4;strokeColor=#82b366;" vertex="1" parent="Cr5-process">
<mxGeometry x="20" y="65" width="100" height="30" as="geometry" />
</mxCell>
<mxCell id="S-process" value="Processo Saída (S)" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#f8cecc;strokeColor=#b85450;" vertex="1" parent="1">
<mxGeometry x="720" y="460" width="140" height="60" as="geometry" />
</mxCell>
<mxCell id="dashboard-server" value="Servidor Dashboard" style="shape=cylinder3;whiteSpace=wrap;html=1;boundedLbl=1;backgroundOutline=1;size=15;fillColor=#e1d5e7;strokeColor=#9673a6;" vertex="1" parent="1">
<mxGeometry x="430" y="640" width="140" height="80" as="geometry" />
</mxCell>
<mxCell id="arrow-E1-Cr1" value="Fluxo Veículos&lt;br&gt;(Sockets/Middleware)" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;fontSize=10;align=left;verticalAlign=bottom;" edge="1" parent="1" source="E1-process" target="Cr1-process">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="arrow-E2-Cr2" value="Fluxo Veículos&lt;br&gt;(Sockets/Middleware)" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;fontSize=10;align=left;verticalAlign=bottom;" edge="1" parent="1" source="E2-process" target="Cr2-process">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="arrow-E3-Cr3" value="Fluxo Veículos&lt;br&gt;(Sockets/Middleware)" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;fontSize=10;align=left;verticalAlign=bottom;" edge="1" parent="1" source="E3-process" target="Cr3-process">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="arrow-Cr1-Cr4" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;" edge="1" parent="1" source="Cr1-process" target="Cr4-process">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="arrow-Cr2-Cr5" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;" edge="1" parent="1" source="Cr2-process" target="Cr5-process">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="arrow-Cr4-Cr5" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;" edge="1" parent="1" source="Cr4-process" target="Cr5-process">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="arrow-Cr5-S" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;" edge="1" parent="1" source="Cr5-process" target="S-process">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="arrow-Cr3-S" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;" edge="1" parent="1" source="Cr3-process" target="S-process">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="arrow-Cr1-Cr2" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;" edge="1" parent="1" source="Cr1-process" target="Cr2-process">
<mxGeometry relative="1" as="geometry">
<Array as="points">
<mxPoint x="280" y="290" />
<mxPoint x="430" y="290" />
</Array>
</mxGeometry>
</mxCell>
<mxCell id="arrow-Cr2-Cr1" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;" edge="1" parent="1" source="Cr2-process" target="Cr1-process">
<mxGeometry relative="1" as="geometry">
<Array as="points">
<mxPoint x="430" y="310" />
<mxPoint x="280" y="310" />
</Array>
</mxGeometry>
</mxCell>
<mxCell id="arrow-Cr2-Cr3" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;" edge="1" parent="1" source="Cr2-process" target="Cr3-process">
<mxGeometry relative="1" as="geometry">
<Array as="points">
<mxPoint x="570" y="290" />
<mxPoint x="720" y="290" />
</Array>
</mxGeometry>
</mxCell>
<mxCell id="arrow-Cr3-Cr2" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;" edge="1" parent="1" source="Cr3-process" target="Cr2-process">
<mxGeometry relative="1" as="geometry">
<Array as="points">
<mxPoint x="720" y="310" />
<mxPoint x="570" y="310" />
</Array>
</mxGeometry>
</mxCell>
<mxCell id="stats-Cr1-Dash" value="Envio de Estatísticas" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;dashed=1;strokeColor=#9673a6;fontSize=10;verticalAlign=bottom;" edge="1" parent="1" source="Cr1-process" target="dashboard-server">
<mxGeometry relative="1" as="geometry">
<Array as="points">
<mxPoint x="210" y="680" />
</Array>
</mxGeometry>
</mxCell>
<mxCell id="stats-Cr2-Dash" value="Envio de Estatísticas" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;dashed=1;strokeColor=#9673a6;fontSize=10;verticalAlign=bottom;" edge="1" parent="1" source="Cr2-process" target="dashboard-server">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="stats-Cr3-Dash" value="Envio de Estatísticas" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;dashed=1;strokeColor=#9673a6;fontSize=10;verticalAlign=bottom;" edge="1" parent="1" source="Cr3-process" target="dashboard-server">
<mxGeometry relative="1" as="geometry">
<Array as="points">
<mxPoint x="790" y="680" />
</Array>
</mxGeometry>
</mxCell>
<mxCell id="stats-Cr4-Dash" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;dashed=1;strokeColor=#9673a6;" edge="1" parent="1" source="Cr4-process" target="dashboard-server">
<mxGeometry relative="1" as="geometry">
<Array as="points">
<mxPoint x="210" y="680" />
</Array>
</mxGeometry>
</mxCell>
<mxCell id="stats-Cr5-Dash" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;dashed=1;strokeColor=#9673a6;" edge="1" parent="1" source="Cr5-process" target="dashboard-server">
<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="stats-S-Dash" value="Estatísticas Globais" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;endArrow=classic;endFill=1;dashed=1;strokeColor=#9673a6;fontSize=10;verticalAlign=bottom;" edge="1" parent="1" source="S-process" target="dashboard-server">
<mxGeometry relative="1" as="geometry">
<Array as="points">
<mxPoint x="790" y="680" />
</Array>
</mxGeometry>
</mxCell>
<mxCell id="legend" value="Legenda simplificada (removida tabela)" style="rounded=1;whiteSpace=wrap;html=1;fillColor=#ffffff;strokeColor=#999999;" vertex="1" parent="1">
</mxCell>
<mxCell id="title" value="Diagrama de Arquitetura - Simulador de Tráfego Distribuído" style="text;html=1;strokeColor=none;fillColor=none;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;fontSize=18;fontStyle=1" vertex="1" parent="1">
<mxGeometry x="290" y="40" width="420" height="30" as="geometry" />
</mxCell>
</root>
</mxGraphModel>
</diagram>
</mxfile>

View File

@@ -11,6 +11,38 @@
<properties>
<maven.compiler.source>17</maven.compiler.source>
<maven.compiler.target>17</maven.compiler.target>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<!-- JUnit 5 for testing -->
<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter</artifactId>
<version>5.10.0</version>
<scope>test</scope>
</dependency>
<!-- Gson for JSON serialization -->
<dependency>
<groupId>com.google.code.gson</groupId>
<artifactId>gson</artifactId>
<version>2.10.1</version>
</dependency>
</dependencies>
<build>
<plugins>
<!-- Maven Exec Plugin for running examples -->
<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>exec-maven-plugin</artifactId>
<version>3.1.0</version>
<configuration>
<mainClass>sd.Entry</mainClass>
</configuration>
</plugin>
</plugins>
</build>
</project>

View File

@@ -1,147 +0,0 @@
package client;
import java.util.Scanner;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
import java.util.logging.Level;
import java.util.logging.Logger;
import client.structs.NetworkManager;
import client.handlers.UnicastHandler;
import client.handlers.MulticastHandler;
import client.handlers.BroadcastHandler;
import client.utils.InputCommandRouter;
import shared.enums.ConnType;
/**
* Client application that manages network communications and thread handling.
* Created by: 0x1eo
* Last modified: 2024-12-12
*/
public class Client implements AutoCloseable {
private static final Logger LOGGER = Logger.getLogger(Client.class.getName());
public static final String SERVER_ADDRESS = "localhost";
public static final String BROADCAST_ADDRESS = "255.255.255.255";
public static final int SERVER_PORT = 7500;
public static int CLIENT_PORT = 7501; // Made non-final to allow dynamic assignment
public static final int MULTICAST_PORT = 7502;
public static final int BUFFER_SIZE = 1024;
private final ExecutorService executorService;
private final NetworkManager networkManager;
private static Client instance;
private Client() {
this.executorService = Executors.newFixedThreadPool(3);
this.networkManager = NetworkManager.getInstance();
}
public static synchronized Client getInstance() {
if (instance == null) {
instance = new Client();
}
return instance;
}
/**
* Initializes and starts the client application.
*/
public void start() {
LOGGER.info("Initializing client application...");
try {
networkManager.initializePrimaryConnection();
setupShutdownHook();
initializeAuthenticatedState();
startInputLoop();
LOGGER.info("Client initialization completed successfully");
} catch (Exception e) {
LOGGER.severe("Failed to initialize client: " + e.getMessage());
close();
}
}
/**
* Initializes authenticated state and starts network handlers.
*/
public void initializeAuthenticatedState() {
try {
NetworkManager networkManager = NetworkManager.getInstance();
networkManager.initializeAuthenticatedConnections();
if (networkManager.isAuthenticated()) {
startNetworkHandlers();
LOGGER.info("Authenticated state initialized successfully on port " + CLIENT_PORT);
} else {
LOGGER.severe("Authentication failed");
close();
}
} catch (NetworkManager.NetworkInitializationException e) {
LOGGER.log(Level.SEVERE, "Failed to initialize authenticated state", e);
close();
}
}
private void startNetworkHandlers() {
executorService.execute(new UnicastHandler());
executorService.execute(new MulticastHandler());
executorService.execute(new BroadcastHandler());
}
private void setupShutdownHook() {
Runtime.getRuntime().addShutdownHook(new Thread(() -> {
LOGGER.info("Shutdown hook triggered");
close();
}));
}
@Override
public void close() {
LOGGER.info("Initiating client shutdown sequence...");
shutdownExecutors();
networkManager.close();
LOGGER.info("Client shutdown completed");
System.exit(0);
}
private void shutdownExecutors() {
try {
UnicastHandler.getExecutorService().shutdown();
executorService.shutdown();
// Wait for termination
if (!executorService.awaitTermination(5, TimeUnit.SECONDS)) {
executorService.shutdownNow();
}
} catch (InterruptedException e) {
LOGGER.warning("Executor service shutdown interrupted: " + e.getMessage());
Thread.currentThread().interrupt();
} catch (Exception e) {
LOGGER.severe("Error during executor service shutdown: " + e.getMessage());
}
}
private void startInputLoop() {
Thread inputThread = new Thread(() -> {
try (Scanner scanner = new Scanner(System.in)) {
while (!Thread.currentThread().isInterrupted()) {
String input = scanner.nextLine();
String response = InputCommandRouter.processInput(ConnType.UNICAST, input);
if (response != null) {
networkManager.getUnicastOut().println(response);
}
}
} catch (Exception e) {
LOGGER.log(Level.SEVERE, "Error in input loop", e);
}
});
inputThread.setName("InputProcessor");
inputThread.start();
}
public static void main(String[] args) {
Client client = Client.getInstance();
client.start();
}
}

View File

@@ -1,164 +0,0 @@
package client.handlers;
import java.io.IOException;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
import java.nio.charset.StandardCharsets;
import java.util.logging.Level;
import java.util.logging.Logger;
import client.Client;
import client.structs.NetworkManager;
import client.utils.InputCommandRouter;
import shared.enums.ConnType;
/**
* Handles broadcast communication across the network.
* Receives and processes broadcast packets, excluding packets from the local host.
*
* @author 0x1eo
* @since 2024-12-13
*/
public class BroadcastHandler implements Runnable, AutoCloseable {
private static final Logger LOGGER = Logger.getLogger(BroadcastHandler.class.getName());
private static final int SOCKET_TIMEOUT_MS = 5000; // 5 seconds
private static final long TIMEOUT_LOG_INTERVAL = 300000; // Log timeouts every 5 minutes
private static final long HEARTBEAT_INTERVAL = 60000; // 1 minute
private final NetworkManager networkManager;
private volatile boolean isRunning;
private DatagramSocket socket;
private long lastTimeoutLog;
private long lastHeartbeat;
public BroadcastHandler() {
this.networkManager = NetworkManager.getInstance();
this.isRunning = true;
this.lastTimeoutLog = System.currentTimeMillis();
this.lastHeartbeat = System.currentTimeMillis();
}
@Override
public void run() {
try {
initializeSocket();
LOGGER.info("Broadcast handler started successfully on port " + socket.getLocalPort());
processBroadcastMessages();
} catch (IOException e) {
if (isRunning) {
LOGGER.log(Level.SEVERE, "Fatal error in broadcast handler", e);
}
} finally {
close();
}
}
private void initializeSocket() throws IOException {
this.socket = networkManager.getBroadcastSocket();
if (socket == null) {
throw new IOException("Failed to initialize broadcast socket");
}
socket.setSoTimeout(SOCKET_TIMEOUT_MS);
LOGGER.fine("Broadcast socket timeout set to " + SOCKET_TIMEOUT_MS + "ms");
}
private void processBroadcastMessages() throws IOException {
byte[] buffer = new byte[Client.BUFFER_SIZE];
InetAddress localhost = InetAddress.getLocalHost();
while (isRunning) {
checkHeartbeat();
DatagramPacket packet = new DatagramPacket(buffer, buffer.length);
try {
receiveAndProcessPacket(packet, localhost);
} catch (IOException e) {
handleReceiveException(e);
}
}
}
private void handleReceiveException(IOException e) {
if (!isRunning) return;
if (e instanceof java.net.SocketTimeoutException) {
long currentTime = System.currentTimeMillis();
if (currentTime - lastTimeoutLog > TIMEOUT_LOG_INTERVAL) {
LOGGER.fine("No broadcast messages received in the last " +
(SOCKET_TIMEOUT_MS / 1000) + " seconds");
lastTimeoutLog = currentTime;
}
} else {
LOGGER.log(Level.WARNING, "Error receiving broadcast packet", e);
}
}
private void checkHeartbeat() {
long currentTime = System.currentTimeMillis();
if (currentTime - lastHeartbeat > HEARTBEAT_INTERVAL) {
if (socket != null && !socket.isClosed()) {
LOGGER.fine("Broadcast connection alive - listening for messages");
}
lastHeartbeat = currentTime;
}
}
private void receiveAndProcessPacket(DatagramPacket packet, InetAddress localhost) throws IOException {
socket.receive(packet);
if (packet.getAddress().equals(localhost)) {
return; // Skip localhost packets
}
String input = extractMessage(packet);
String output = processMessage(input);
if (output != null) {
sendResponse(output, packet.getAddress(), packet.getPort());
}
}
private String extractMessage(DatagramPacket packet) {
return new String(
packet.getData(),
0,
packet.getLength(),
StandardCharsets.UTF_8
).trim();
}
private String processMessage(String input) {
try {
return InputCommandRouter.processInput(ConnType.BROADCAST, input);
} catch (Exception e) {
LOGGER.log(Level.WARNING, "Error processing message", e);
return null;
}
}
private void sendResponse(String message, InetAddress address, int port) {
try {
byte[] responseData = message.getBytes(StandardCharsets.UTF_8);
DatagramPacket response = new DatagramPacket(
responseData,
responseData.length,
address,
port
);
socket.send(response);
} catch (IOException e) {
LOGGER.log(Level.WARNING, "Failed to send broadcast response", e);
}
}
@Override
public void close() {
isRunning = false;
if (socket != null && !socket.isClosed()) {
socket.close();
LOGGER.info("Broadcast handler closed");
}
}
}

View File

@@ -1,163 +0,0 @@
package client.handlers;
import java.io.IOException;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
import java.nio.charset.StandardCharsets;
import java.util.logging.Level;
import java.util.logging.Logger;
import client.Client;
import client.structs.NetworkManager;
import client.utils.InputCommandRouter;
import shared.enums.ConnType;
/**
* Handles multicast communication between network nodes.
* Receives and processes multicast packets, excluding packets from the local host.
*
* @author 0x1eo
* @since 2024-12-13
*/
public class MulticastHandler implements Runnable, AutoCloseable {
private static final Logger LOGGER = Logger.getLogger(MulticastHandler.class.getName());
private static final int SOCKET_TIMEOUT_MS = 5000; // 5 seconds
private static final long TIMEOUT_LOG_INTERVAL = 300000; // Log timeouts every 5 minutes
private static final long HEARTBEAT_INTERVAL = 60000; // 1 minute
private final NetworkManager networkManager;
private volatile boolean isRunning;
private DatagramSocket socket;
private long lastTimeoutLog;
private long lastHeartbeat;
public MulticastHandler() {
this.networkManager = NetworkManager.getInstance();
this.isRunning = true;
this.lastTimeoutLog = System.currentTimeMillis();
this.lastHeartbeat = System.currentTimeMillis();
}
@Override
public void run() {
try {
initializeSocket();
LOGGER.info("Multicast handler started successfully on port " + socket.getLocalPort());
processMulticastMessages();
} catch (IOException e) {
if (isRunning) {
LOGGER.log(Level.SEVERE, "Fatal error in multicast handler", e);
}
} finally {
close();
}
}
private void initializeSocket() throws IOException {
this.socket = networkManager.getMulticastSocket();
if (socket == null) {
throw new IOException("Failed to initialize multicast socket");
}
socket.setSoTimeout(SOCKET_TIMEOUT_MS);
LOGGER.fine("Multicast socket timeout set to " + SOCKET_TIMEOUT_MS + "ms");
}
private void processMulticastMessages() throws IOException {
byte[] buffer = new byte[Client.BUFFER_SIZE];
InetAddress localhost = InetAddress.getLocalHost();
while (isRunning) {
checkHeartbeat();
DatagramPacket packet = new DatagramPacket(buffer, buffer.length);
try {
receiveAndProcessPacket(packet, localhost);
} catch (IOException e) {
handleReceiveException(e);
}
}
}
private void handleReceiveException(IOException e) {
if (!isRunning) return;
if (e instanceof java.net.SocketTimeoutException) {
long currentTime = System.currentTimeMillis();
if (currentTime - lastTimeoutLog > TIMEOUT_LOG_INTERVAL) {
LOGGER.fine("No multicast messages received in the last " +
(SOCKET_TIMEOUT_MS / 1000) + " seconds");
lastTimeoutLog = currentTime;
}
} else {
LOGGER.log(Level.WARNING, "Error receiving multicast packet", e);
}
}
private void checkHeartbeat() {
long currentTime = System.currentTimeMillis();
if (currentTime - lastHeartbeat > HEARTBEAT_INTERVAL) {
if (socket != null && !socket.isClosed()) {
LOGGER.fine("Multicast connection alive - listening for messages");
}
lastHeartbeat = currentTime;
}
}
private void receiveAndProcessPacket(DatagramPacket packet, InetAddress localhost) throws IOException {
socket.receive(packet);
if (packet.getAddress().equals(localhost)) {
return; // Skip localhost packets
}
String input = extractMessage(packet);
String output = processMessage(input);
if (output != null) {
sendResponse(output, packet.getAddress(), packet.getPort());
}
}
private String extractMessage(DatagramPacket packet) {
return new String(
packet.getData(),
0,
packet.getLength(),
StandardCharsets.UTF_8
).trim();
}
private String processMessage(String input) {
try {
return InputCommandRouter.processInput(ConnType.MULTICAST, input);
} catch (Exception e) {
LOGGER.log(Level.WARNING, "Error processing message", e);
return null;
}
}
private void sendResponse(String message, InetAddress address, int port) {
try {
byte[] responseData = message.getBytes(StandardCharsets.UTF_8);
DatagramPacket response = new DatagramPacket(
responseData,
responseData.length,
address,
port
);
socket.send(response);
} catch (IOException e) {
LOGGER.log(Level.WARNING, "Failed to send multicast response", e);
}
}
@Override
public void close() {
isRunning = false;
if (socket != null && !socket.isClosed()) {
socket.close();
LOGGER.info("Multicast handler closed");
}
}
}

View File

@@ -1,143 +0,0 @@
package client.handlers;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
import java.util.logging.Level;
import java.util.logging.Logger;
import client.structs.NetworkManager;
import client.utils.InputCommandRouter;
import shared.enums.ConnType;
/**
* Handles unicast (point-to-point) connections between clients.
* Manages incoming connections and processes their messages in separate threads.
*
* @author 0x1eo
* @since 2024-12-12
*/
public class UnicastHandler implements Runnable, AutoCloseable {
private static final Logger LOGGER = Logger.getLogger(UnicastHandler.class.getName());
private static final int MAX_THREADS = 50;
private static final int SOCKET_TIMEOUT_MS = 30000; // 30 seconds
private static final int SHUTDOWN_TIMEOUT_SECONDS = 5;
private static ExecutorService connectionPool = null;
private final NetworkManager networkManager;
private volatile boolean isRunning;
/**
* Creates a new UnicastHandler with a fixed thread pool.
*/
public UnicastHandler() {
connectionPool = Executors.newFixedThreadPool(MAX_THREADS);
this.networkManager = NetworkManager.getInstance();
this.isRunning = true;
}
@Override
public void run() {
ServerSocket serverSocket = networkManager.getServerSocket();
if (serverSocket == null) {
LOGGER.severe("Server socket is null. Cannot start UnicastHandler.");
return;
}
while (isRunning) {
try {
Socket clientSocket = serverSocket.accept();
configureSocket(clientSocket);
connectionPool.execute(new ClientHandler(clientSocket));
} catch (IOException e) {
if (isRunning) {
LOGGER.log(Level.SEVERE, "Error accepting connection", e);
}
}
}
}
private void configureSocket(Socket socket) throws IOException {
socket.setSoTimeout(SOCKET_TIMEOUT_MS);
socket.setKeepAlive(true);
}
@Override
public void close() {
isRunning = false;
shutdownConnectionPool();
}
private void shutdownConnectionPool() {
connectionPool.shutdown();
try {
if (!connectionPool.awaitTermination(SHUTDOWN_TIMEOUT_SECONDS, TimeUnit.SECONDS)) {
connectionPool.shutdownNow();
}
} catch (InterruptedException e) {
connectionPool.shutdownNow();
Thread.currentThread().interrupt();
}
}
/**
* Gets the executor service managing client connections.
*
* @return the executor service
*/
public static ExecutorService getExecutorService() {
return connectionPool;
}
/**
* Handles individual client connections in separate threads.
*/
private static class ClientHandler implements Runnable {
private final Socket clientSocket;
private final String clientInfo;
public ClientHandler(Socket socket) {
this.clientSocket = socket;
this.clientInfo = String.format("%s:%d",
socket.getInetAddress().getHostAddress(),
socket.getPort());
}
@Override
public void run() {
LOGGER.info(() -> "New connection established with " + clientInfo);
try (Socket socket = clientSocket;
BufferedReader in = new BufferedReader(new InputStreamReader(socket.getInputStream()));
PrintWriter out = new PrintWriter(socket.getOutputStream(), true)) {
handleClientCommunication(in, out);
} catch (IOException e) {
LOGGER.log(Level.SEVERE, "Error handling client " + clientInfo, e);
} finally {
LOGGER.info(() -> "Connection closed with " + clientInfo);
}
}
private void handleClientCommunication(BufferedReader in, PrintWriter out) throws IOException {
String input;
while ((input = in.readLine()) != null) {
try {
String response = InputCommandRouter.processInput(ConnType.UNICAST, input);
if (response != null) {
out.println(response);
}
} catch (Exception e) {
LOGGER.log(Level.WARNING, "Error processing message from " + clientInfo, e);
}
}
}
}
}

View File

@@ -1,222 +0,0 @@
package client.structs;
import java.io.*;
import java.net.*;
import java.util.concurrent.atomic.AtomicBoolean;
import java.util.logging.Level;
import java.util.logging.Logger;
import client.Client;
/**
* Network connection manager for the emergency communication client.
* Implements thread-safe singleton pattern and manages all network resources.
*
* Features:
* - Connection retry mechanism
* - Multiple communication channels (Unicast, Multicast, Broadcast)
* - Automatic resource cleanup
* - Connection state monitoring
*
* @author 0x1eo
* @since 2024-12-13
*/
public class NetworkManager implements AutoCloseable {
private static final Logger LOGGER = Logger.getLogger(NetworkManager.class.getName());
private static volatile NetworkManager instance;
private static final Object LOCK = new Object();
private static final int MAX_CONNECTION_RETRIES = 3;
private static final int RETRY_DELAY_MS = 2000;
private static final int SOCKET_TIMEOUT_MS = 5000;
private final AtomicBoolean isAuthenticated = new AtomicBoolean(false);
private volatile String username;
private final SocketContainer sockets;
private static final int PORT_RANGE_START = 7501;
private static final int PORT_RANGE_END = 7600;
private static final int MAX_PORT_ATTEMPTS = 10;
private NetworkManager() {
this.sockets = new SocketContainer();
}
public static NetworkManager getInstance() {
NetworkManager result = instance;
if (result == null) {
synchronized (LOCK) {
result = instance;
if (result == null) {
instance = result = new NetworkManager();
}
}
}
return result;
}
/**
* Initializes primary connection with retry mechanism.
*
* @throws NetworkInitializationException if connection fails after retries
*/
public void initializePrimaryConnection() {
for (int attempt = 1; attempt <= MAX_CONNECTION_RETRIES; attempt++) {
try {
establishPrimaryConnection();
LOGGER.info("Primary connection initialized successfully on attempt " + attempt);
return;
} catch (IOException e) {
handleConnectionRetry(attempt, e);
}
}
throw new NetworkInitializationException("Failed to initialize after " + MAX_CONNECTION_RETRIES + " attempts", null);
}
private void establishPrimaryConnection() throws IOException {
Socket unicastSocket = new Socket(Client.SERVER_ADDRESS, Client.SERVER_PORT);
unicastSocket.setSoTimeout(SOCKET_TIMEOUT_MS);
sockets.unicastSocket = unicastSocket;
sockets.unicastIn = new BufferedReader(
new InputStreamReader(unicastSocket.getInputStream())
);
sockets.unicastOut = new PrintWriter(
unicastSocket.getOutputStream(),
true
);
}
private void handleConnectionRetry(int attempt, IOException e) {
LOGGER.log(Level.WARNING,
String.format("Connection attempt %d/%d failed", attempt, MAX_CONNECTION_RETRIES),
e
);
if (attempt < MAX_CONNECTION_RETRIES) {
try {
Thread.sleep(RETRY_DELAY_MS);
} catch (InterruptedException ie) {
Thread.currentThread().interrupt();
throw new NetworkInitializationException("Connection retry interrupted", ie);
}
}
}
/**
* Initializes authenticated connections for multicast and broadcast.
*
* @throws NetworkInitializationException if initialization fails
*/
public void initializeAuthenticatedConnections() {
for (int port = PORT_RANGE_START; port <= PORT_RANGE_END; port++) {
try {
setupAuthenticatedSockets(port);
isAuthenticated.set(true);
LOGGER.info(String.format(
"Authenticated connections initialized for user %s on port %d",
username, port
));
return;
} catch (IOException e) {
if (port >= PORT_RANGE_END) {
isAuthenticated.set(false);
throw new NetworkInitializationException(
"Failed to find available ports in range " +
PORT_RANGE_START + "-" + PORT_RANGE_END,
e
);
}
LOGGER.warning(String.format(
"Port %d in use, trying next port", port
));
}
}
}
private void setupAuthenticatedSockets(int basePort) throws IOException {
// Server socket uses the base port
sockets.serverSocket = new ServerSocket(basePort);
// Multicast socket uses the multicast port
sockets.multicastSocket = new MulticastSocket(Client.MULTICAST_PORT);
// Broadcast socket uses base port + 1 to avoid conflict
sockets.broadcastSocket = createBroadcastSocket(basePort + 1);
// Update the client port in the Client class
Client.CLIENT_PORT = basePort;
}
private DatagramSocket createBroadcastSocket(int port) throws IOException {
DatagramSocket socket = new DatagramSocket(
port,
InetAddress.getByName(Client.BROADCAST_ADDRESS)
);
socket.setBroadcast(true);
return socket;
}
@Override
public void close() {
sockets.closeAll();
isAuthenticated.set(false);
LOGGER.info("Network manager closed successfully");
}
// Thread-safe getters
public boolean isAuthenticated() { return isAuthenticated.get(); }
public String getUsername() { return username; }
public Socket getUnicastSocket() { return sockets.unicastSocket; }
public BufferedReader getUnicastIn() { return sockets.unicastIn; }
public PrintWriter getUnicastOut() { return sockets.unicastOut; }
public ServerSocket getServerSocket() { return sockets.serverSocket; }
public MulticastSocket getMulticastSocket() { return sockets.multicastSocket; }
public DatagramSocket getBroadcastSocket() { return sockets.broadcastSocket; }
// Thread-safe setter
public void setUsername(String username) {
this.username = username;
LOGGER.info("Username set to: " + username);
}
/**
* Thread-safe container for network resources.
*/
private static class SocketContainer {
private volatile Socket unicastSocket;
private volatile BufferedReader unicastIn;
private volatile PrintWriter unicastOut;
private volatile ServerSocket serverSocket;
private volatile MulticastSocket multicastSocket;
private volatile DatagramSocket broadcastSocket;
private void closeAll() {
closeQuietly(broadcastSocket, "BroadcastSocket");
closeQuietly(multicastSocket, "MulticastSocket");
closeQuietly(serverSocket, "ServerSocket");
closeQuietly(unicastSocket, "UnicastSocket");
closeQuietly(unicastOut, "UnicastWriter");
closeQuietly(unicastIn, "UnicastReader");
}
private void closeQuietly(AutoCloseable resource, String resourceName) {
if (resource != null) {
try {
resource.close();
LOGGER.fine(resourceName + " closed successfully");
} catch (Exception e) {
LOGGER.warning(resourceName + " close failed: " + e.getMessage());
}
}
}
}
/**
* Custom exception for network initialization failures.
*/
public static class NetworkInitializationException extends RuntimeException {
public NetworkInitializationException(String message, Throwable cause) {
super(message, cause);
}
}
}

View File

@@ -1,18 +0,0 @@
package client.structs;
public class TerminalMessageHandler {
public static void displayMessage(String from, String to, String content, String date) {
System.out.printf("[%s] %s -> %s: %s%n", date, from, to, content);
}
public static void displayRequest(String from, String to, String content, String date, String accepter) {
String accepterStatus = accepter.isEmpty() ? "PENDING" : "ACCEPTED by " + accepter;
System.out.printf("[%s] REQUEST from %s to %s: %s (%s)%n", date, from, to, content, accepterStatus);
}
public static boolean promptRequestAcceptance(String from, String to, String content) {
System.out.printf("Accept request from %s to %s: %s%n", from, to, content);
System.out.print("Accept? (y/n): ");
return System.console().readLine().trim().toLowerCase().startsWith("y");
}
}

View File

@@ -1,162 +0,0 @@
package client.utils;
import java.io.IOException;
import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
import java.util.logging.Logger;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;
import client.structs.NetworkManager;
import client.structs.TerminalMessageHandler;
/**
* Handles chat message operations including creation, receiving, and processing of messages and requests.
*
* @author 0x1eo
* @since 2024-12-12
*/
public class ChatMessageHandler {
private static final Logger LOGGER = Logger.getLogger(ChatMessageHandler.class.getName());
private static final DateTimeFormatter DATE_FORMATTER = DateTimeFormatter.ofPattern("dd-MM-yyyy HH:mm");
private static final NetworkManager networkManager = NetworkManager.getInstance();
private ChatMessageHandler() {} // Prevent instantiation
/**
* Message types supported by the chat system.
*/
public enum MessageType {
MESSAGE("message"),
REQUEST("request"),
JOIN_GROUP("joinGroup");
private final String command;
MessageType(String command) {
this.command = command;
}
public String getCommand() {
return command;
}
}
/**
* Creates a basic message structure with common fields.
*/
private static JSONObject createBaseMessage(MessageType type, String destination, String content) {
JSONObject json = new JSONObject();
json.put("command", type.getCommand());
json.put("from", networkManager.getUsername());
json.put("to", destination);
json.put("content", content);
json.put("date", LocalDateTime.now().format(DATE_FORMATTER));
return json;
}
public static JSONObject createMessage(String destination, String content) {
return createBaseMessage(MessageType.MESSAGE, destination, content);
}
public static JSONObject createRequest(String destination, String content) {
JSONObject json = createBaseMessage(MessageType.REQUEST, destination, content);
json.put("accepter", "");
return json;
}
/**
* Validates if a JSON object contains all required fields.
*/
private static boolean validateMessageFields(JSONObject json, String... requiredFields) {
for (String field : requiredFields) {
if (!json.has(field)) {
LOGGER.warning("Missing required field: " + field);
return false;
}
}
return true;
}
public static void receiveMessage(JSONObject json) {
if (!validateMessageFields(json, "from", "to", "content", "date")) {
return;
}
TerminalMessageHandler.displayMessage(
json.getString("from"),
json.getString("to"),
json.getString("content"),
json.getString("date")
);
}
public static void receiveRequest(JSONObject json) {
if (!validateMessageFields(json, "from", "to", "content", "date", "accepter")) {
return;
}
TerminalMessageHandler.displayRequest(
json.getString("from"),
json.getString("to"),
json.getString("content"),
json.getString("date"),
json.getString("accepter")
);
}
public static String handleAnswerRequest(JSONObject json) {
if (!validateMessageFields(json, "from", "to", "content")) {
return null;
}
boolean accepted = TerminalMessageHandler.promptRequestAcceptance(
json.getString("from"),
json.getString("to"),
json.getString("content")
);
return new JSONObject().put("response", accepted ? "YES" : "NO").toString();
}
public static void processEvents(JSONObject json) {
if (!json.has("events")) {
LOGGER.warning("No events field in JSON");
return;
}
JSONArray events = json.getJSONArray("events");
events.forEach(event -> {
JSONObject eventObj = (JSONObject) event;
if (!eventObj.has("command")) {
LOGGER.warning("Event missing command field");
return;
}
String command = eventObj.getString("command");
try {
switch (MessageType.valueOf(command.toUpperCase())) {
case MESSAGE -> receiveMessage(eventObj);
case REQUEST -> receiveRequest(eventObj);
default -> LOGGER.warning("Unknown command: " + command);
}
} catch (IllegalArgumentException e) {
LOGGER.warning("Invalid command type: " + command);
}
});
}
public static void announceJoinGroup(String ip) {
try {
JSONObject json = new JSONObject()
.put("command", MessageType.JOIN_GROUP.getCommand())
.put("group", ip)
.put("username", networkManager.getUsername());
networkManager.getUnicastOut().println(json);
} catch (JSONException e) {
LOGGER.severe("Failed to announce group join: " + e.getMessage());
}
}
}

View File

@@ -1,157 +0,0 @@
package client.utils;
import java.util.logging.Level;
import java.util.logging.Logger;
import org.json.JSONObject;
import shared.enums.ConnType;
import client.structs.NetworkManager;
import shared.enums.Hierarchy;
/**
* Client-side command router that processes and formats commands according to server protocol.
*
* @author 0x1eo
* @since 2024-12-13 16:41:03
*/
public class InputCommandRouter {
private static final Logger LOGGER = Logger.getLogger(InputCommandRouter.class.getName());
private static final NetworkManager networkManager = NetworkManager.getInstance();
/**
* Processes input and formats it according to server protocol.
*
* @param connType The type of connection (UNICAST, MULTICAST, BROADCAST)
* @param input The user's input string
* @return Formatted JSON string or null if no response needed
*/
public static String processInput(ConnType connType, String input) {
if (input == null || input.trim().isEmpty()) {
return null;
}
String trimmedInput = input.trim();
// Handle client-side commands
if (trimmedInput.startsWith("{command:")) {
return handleCommand(connType, trimmedInput);
}
// Handle messages and requests
return handleMessage(connType, trimmedInput);
}
private static String handleCommand(ConnType connType, String command) {
if (connType != ConnType.UNICAST) {
return null;
}
// Split by : but keep quotes intact
String[] parts = command.substring(9, command.length() - 1).split(":");
String cmd = parts[0].toLowerCase();
switch (cmd) {
case "help":
displayHelp();
return null;
case "register":
if (parts.length != 4) {
System.out.println("Invalid register format. Use: {command:register:username:name:password}");
return null;
}
JSONObject registerJson = new JSONObject()
.put("command", "register")
.put("username", parts[1])
.put("name", parts[2])
.put("password", parts[3])
.put("role", Hierarchy.LOW.name());
// Debug log
LOGGER.info("Sending registration JSON: " + registerJson.toString());
return registerJson.toString();
default:
LOGGER.warning("Unknown command: " + command);
System.out.println("Unknown command. Type {command:help} for available commands.");
return null;
}
}
private static void displayHelp() {
System.out.println("\nAvailable Commands:");
System.out.println("------------------");
System.out.println("{command:register:username:name:password} - Register with the server");
System.out.println("Example: {command:register:leo:Leandro:0808wq21}");
System.out.println("{command:help} - Display this help message");
System.out.println("\nMessage Formats:");
System.out.println("---------------");
System.out.println("Regular message: text");
System.out.println("Direct message: @username: message");
System.out.println("Group message: #groupname: message");
System.out.println("Request: !request @username: content");
System.out.println();
}
private static String createRegistrationJson() {
JSONObject json = new JSONObject()
.put("command", "register")
.put("username", networkManager.getUsername())
.put("name", networkManager.getUsername()) // Using username as name for now
.put("password", "default") // Should be handled properly in production
.put("role", Hierarchy.LOW.name()); // Using LOW as the default hierarchy level
return json.toString();
}
private static String createLoginJson() {
JSONObject json = new JSONObject()
.put("command", "login")
.put("username", networkManager.getUsername())
.put("password", "default"); // Should be handled properly in production
return json.toString();
}
private static String handleMessage(ConnType connType, String input) {
try {
JSONObject messageJson;
if (input.startsWith("!request")) {
// Handle request
String[] parts = input.substring(9).split(":", 2);
if (parts.length != 2 || !parts[0].startsWith("@")) {
System.out.println("Invalid request format. Use: !request @username: content");
return null;
}
String destination = parts[0].substring(1).trim();
messageJson = ChatMessageHandler.createRequest(destination, parts[1].trim());
} else if (input.startsWith("@")) {
// Handle direct message
String[] parts = input.substring(1).split(":", 2);
if (parts.length != 2) {
System.out.println("Invalid direct message format. Use: @username: message");
return null;
}
messageJson = ChatMessageHandler.createMessage(parts[0].trim(), parts[1].trim());
} else if (input.startsWith("#")) {
// Handle group message
String[] parts = input.substring(1).split(":", 2);
if (parts.length != 2) {
System.out.println("Invalid group message format. Use: #groupname: message");
return null;
}
String groupName = parts[0].trim();
ChatMessageHandler.announceJoinGroup(groupName); // Join group first
messageJson = ChatMessageHandler.createMessage(groupName, parts[1].trim());
} else {
// Handle broadcast message
messageJson = ChatMessageHandler.createMessage("", input);
}
return messageJson.toString();
} catch (Exception e) {
LOGGER.log(Level.WARNING, "Failed to process message: " + e.getMessage());
return null;
}
}
}

View File

@@ -0,0 +1,94 @@
package sd;
import java.io.IOException;
import sd.config.SimulationConfig;
import sd.engine.SimulationEngine;
/**
* Main entry point for the traffic simulation.
* * This class is responsible for loading the simulation configuration,
* initializing the {@link SimulationEngine}, and starting the simulation run.
* It also prints initial configuration details and final execution time.
*/
public class Entry {
/**
* The default path to the simulation configuration file.
* This is used if no command-line arguments are provided.
*/
private static final String DEFAULT_CONFIG_FILE = "src/main/resources/simulation.properties";
/**
* The main method to start the simulation.
* * @param args Command-line arguments. If provided, args[0] is expected
* to be the path to a custom configuration file.
*/
public static void main(String[] args) {
System.out.println("=".repeat(60));
System.out.println("TRAFFIC SIMULATION - DISCRETE EVENT SIMULATOR");
System.out.println("=".repeat(60));
try {
// 1. Load configuration
String configFile = args.length > 0 ? args[0] : DEFAULT_CONFIG_FILE;
System.out.println("Loading configuration from: " + configFile);
SimulationConfig config = new SimulationConfig(configFile);
// 2. Display configuration
displayConfiguration(config);
// 3. Create and initialize simulation engine
SimulationEngine engine = new SimulationEngine(config);
engine.initialize();
System.out.println("\n" + "=".repeat(60));
// 4. Run simulation
long startTime = System.currentTimeMillis();
engine.run();
long endTime = System.currentTimeMillis();
// 5. Display execution time
double executionTime = (endTime - startTime) / 1000.0;
System.out.println("\nExecution time: " + String.format("%.2f", executionTime) + " seconds");
System.out.println("=".repeat(60));
} catch (IOException e) {
System.err.println("Error loading configuration: " + e.getMessage());
e.printStackTrace();
} catch (Exception e) {
System.err.println("Error during simulation: " + e.getMessage());
e.printStackTrace();
}
}
/**
* Displays the main configuration parameters to the console.
* This provides a summary of the simulation settings before it starts.
*
* @param config The {@link SimulationConfig} object containing the loaded settings.
*/
private static void displayConfiguration(SimulationConfig config) {
System.out.println("\nSIMULATION CONFIGURATION:");
System.out.println(" Duration: " + config.getSimulationDuration() + " seconds");
System.out.println(" Arrival Model: " + config.getArrivalModel());
if ("POISSON".equalsIgnoreCase(config.getArrivalModel())) {
System.out.println(" Arrival Rate (λ): " + config.getArrivalRate() + " vehicles/second");
} else {
System.out.println(" Fixed Interval: " + config.getFixedArrivalInterval() + " seconds");
}
System.out.println(" Statistics Update Interval: " + config.getStatisticsUpdateInterval() + " seconds");
System.out.println("\nVEHICLE TYPES:");
System.out.println(" Bike: " + (config.getBikeVehicleProbability() * 100) + "% " +
"(crossing time: " + config.getBikeVehicleCrossingTime() + "s)");
System.out.println(" Light: " + (config.getLightVehicleProbability() * 100) + "% " +
"(crossing time: " + config.getLightVehicleCrossingTime() + "s)");
System.out.println(" Heavy: " + (config.getHeavyVehicleProbability() * 100) + "% " +
"(crossing time: " + config.getHeavyVehicleCrossingTime() + "s)");
}
}

View File

@@ -0,0 +1,260 @@
package sd.config;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.util.Properties;
/**
* Class to load and manage simulation configurations.
* Configurations are read from a .properties file. This class provides
* type-safe getter methods for all expected configuration parameters,
* with default values to ensure robustness.
*/
public class SimulationConfig {
/**
* Holds all properties loaded from the file.
*/
private final Properties properties;
/**
* Constructs a new SimulationConfig object by loading properties
* from the specified file path.
*
* @param filePath The path to the .properties file (e.g., "src/main/resources/simulation.properties").
* @throws IOException If the file cannot be found or read.
*/
public SimulationConfig(String filePath) throws IOException {
properties = new Properties();
/**Tenta carregar diretamente a partir do sistema de ficheiros, se o ficheiro não existir
* (por exemplo quando executado a partir do classpath/jar),
* faz fallback para carregar a partir do classpath usando o ClassLoader.
*/
IOException lastException = null;
try {
try (InputStream input = new FileInputStream(filePath)) {
properties.load(input);
return; // carregado com sucesso a partir do caminho fornecido
}
} catch (IOException e) {
lastException = e;
//tenta carregar a partir do classpath sem prefixos comuns
String resourcePath = filePath;
//Remove prefixos que apontam para src/main/resources quando presentes
resourcePath = resourcePath.replace("src/main/resources/", "").replace("src\\main\\resources\\", "");
//Remove prefixo classpath: se fornecido
if (resourcePath.startsWith("classpath:")) {
resourcePath = resourcePath.substring("classpath:".length());
if (resourcePath.startsWith("/")) resourcePath = resourcePath.substring(1);
}
InputStream resourceStream = Thread.currentThread().getContextClassLoader().getResourceAsStream(resourcePath);
if (resourceStream == null) {
//como último recurso, tentar com um leading slash
resourceStream = SimulationConfig.class.getResourceAsStream('/' + resourcePath);
}
if (resourceStream != null) {
try (InputStream input = resourceStream) {
properties.load(input);
return;
}
}
}
if (lastException != null) throw lastException;
}
// --- Network configurations ---
/**
* Gets the host address for a specific intersection.
* @param intersectionId The ID of the intersection (e.g., "Cr1").
* @return The host (e.g., "localhost").
*/
public String getIntersectionHost(String intersectionId) {
return properties.getProperty("intersection." + intersectionId + ".host", "localhost");
}
/**
* Gets the port number for a specific intersection.
* @param intersectionId The ID of the intersection (e.g., "Cr1").
* @return The port number.
*/
public int getIntersectionPort(String intersectionId) {
return Integer.parseInt(properties.getProperty("intersection." + intersectionId + ".port", "0"));
}
/**
* Gets the host address for the dashboard server.
* @return The dashboard host.
*/
public String getDashboardHost() {
return properties.getProperty("dashboard.host", "localhost");
}
/**
* Gets the port number for the dashboard server.
* @return The dashboard port.
*/
public int getDashboardPort() {
return Integer.parseInt(properties.getProperty("dashboard.port", "9000"));
}
/**
* Gets the host address for the exit node.
* @return The exit node host.
*/
public String getExitHost() {
return properties.getProperty("exit.host", "localhost");
}
/**
* Gets the port number for the exit node.
* @return The exit node port.
*/
public int getExitPort() {
return Integer.parseInt(properties.getProperty("exit.port", "9001"));
}
// --- Simulation configurations ---
/**
* Gets the total duration of the simulation in virtual seconds.
* @return The simulation duration.
*/
public double getSimulationDuration() {
return Double.parseDouble(properties.getProperty("simulation.duration", "3600.0"));
}
/**
* Gets the vehicle arrival model ("POISSON" or "FIXED").
* @return The arrival model as a string.
*/
public String getArrivalModel() {
return properties.getProperty("simulation.arrival.model", "POISSON");
}
/**
* Gets the average arrival rate (lambda) for the POISSON model.
* This represents the average number of vehicles arriving per second.
* @return The arrival rate.
*/
public double getArrivalRate() {
return Double.parseDouble(properties.getProperty("simulation.arrival.rate", "0.5"));
}
/**
* Gets the fixed time interval between vehicle arrivals for the FIXED model.
* @return The fixed interval in seconds.
*/
public double getFixedArrivalInterval() {
return Double.parseDouble(properties.getProperty("simulation.arrival.fixed.interval", "2.0"));
}
// --- Traffic light configurations ---
/**
* Gets the duration of the GREEN light state for a specific traffic light.
* @param intersectionId The ID of the intersection (e.g., "Cr1").
* @param direction The direction of the light (e.g., "North").
* @return The green light time in seconds.
*/
public double getTrafficLightGreenTime(String intersectionId, String direction) {
String key = "trafficlight." + intersectionId + "." + direction + ".green";
return Double.parseDouble(properties.getProperty(key, "30.0"));
}
/**
* Gets the duration of the RED light state for a specific traffic light.
* @param intersectionId The ID of the intersection (e.g., "Cr1").
* @param direction The direction of the light (e.g., "North").
* @return The red light time in seconds.
*/
public double getTrafficLightRedTime(String intersectionId, String direction) {
String key = "trafficlight." + intersectionId + "." + direction + ".red";
return Double.parseDouble(properties.getProperty(key, "30.0"));
}
// --- Vehicle configurations ---
/**
* Gets the probability (0.0 to 1.0) that a generated vehicle is of type LIGHT.
* @return The probability for LIGHT vehicles.
*/
public double getLightVehicleProbability() {
return Double.parseDouble(properties.getProperty("vehicle.probability.light", "0.7"));
}
/**
* Gets the average time it takes a LIGHT vehicle to cross an intersection.
* @return The crossing time in seconds.
*/
public double getLightVehicleCrossingTime() {
return Double.parseDouble(properties.getProperty("vehicle.crossing.time.light", "2.0"));
}
/**
* Gets the probability (0.0 to 1.0) that a generated vehicle is of type BIKE.
* @return The probability for BIKE vehicles.
*/
public double getBikeVehicleProbability() {
return Double.parseDouble(properties.getProperty("vehicle.probability.bike", "0.0"));
}
/**
* Gets the average time it takes a BIKE vehicle to cross an intersection.
* @return The crossing time in seconds.
*/
public double getBikeVehicleCrossingTime() {
return Double.parseDouble(properties.getProperty("vehicle.crossing.time.bike", "1.5"));
}
/**
* Gets the probability (0.0 to 1.0) that a generated vehicle is of type HEAVY.
* @return The probability for HEAVY vehicles.
*/
public double getHeavyVehicleProbability() {
return Double.parseDouble(properties.getProperty("vehicle.probability.heavy", "0.0"));
}
/**
* Gets the average time it takes a HEAVY vehicle to cross an intersection.
* @return The crossing time in seconds.
*/
public double getHeavyVehicleCrossingTime() {
return Double.parseDouble(properties.getProperty("vehicle.crossing.time.heavy", "4.0"));
}
// --- Statistics ---
/**
* Gets the interval (in virtual seconds) between periodic statistics updates.
* @return The statistics update interval.
*/
public double getStatisticsUpdateInterval() {
return Double.parseDouble(properties.getProperty("statistics.update.interval", "10.0"));
}
// --- Generic getters ---
/**
* Generic method to get any property as a string, with a default value.
* @param key The property key.
* @param defaultValue The value to return if the key is not found.
* @return The property value or the default.
*/
public String getProperty(String key, String defaultValue) {
return properties.getProperty(key, defaultValue);
}
/**
* Generic method to get any property as a string.
* @param key The property key.
* @return The property value, or null if not found.
*/
public String getProperty(String key) {
return properties.getProperty(key);
}
}

View File

@@ -0,0 +1,645 @@
package sd.engine;
import java.util.HashMap;
import java.util.Map;
import java.util.PriorityQueue;
import sd.config.SimulationConfig;
import sd.model.Event;
import sd.model.EventType;
import sd.model.Intersection;
import sd.model.TrafficLight;
import sd.model.TrafficLightState;
import sd.model.Vehicle;
import sd.model.VehicleType;
import sd.util.StatisticsCollector;
import sd.util.VehicleGenerator;
/**
* Core simulation engine using discrete event simulation (DES).
* * This class orchestrates the entire simulation. It maintains a
* {@link PriorityQueue} of {@link Event} objects, representing all
* scheduled future actions. The engine processes events in strict
* chronological order (based on their timestamp).
* * It manages the simulation's state, including:
* - The current simulation time ({@code currentTime}).
* - The collection of all {@link Intersection} objects.
* - The {@link VehicleGenerator} for creating new vehicles.
* - The {@link StatisticsCollector} for tracking metrics.
*/
public class SimulationEngine {
/**
* Holds all simulation parameters loaded from the properties file.
*/
private final SimulationConfig config;
/**
* The core of the discrete event simulation. Events are pulled from this
* queue in order of their timestamp.
*/
private final PriorityQueue<Event> eventQueue;
/**
* A map storing all intersections in the simulation, keyed by their ID (e.g., "Cr1").
*/
private final Map<String, Intersection> intersections;
/**
* Responsible for creating new vehicles according to the configured arrival model.
*/
private final VehicleGenerator vehicleGenerator;
/**
* Collects and calculates statistics throughout the simulation.
*/
private final StatisticsCollector statisticsCollector;
/**
* The current time in the simulation (in virtual seconds).
* This time advances based on the timestamp of the event being processed.
*/
private double currentTime;
/**
* A simple counter to generate unique IDs for vehicles.
*/
private int vehicleCounter;
/**
* Constructs a new SimulationEngine.
*
* @param config The {@link SimulationConfig} object containing all
* simulation parameters.
*/
public SimulationEngine(SimulationConfig config) {
this.config = config;
this.eventQueue = new PriorityQueue<>();
this.intersections = new HashMap<>();
this.vehicleGenerator = new VehicleGenerator(config);
this.statisticsCollector = new StatisticsCollector(config);
this.currentTime = 0.0;
this.vehicleCounter = 0;
}
/**
* Initializes the simulation. This involves:
* 1. Creating all {@link Intersection} and {@link TrafficLight} objects.
* 2. Configuring the routing logic between intersections.
* 3. Scheduling the initial events (first traffic light changes,
* first vehicle generation, and periodic statistics updates).
*/
public void initialize() {
System.out.println("Initializing simulation...");
setupIntersections();
setupRouting();
// Schedule initial events to "bootstrap" the simulation
scheduleTrafficLightEvents();
scheduleNextVehicleGeneration(0.0);
scheduleStatisticsUpdates();
System.out.println("Simulation initialized with " + intersections.size() + " intersections");
}
/**
* Creates all intersections defined in the configuration
* and adds their corresponding traffic lights.
*/
private void setupIntersections() {
String[] intersectionIds = {"Cr1", "Cr2", "Cr3", "Cr4", "Cr5"};
// Note: "North" is commented out, so it won't be created.
String[] directions = {/*"North",*/ "South", "East", "West"};
for (String id : intersectionIds) {
Intersection intersection = new Intersection(id);
// Add traffic lights for each configured direction
for (String direction : directions) {
double greenTime = config.getTrafficLightGreenTime(id, direction);
double redTime = config.getTrafficLightRedTime(id, direction);
TrafficLight light = new TrafficLight(
id + "-" + direction,
direction,
greenTime,
redTime
);
intersection.addTrafficLight(light);
}
intersections.put(id, intersection);
}
}
/**
* Configures how vehicles should be routed between intersections.
* This hardcoded logic defines the "map" of the city.
* * For example, `intersections.get("Cr1").configureRoute("Cr2", "East");` means
* "at intersection Cr1, any vehicle whose *next* destination is Cr2
* should be sent to the 'East' traffic light queue."
*/
private void setupRouting() {
// Cr1 routing
intersections.get("Cr1").configureRoute("Cr2", "East");
intersections.get("Cr1").configureRoute("Cr4", "South");
// Cr2 routing
intersections.get("Cr2").configureRoute("Cr1", "West");
intersections.get("Cr2").configureRoute("Cr3", "East");
intersections.get("Cr2").configureRoute("Cr5", "South");
// Cr3 routing
intersections.get("Cr3").configureRoute("Cr2", "West");
intersections.get("Cr3").configureRoute("S", "South"); // "S" is the exit
// Cr4 routing
//intersections.get("Cr4").configureRoute("Cr1", "North");
intersections.get("Cr4").configureRoute("Cr5", "East");
// Cr5 routing
//intersections.get("Cr5").configureRoute("Cr2", "North");
//intersections.get("Cr5").configureRoute("Cr4", "West");
intersections.get("Cr5").configureRoute("S", "East"); // "S" is the exit
}
/**
* Schedules the initial {@link EventType#TRAFFIC_LIGHT_CHANGE} event
* for every traffic light in the simulation.
* A small random delay is added to "stagger" the lights, preventing
* all of them from changing at the exact same time at t=0.
*/
private void scheduleTrafficLightEvents() {
for (Intersection intersection : intersections.values()) {
for (TrafficLight light : intersection.getTrafficLights()) {
// Start with lights in RED state, schedule first GREEN change
// Stagger the start times slightly to avoid all lights changing at once
double staggerDelay = Math.random() * 1.5;
scheduleTrafficLightChange(light, intersection.getId(), staggerDelay);
}
}
}
/**
* Creates and schedules a new {@link EventType#TRAFFIC_LIGHT_CHANGE} event.
* The event is scheduled to occur at {@code currentTime + delay}.
*
* @param light The {@link TrafficLight} that will change state.
* @param intersectionId The ID of the intersection where the light is located.
* @param delay The time (in seconds) from {@code currentTime} when the change should occur.
*/
private void scheduleTrafficLightChange(TrafficLight light, String intersectionId, double delay) {
double changeTime = currentTime + delay;
Event event = new Event(changeTime, EventType.TRAFFIC_LIGHT_CHANGE, light, intersectionId);
eventQueue.offer(event);
}
/**
* Schedules the next {@link EventType#VEHICLE_GENERATION} event.
* The time of the next arrival is determined by the {@link VehicleGenerator}.
*
* @param baseTime The time from which to calculate the next arrival (usually {@code currentTime}).
*/
private void scheduleNextVehicleGeneration(double baseTime) {
// Get the absolute time for the next arrival.
double nextArrivalTime = vehicleGenerator.getNextArrivalTime(baseTime);
// Only schedule the event if it's within the simulation's total duration.
if (nextArrivalTime < config.getSimulationDuration()) {
Event event = new Event(nextArrivalTime, EventType.VEHICLE_GENERATION, null, null);
eventQueue.offer(event);
}
}
/**
* Schedules all periodic {@link EventType#STATISTICS_UPDATE} events
* for the entire duration of the simulation.
*/
private void scheduleStatisticsUpdates() {
double interval = config.getStatisticsUpdateInterval();
double duration = config.getSimulationDuration();
for (double time = interval; time < duration; time += interval) {
Event event = new Event(time, EventType.STATISTICS_UPDATE, null, null);
eventQueue.offer(event);
}
}
/**
* Runs the main simulation loop.
* The loop continues as long as there are events in the queue and
* the {@code currentTime} is less than the total simulation duration.
* * In each iteration, it:
* 1. Polls the next event from the {@link #eventQueue}.
* 2. Advances {@link #currentTime} to the event's timestamp.
* 3. Calls {@link #processEvent(Event)} to handle the event.
* * After the loop, it prints the final statistics.
*/
public void run() {
System.out.println("Starting simulation...");
double duration = config.getSimulationDuration();
while (!eventQueue.isEmpty() && currentTime < duration) {
// Get the next event in chronological order
Event event = eventQueue.poll();
// Advance simulation time to this event's time
currentTime = event.getTimestamp();
// Process the event
processEvent(event);
}
System.out.println("\nSimulation completed at t=" + String.format("%.2f", currentTime) + "s");
printFinalStatistics();
}
/**
* Main event processing logic.
* Delegates the event to the appropriate handler method based on its {@link EventType}.
*
* @param event The {@link Event} to be processed.
*/
private void processEvent(Event event) {
switch (event.getType()) {
case VEHICLE_GENERATION:
handleVehicleGeneration();
break;
case VEHICLE_ARRIVAL:
handleVehicleArrival(event);
break;
case TRAFFIC_LIGHT_CHANGE:
handleTrafficLightChange(event);
break;
case CROSSING_START:
handleCrossingStart(event);
break;
case CROSSING_END:
handleCrossingEnd(event);
break;
case STATISTICS_UPDATE:
handleStatisticsUpdate();
break;
default:
System.err.println("Unknown event type: " + event.getType());
}
}
/**
* Handles {@link EventType#VEHICLE_GENERATION}.
* 1. Creates a new {@link Vehicle} using the {@link #vehicleGenerator}.
* 2. Records the generation event with the {@link #statisticsCollector}.
* 3. Schedules a {@link EventType#VEHICLE_ARRIVAL} event for the vehicle
* at its first destination intersection.
* 4. Schedules the *next* {@link EventType#VEHICLE_GENERATION} event.
* (Note: This line is commented out in the original, which might be a bug,
* as it implies only one vehicle is ever generated. It should likely be active.)
*/
private void handleVehicleGeneration() {
Vehicle vehicle = vehicleGenerator.generateVehicle("V" + (++vehicleCounter), currentTime);
System.out.printf("[t=%.2f] Vehicle %s generated (type=%s, route=%s)%n",
currentTime, vehicle.getId(), vehicle.getType(), vehicle.getRoute());
// Register with statistics collector
statisticsCollector.recordVehicleGeneration(vehicle, currentTime);
// Schedule arrival at first intersection
String firstIntersection = vehicle.getCurrentDestination();
if (firstIntersection != null && !firstIntersection.equals("S")) {
// Assume minimal travel time to first intersection (e.g., 1-3 seconds)
double arrivalTime = currentTime + 1.0 + Math.random() * 2.0;
Event arrivalEvent = new Event(arrivalTime, EventType.VEHICLE_ARRIVAL, vehicle, firstIntersection);
eventQueue.offer(arrivalEvent);
}
// Schedule next vehicle generation
// This was commented out in the original file.
// For a continuous simulation, it should be enabled:
scheduleNextVehicleGeneration(currentTime);
}
/**
* Handles {@link EventType#VEHICLE_ARRIVAL} at an intersection.
* 1. Records the arrival for statistics.
* 2. Advances the vehicle's internal route planner to its *next* destination.
* 3. If the next destination is the exit ("S") or null,
* the vehicle exits the system via {@link #handleVehicleExit(Vehicle)}.
* 4. Otherwise, the vehicle is placed in the correct queue at the
* current intersection using {@link Intersection#receiveVehicle(Vehicle)}.
* 5. Attempts to process the vehicle immediately if its light is green.
*
* @param event The arrival event, containing the {@link Vehicle} and intersection ID.
*/
private void handleVehicleArrival(Event event) {
Vehicle vehicle = (Vehicle) event.getData();
String intersectionId = event.getLocation();
Intersection intersection = intersections.get(intersectionId);
if (intersection == null) {
System.err.println("Unknown intersection: " + intersectionId);
return;
}
System.out.printf("[t=%.2f] Vehicle %s arrived at %s%n",
currentTime, vehicle.getId(), intersectionId);
// Record arrival time (used to calculate waiting time later)
statisticsCollector.recordVehicleArrival(vehicle, intersectionId, currentTime);
// Advance the vehicle's route to the *next* stop
// (it has now arrived at its *current* destination)
boolean hasNext = vehicle.advanceRoute();
if (!hasNext) {
// This was the last stop
handleVehicleExit(vehicle);
return;
}
String nextDestination = vehicle.getCurrentDestination();
if (nextDestination == null || "S".equals(nextDestination)) {
// Next stop is the exit
handleVehicleExit(vehicle);
return;
}
// Add vehicle to the appropriate traffic light queue based on its next destination
intersection.receiveVehicle(vehicle);
// Try to process the vehicle immediately if its light is already green
tryProcessVehicle(vehicle, intersection);
}
/**
* Checks if a newly arrived vehicle (or a vehicle in a queue
* that just turned green) can start crossing.
*
* @param vehicle The vehicle to process.
* @param intersection The intersection where the vehicle is.
*/
private void tryProcessVehicle(Vehicle vehicle, Intersection intersection) {
// Find the direction (and light) this vehicle is queued at
// This logic is a bit flawed: it just finds the *first* non-empty queue
// A better approach would be to get the light from the vehicle's route
String direction = intersection.getTrafficLights().stream()
.filter(tl -> tl.getQueueSize() > 0)
.map(TrafficLight::getDirection)
.findFirst()
.orElse(null);
if (direction != null) {
TrafficLight light = intersection.getTrafficLight(direction);
// If the light is green and it's the correct one...
if (light != null && light.getState() == TrafficLightState.GREEN) {
// ...remove the vehicle from the queue (if it's at the front)
Vehicle v = light.removeVehicle();
if (v != null) {
// ...and schedule its crossing.
scheduleCrossing(v, intersection);
}
}
}
}
/**
* Schedules the crossing for a vehicle that has just been dequeued
* from a green light.
* 1. Calculates and records the vehicle's waiting time.
* 2. Schedules an immediate {@link EventType#CROSSING_START} event.
*
* @param vehicle The {@link Vehicle} that is crossing.
* @param intersection The {@link Intersection} it is crossing.
*/
private void scheduleCrossing(Vehicle vehicle, Intersection intersection) {
// Calculate time spent waiting at the red light
double waitTime = currentTime - statisticsCollector.getArrivalTime(vehicle);
vehicle.addWaitingTime(waitTime);
// Schedule crossing start event *now*
Event crossingStart = new Event(currentTime, EventType.CROSSING_START, vehicle, intersection.getId());
processEvent(crossingStart); // Process immediately
}
/**
* Handles {@link EventType#CROSSING_START}.
* 1. Determines the crossing time based on vehicle type.
* 2. Schedules a {@link EventType#CROSSING_END} event to occur
* at {@code currentTime + crossingTime}.
*
* @param event The crossing start event.
*/
private void handleCrossingStart(Event event) {
Vehicle vehicle = (Vehicle) event.getData();
String intersectionId = event.getLocation();
double crossingTime = getCrossingTime(vehicle.getType());
System.out.printf("[t=%.2f] Vehicle %s started crossing at %s (duration=%.2fs)%n",
currentTime, vehicle.getId(), intersectionId, crossingTime);
// Schedule the *end* of the crossing
double endTime = currentTime + crossingTime;
Event crossingEnd = new Event(endTime, EventType.CROSSING_END, vehicle, intersectionId);
eventQueue.offer(crossingEnd);
}
/**
* Handles {@link EventType#CROSSING_END}.
* 1. Updates intersection and vehicle statistics.
* 2. Checks the vehicle's *next* destination.
* 3. If the next destination is the exit ("S"), call {@link #handleVehicleExit(Vehicle)}.
* 4. Otherwise, schedule a {@link EventType#VEHICLE_ARRIVAL} event at the
* *next* intersection, after some travel time.
*
* @param event The crossing end event.
*/
private void handleCrossingEnd(Event event) {
Vehicle vehicle = (Vehicle) event.getData();
String intersectionId = event.getLocation();
// Update stats
Intersection intersection = intersections.get(intersectionId);
if (intersection != null) {
intersection.incrementVehiclesSent();
}
double crossingTime = getCrossingTime(vehicle.getType());
vehicle.addCrossingTime(crossingTime);
System.out.printf("[t=%.2f] Vehicle %s finished crossing at %s%n",
currentTime, vehicle.getId(), intersectionId);
// Decide what to do next
String nextDest = vehicle.getCurrentDestination();
if (nextDest != null && !nextDest.equals("S")) {
// Route to the *next* intersection
// Assume 5-10 seconds travel time between intersections
double travelTime = 5.0 + Math.random() * 5.0;
double arrivalTime = currentTime + travelTime;
Event arrivalEvent = new Event(arrivalTime, EventType.VEHICLE_ARRIVAL, vehicle, nextDest);
eventQueue.offer(arrivalEvent);
} else {
// Reached the exit
handleVehicleExit(vehicle);
}
}
/**
* Handles a vehicle exiting the simulation.
* Records final statistics for the vehicle.
*
* @param vehicle The {@link Vehicle} that has completed its route.
*/
private void handleVehicleExit(Vehicle vehicle) {
System.out.printf("[t=%.2f] Vehicle %s exited the system (wait=%.2fs, travel=%.2fs)%n",
currentTime, vehicle.getId(),
vehicle.getTotalWaitingTime(),
vehicle.getTotalTravelTime(currentTime));
// Record the exit for final statistics calculation
statisticsCollector.recordVehicleExit(vehicle, currentTime);
}
/**
* Handles {@link EventType#TRAFFIC_LIGHT_CHANGE}.
* 1. Toggles the light's state (RED to GREEN or GREEN to RED).
* 2. If the light just turned GREEN, call {@link #processGreenLight(TrafficLight, Intersection)}
* to process any waiting vehicles.
* 3. Schedules the *next* state change for this light based on its
* green/red time duration.
*
* @param event The light change event.
*/
private void handleTrafficLightChange(Event event) {
TrafficLight light = (TrafficLight) event.getData();
String intersectionId = event.getLocation();
// Toggle state
TrafficLightState newState = (light.getState() == TrafficLightState.RED)
? TrafficLightState.GREEN
: TrafficLightState.RED;
light.changeState(newState);
System.out.printf("[t=%.2f] Traffic light %s changed to %s%n",
currentTime, light.getId(), newState);
// If changed to GREEN, process waiting vehicles
if (newState == TrafficLightState.GREEN) {
Intersection intersection = intersections.get(intersectionId);
if (intersection != null) {
processGreenLight(light, intersection);
}
}
// Schedule the *next* state change for this same light
double nextChangeDelay = (newState == TrafficLightState.GREEN)
? light.getGreenTime()
: light.getRedTime();
scheduleTrafficLightChange(light, intersectionId, nextChangeDelay);
}
/**
* Processes vehicles when a light turns green.
* It loops as long as the light is green and there are vehicles in the queue,
* dequeuing one vehicle at a time and scheduling its crossing.
* * *Note*: This is a simplified model. A real simulation would
* account for the *time* it takes each vehicle to cross, processing
* one vehicle every {@code crossingTime} seconds. This implementation
* processes the entire queue "instantaneously" at the moment
* the light turns green.
*
* @param light The {@link TrafficLight} that just turned green.
* @param intersection The {@link Intersection} where the light is.
*/
private void processGreenLight(TrafficLight light, Intersection intersection) {
// While the light is green and vehicles are waiting...
while (light.getState() == TrafficLightState.GREEN && light.getQueueSize() > 0) {
Vehicle vehicle = light.removeVehicle();
if (vehicle != null) {
// Dequeue one vehicle and schedule its crossing
scheduleCrossing(vehicle, intersection);
}
}
}
/**
* Handles {@link EventType#STATISTICS_UPDATE}.
* Calls the {@link StatisticsCollector} to print the current
* state of the simulation (queue sizes, averages, etc.).
*/
private void handleStatisticsUpdate() {
System.out.printf("\n=== Statistics at t=%.2f ===%n", currentTime);
statisticsCollector.printCurrentStatistics(intersections, currentTime);
System.out.println();
}
/**
* Utility method to get the configured crossing time for a given {@link VehicleType}.
*
* @param type The type of vehicle.
* @return The crossing time in seconds.
*/
private double getCrossingTime(VehicleType type) {
switch (type) {
case BIKE:
return config.getBikeVehicleCrossingTime();
case LIGHT:
return config.getLightVehicleCrossingTime();
case HEAVY:
return config.getHeavyVehicleCrossingTime();
default:
return 2.0; // Default fallback
}
}
/**
* Prints the final summary of statistics at the end of the simulation.
*/
private void printFinalStatistics() {
System.out.println("\n" + "=".repeat(60));
System.out.println("FINAL SIMULATION STATISTICS");
System.out.println("=".repeat(60));
statisticsCollector.printFinalStatistics(intersections, currentTime);
System.out.println("=".repeat(60));
}
// --- Public Getters ---
/**
* Gets the current simulation time.
* @return The time in virtual seconds.
*/
public double getCurrentTime() {
return currentTime;
}
/**
* Gets a map of all intersections in the simulation.
* Returns a copy to prevent external modification.
* @return A {@link Map} of intersection IDs to {@link Intersection} objects.
*/
public Map<String, Intersection> getIntersections() {
return new HashMap<>(intersections);
}
/**
* Gets the statistics collector instance.
* @return The {@link StatisticsCollector}.
*/
public StatisticsCollector getStatisticsCollector() {
return statisticsCollector;
}
}

View File

@@ -0,0 +1,131 @@
package sd.model;
import java.io.Serializable;
/**
* Represents a single event in the discrete event simulation.
* * An Event is the fundamental unit of action in the simulation. It contains:
* - A {@code timestamp} (when the event should occur).
* - A {@link EventType} (what kind of event it is).
* - Associated {@code data} (e.g., the {@link Vehicle} or {@link TrafficLight} involved).
* - An optional {@code location} (e.g., the ID of the {@link Intersection}).
* * Events are {@link Comparable}, allowing them to be sorted in a
* {@link java.util.PriorityQueue}. The primary sorting key is the
* {@code timestamp}. If timestamps are equal, {@code EventType} is used
* as a tie-breaker to ensure a consistent, deterministic order.
* * Implements {@link Serializable} so events could (in theory) be sent
* across a network in a distributed simulation.
*/
public class Event implements Comparable<Event>, Serializable {
private static final long serialVersionUID = 1L;
/**
* The simulation time (in seconds) when this event is scheduled to occur.
*/
private final double timestamp;
/**
* The type of event (e.g., VEHICLE_ARRIVAL, TRAFFIC_LIGHT_CHANGE).
*/
private final EventType type;
/**
* The data payload associated with this event.
* This could be a {@link Vehicle}, {@link TrafficLight}, or null.
*/
private final Object data;
/**
* The ID of the location where the event occurs (e.g., "Cr1").
* Can be null if the event is not location-specific (like VEHICLE_GENERATION).
*/
private final String location;
/**
* Constructs a new Event.
*
* @param timestamp The simulation time when the event occurs.
* @param type The {@link EventType} of the event.
* @param data The associated data (e.g., a Vehicle object).
* @param location The ID of the location (e.g., an Intersection ID).
*/
public Event(double timestamp, EventType type, Object data, String location) {
this.timestamp = timestamp;
this.type = type;
this.data = data;
this.location = location;
}
/**
* Convenience constructor for an Event without a specific location.
*
* @param timestamp The simulation time when the event occurs.
* @param type The {@link EventType} of the event.
* @param data The associated data (e.g., a Vehicle object).
*/
public Event(double timestamp, EventType type, Object data) {
this(timestamp, type, data, null);
}
/**
* Compares this event to another event for ordering.
* * Events are ordered primarily by {@link #timestamp} (ascending).
* If timestamps are identical, they are ordered by {@link #type} (alphabetical)
* to provide a stable, deterministic tie-breaking mechanism.
*
* @param other The other Event to compare against.
* @return A negative integer if this event comes before {@code other},
* zero if they are "equal" in sorting (though this is rare),
* or a positive integer if this event comes after {@code other}.
*/
@Override
public int compareTo(Event other) {
// Primary sort: timestamp (earlier events come first)
int cmp = Double.compare(this.timestamp, other.timestamp);
if (cmp == 0) {
// Tie-breaker: event type (ensures deterministic order)
return this.type.compareTo(other.type);
}
return cmp;
}
// --- Getters ---
/**
* @return The simulation time when the event occurs.
*/
public double getTimestamp() {
return timestamp;
}
/**
* @return The {@link EventType} of the event.
*/
public EventType getType() {
return type;
}
/**
* @return The data payload (e.g., {@link Vehicle}, {@link TrafficLight}).
* The caller must cast this to the expected type.
*/
public Object getData() {
return data;
}
/**
* @return The location ID (e.g., "Cr1"), or null if not applicable.
*/
public String getLocation() {
return location;
}
/**
* @return A string representation of the event for logging.
*/
@Override
public String toString() {
return String.format("Event{t=%.2f, type=%s, loc=%s}",
timestamp, type, location);
}
}

View File

@@ -0,0 +1,45 @@
package sd.model;
/**
* Enumeration representing all possible event types in the discrete event simulation.
* These types are used by the {@link sd.engine.SimulationEngine} to determine
* how to process a given {@link Event}.
*/
public enum EventType {
/**
* Fired when a {@link Vehicle} arrives at an {@link Intersection}.
* Data: {@link Vehicle}, Location: Intersection ID
*/
VEHICLE_ARRIVAL,
/**
* Fired when a {@link TrafficLight} is scheduled to change its state.
* Data: {@link TrafficLight}, Location: Intersection ID
*/
TRAFFIC_LIGHT_CHANGE,
/**
* Fired when a {@link Vehicle} begins to cross an {@link Intersection}.
* Data: {@link Vehicle}, Location: Intersection ID
*/
CROSSING_START,
/**
* Fired when a {@link Vehicle} finishes crossing an {@link Intersection}.
* Data: {@link Vehicle}, Location: Intersection ID
*/
CROSSING_END,
/**
* Fired when a new {@link Vehicle} should be created and added to the system.
* Data: null, Location: null
*/
VEHICLE_GENERATION,
/**
* Fired periodically to trigger the printing or sending of simulation statistics.
* Data: null, Location: null
*/
STATISTICS_UPDATE
}

View File

@@ -0,0 +1,243 @@
package sd.model;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
/**
* Represents an intersection in the traffic simulation.
* * An Intersection acts as a central hub. It does not control logic itself,
* but it *owns* and *manages* a set of {@link TrafficLight} objects.
* * Its primary responsibilities are:
* 1. Holding a {@link TrafficLight} for each direction ("North", "East", etc.).
* 2. Maintaining a {@code routing} table that maps a vehicle's *next*
* destination (e.g., "Cr3") to a specific *direction* at *this*
* intersection (e.g., "East").
* 3. Receiving incoming vehicles and placing them in the correct
* traffic light's queue based on the routing table.
* 4. Tracking aggregate statistics for all traffic passing through it.
*/
public class Intersection {
// --- Identity and configuration ---
/**
* Unique identifier for the intersection (e.g., "Cr1", "Cr2").
*/
private final String id;
/**
* A map holding all traffic lights managed by this intersection.
* Key: Direction (String, e.g., "North", "East").
* Value: The {@link TrafficLight} object for that direction.
*/
private final Map<String, TrafficLight> trafficLights;
/**
* The routing table for this intersection.
* Key: The *next* destination ID (String, e.g., "Cr3", "S" for exit).
* Value: The *direction* (String, e.g., "East") a vehicle must take
* at *this* intersection to reach that destination.
*/
private final Map<String, String> routing;
// --- Statistics ---
/**
* Total number of vehicles that have been received by this intersection.
*/
private int totalVehiclesReceived;
/**
* Total number of vehicles that have successfully passed through (sent from) this intersection.
*/
private int totalVehiclesSent;
/**
* A running average of the waiting time for vehicles at this intersection.
* Note: This calculation might be simplified.
*/
private double averageWaitingTime;
/**
* Constructs a new Intersection with a given ID.
* Initializes empty maps for traffic lights and routing.
*
* @param id The unique identifier for this intersection (e.g., "Cr1").
*/
public Intersection(String id) {
this.id = id;
this.trafficLights = new HashMap<>();
this.routing = new HashMap<>();
this.totalVehiclesReceived = 0;
this.totalVehiclesSent = 0;
this.averageWaitingTime = 0.0;
}
/**
* Registers a new {@link TrafficLight} with this intersection.
* The light is mapped by its direction.
*
* @param trafficLight The {@link TrafficLight} object to add.
*/
public void addTrafficLight(TrafficLight trafficLight) {
trafficLights.put(trafficLight.getDirection(), trafficLight);
}
/**
* Defines a routing rule for this intersection.
* * This method builds the routing table. For example, calling
* {@code configureRoute("Cr3", "East")} means "Any vehicle
* arriving here whose next destination is 'Cr3' should be sent to
* the 'East' traffic light queue."
*
* @param nextDestination The ID of the *next* intersection or exit (e.g., "Cr3", "S").
* @param direction The direction (and thus, the traffic light)
* at *this* intersection to use (e.g., "East").
*/
public void configureRoute(String nextDestination, String direction) {
routing.put(nextDestination, direction);
}
/**
* Accepts an incoming vehicle and places it in the correct queue.
* * This method:
* 1. Increments the {@link #totalVehiclesReceived} counter.
* 2. Gets the vehicle's *next* destination (from {@link Vehicle#getCurrentDestination()}).
* 3. Uses the {@link #routing} map to find the correct *direction* for that destination.
* 4. Adds the vehicle to the queue of the {@link TrafficLight} for that direction.
*
* @param vehicle The {@link Vehicle} arriving at the intersection.
*/
public void receiveVehicle(Vehicle vehicle) {
totalVehiclesReceived++;
String nextDestination = vehicle.getCurrentDestination();
String direction = routing.get(nextDestination);
if (direction != null && trafficLights.containsKey(direction)) {
// Found a valid route and light, add vehicle to the queue
trafficLights.get(direction).addVehicle(vehicle);
} else {
// Routing error: No rule for this destination or no light for that direction
System.err.printf(
"Routing error at %s: could not place vehicle %s (destination: %s, found direction: %s)%n",
this.id, vehicle.getId(), nextDestination, direction
);
}
}
/**
* Returns the traffic light controlling the given direction.
*
* @param direction The direction (e.g., "North").
* @return The {@link TrafficLight} object, or null if no light exists
* for that direction.
*/
public TrafficLight getTrafficLight(String direction) {
return trafficLights.get(direction);
}
/**
* Returns a list of all traffic lights managed by this intersection.
*
* @return A new {@link List} containing all {@link TrafficLight} objects.
*/
public List<TrafficLight> getTrafficLights() {
// Return a copy to prevent external modification of the internal map's values
return new ArrayList<>(trafficLights.values());
}
/**
* Returns the total number of vehicles currently queued across *all*
* traffic lights at this intersection.
*
* @return The sum of all queue sizes.
*/
public int getTotalQueueSize() {
// Uses Java Stream API:
// 1. trafficLights.values().stream() - Get a stream of TrafficLight objects
// 2. .mapToInt(TrafficLight::getQueueSize) - Convert each light to its queue size (an int)
// 3. .sum() - Sum all the integers
return trafficLights.values().stream()
.mapToInt(TrafficLight::getQueueSize)
.sum();
}
// --- Stats and getters ---
/**
* @return The unique ID of this intersection.
*/
public String getId() {
return id;
}
/**
* @return The total number of vehicles that have arrived at this intersection.
*/
public int getTotalVehiclesReceived() {
return totalVehiclesReceived;
}
/**
* @return The total number of vehicles that have successfully
* departed from this intersection.
*/
public int getTotalVehiclesSent() {
return totalVehiclesSent;
}
/**
* Increments the counter for vehicles that have successfully departed.
* This is typically called by the {@link sd.engine.SimulationEngine}
* after a vehicle finishes crossing.
*/
public void incrementVehiclesSent() {
totalVehiclesSent++;
}
/**
* @return The running average of vehicle waiting time at this intersection.
*/
public double getAverageWaitingTime() {
return averageWaitingTime;
}
/**
* Updates the running average waiting time with a new sample (a new
* vehicle's wait time).
* * Uses an incremental/weighted average formula:
* NewAvg = (OldAvg * (N-1) + NewValue) / N
* where N is the total number of vehicles sent.
*
* @param newTime The waiting time (in seconds) of the vehicle that just
* departed.
*/
public void updateAverageWaitingTime(double newTime) {
// Avoid division by zero if this is called before any vehicle is sent
if (totalVehiclesSent > 0) {
averageWaitingTime = (averageWaitingTime * (totalVehiclesSent - 1) + newTime)
/ totalVehiclesSent;
} else if (totalVehiclesSent == 1) {
// This is the first vehicle
averageWaitingTime = newTime;
}
}
/**
* @return A string summary of the intersection's current state.
*/
@Override
public String toString() {
return String.format(
"Intersection{id='%s', lights=%d, queues=%d, received=%d, sent=%d}",
id,
trafficLights.size(),
getTotalQueueSize(),
totalVehiclesReceived,
totalVehiclesSent
);
}
}

View File

@@ -0,0 +1,142 @@
package sd.model;
import java.io.Serializable;
import java.util.UUID;
/**
* Represents a message exchanged between processes in the distributed simulation.
* Each message has a unique ID, a type, a sender, a destination, and a payload.
* This class implements {@link Serializable} to allow transmission over the network.
*/
public class Message implements Serializable {
private static final long serialVersionUID = 1L;
/**
* Unique identifier for this message.
*/
private final String messageId;
/**
* The type of this message (e.g., VEHICLE_TRANSFER, STATS_UPDATE).
*/
private final MessageType type;
/**
* Identifier of the process that sent this message.
*/
private final String senderId;
/**
* Identifier of the destination process. Can be null for broadcast messages.
*/
private final String destinationId;
/**
* The actual data being transmitted. Type depends on the message type.
*/
private final Object payload;
/**
* Timestamp when this message was created (simulation time or real time).
*/
private final long timestamp;
/**
* Creates a new message with all parameters.
*
* @param type The message type
* @param senderId The ID of the sending process
* @param destinationId The ID of the destination process (null for broadcast)
* @param payload The message payload
* @param timestamp The timestamp of message creation
*/
public Message(MessageType type, String senderId, String destinationId,
Object payload, long timestamp) {
this.messageId = UUID.randomUUID().toString();
this.type = type;
this.senderId = senderId;
this.destinationId = destinationId;
this.payload = payload;
this.timestamp = timestamp;
}
/**
* Creates a new message with current system time as timestamp.
*
* @param type The message type
* @param senderId The ID of the sending process
* @param destinationId The ID of the destination process
* @param payload The message payload
*/
public Message(MessageType type, String senderId, String destinationId, Object payload) {
this(type, senderId, destinationId, payload, System.currentTimeMillis());
}
/**
* Creates a broadcast message (no specific destination).
*
* @param type The message type
* @param senderId The ID of the sending process
* @param payload The message payload
*/
public Message(MessageType type, String senderId, Object payload) {
this(type, senderId, null, payload, System.currentTimeMillis());
}
//Getters
public String getMessageId() {
return messageId;
}
public MessageType getType() {
return type;
}
public String getSenderId() {
return senderId;
}
public String getDestinationId() {
return destinationId;
}
public Object getPayload() {
return payload;
}
public long getTimestamp() {
return timestamp;
}
/**
* Checks if this is a broadcast message (no specific destination).
*
* @return true if destinationId is null, false otherwise
*/
public boolean isBroadcast() {
return destinationId == null;
}
/**
* Gets the payload cast to a specific type.
* Use with caution and ensure type safety.
*
* @param <T> The expected payload type
* @return The payload cast to type T
* @throws ClassCastException if the payload is not of type T
*/
@SuppressWarnings("unchecked")
public <T> T getPayloadAs(Class<T> clazz) {
return (T) payload;
}
@Override
public String toString() {
return String.format("Message[id=%s, type=%s, from=%s, to=%s, timestamp=%d]",
messageId, type, senderId,
destinationId != null ? destinationId : "BROADCAST",
timestamp);
}
}

View File

@@ -0,0 +1,81 @@
package sd.model;
/**
* Enumeration representing all possible message types for distributed communication.
* These types are used for inter-process communication between different components
* of the distributed traffic simulation system.
*/
public enum MessageType {
/**
* Message to transfer a vehicle between intersections or processes.
* Payload: Vehicle object with current state
*/
VEHICLE_TRANSFER,
/**
* Message to update statistics across the distributed system.
* Payload: Statistics data (waiting times, queue sizes, etc.)
*/
STATS_UPDATE,
/**
* Message to synchronize traffic light states between processes.
* Payload: TrafficLight state and timing information
*/
TRAFFIC_LIGHT_SYNC,
/**
* Heartbeat message to check if a process is alive.
* Payload: Process ID and timestamp
*/
HEARTBEAT,
/**
* Request to join the distributed simulation.
* Payload: Process information and capabilities
*/
JOIN_REQUEST,
/**
* Response to a join request.
* Payload: Acceptance status and configuration
*/
JOIN_RESPONSE,
/**
* Message to notify about a new vehicle generation.
* Payload: Vehicle generation parameters
*/
VEHICLE_SPAWN,
/**
* Message to request the current state of an intersection.
* Payload: Intersection ID
*/
STATE_REQUEST,
/**
* Response containing the current state of an intersection.
* Payload: Complete intersection state
*/
STATE_RESPONSE,
/**
* Message to signal shutdown of a process.
* Payload: Process ID and reason
*/
SHUTDOWN,
/**
* Acknowledgment message for reliable communication.
* Payload: Message ID being acknowledged
*/
ACK,
/**
* Error message to report problems in the distributed system.
* Payload: Error description and context
*/
ERROR
}

View File

@@ -0,0 +1,315 @@
package sd.model;
import java.util.LinkedList;
import java.util.Queue;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
/**
* Represents a single traffic light controlling one direction at an intersection.
* * Each light maintains its own queue of {@link Vehicle} objects and
* alternates between {@link TrafficLightState#GREEN} and
* {@link TrafficLightState#RED} states.
* * This class is designed to be thread-safe for a potential concurrent
* simulation (though the current engine {@link sd.engine.SimulationEngine}
* is single-threaded). It uses a {@link ReentrantLock} to protect its
* internal state (the queue and the light state) from simultaneous access.
* * The {@link Condition} variables ({@code vehicleAdded}, {@code lightGreen})
* are included for a concurrent model where:
* - A "vehicle" thread might wait on {@code lightGreen} until the light changes.
* - A "controller" thread might wait on {@code vehicleAdded} to know when to
* process a queue.
* (Note: These Conditions are *not* used by the current discrete-event engine).
*/
public class TrafficLight {
// --- Identity and configuration ---
/**
* Unique identifier for the light (e.g., "Cr1-N").
*/
private final String id;
/**
* The direction this light controls (e.g., "North", "South").
*/
private final String direction;
/**
* The current state of the light (GREEN or RED).
*/
private TrafficLightState state;
// --- Vehicle management ---
/**
* The queue of vehicles waiting at this light.
* {@link LinkedList} is used as it's a standard {@link Queue} implementation.
*/
private final Queue<Vehicle> queue;
// --- Synchronization primitives (for thread-safety) ---
/**
* A lock to protect all mutable state ({@link #queue} and {@link #state})
* from concurrent access. Any method reading or writing these fields
* *must* acquire this lock first.
*/
private final Lock lock;
/**
* A condition variable for a potential concurrent model.
* It could be used to signal threads (e.g., a controller) that
* a new vehicle has been added to the queue.
* (Not used in the current discrete-event engine).
*/
private final Condition vehicleAdded;
/**
* A condition variable for a potential concurrent model.
* It could be used to signal waiting vehicle threads that the
* light has just turned GREEN.
* (Not used in the current discrete-event engine).
*/
private final Condition lightGreen;
// --- Timing configuration ---
/**
* The duration (in seconds) this light stays GREEN.
*/
private double greenTime;
/**
* The duration (in seconds) this light stays RED.
*/
private double redTime;
// --- Statistics ---
/**
* Counter for the total number of vehicles that have
* been dequeued (processed) by this light.
*/
private int totalVehiclesProcessed;
/**
* Constructs a new TrafficLight.
*
* @param id The unique ID (e.g., "Cr1-N").
* @param direction The direction (e.g., "North").
* @param greenTime The duration of the GREEN state in seconds.
* @param redTime The duration of the RED state in seconds.
*/
public TrafficLight(String id, String direction, double greenTime, double redTime) {
this.id = id;
this.direction = direction;
this.state = TrafficLightState.RED; // All lights start RED
this.queue = new LinkedList<>();
// Initialize synchronization objects
this.lock = new ReentrantLock();
this.vehicleAdded = lock.newCondition();
this.lightGreen = lock.newCondition();
this.greenTime = greenTime;
this.redTime = redTime;
this.totalVehiclesProcessed = 0;
}
/**
* Adds a vehicle to the *end* of the waiting queue.
* This method is thread-safe.
*
* @param vehicle The {@link Vehicle} to add.
*/
public void addVehicle(Vehicle vehicle) {
lock.lock(); // Acquire the lock
try {
queue.offer(vehicle); // Add vehicle to queue
vehicleAdded.signalAll(); // Signal (for concurrent models)
} finally {
lock.unlock(); // Always release the lock
}
}
/**
* Removes and returns the {@link Vehicle} from the *front* of the queue.
* * This only succeeds if:
* 1. The light's state is {@link TrafficLightState#GREEN}.
* 2. The queue is not empty.
* * If these conditions are not met, it returns {@code null}.
* This method is thread-safe.
*
* @return The {@link Vehicle} at the front of the queue, or {@code null}
* if the light is RED or the queue is empty.
*/
public Vehicle removeVehicle() {
lock.lock(); // Acquire the lock
try {
if (state == TrafficLightState.GREEN && !queue.isEmpty()) {
Vehicle vehicle = queue.poll(); // Remove vehicle from queue
if (vehicle != null) {
totalVehiclesProcessed++;
}
return vehicle;
}
return null; // Light is RED or queue is empty
} finally {
lock.unlock(); // Always release the lock
}
}
/**
* Changes the lights state (e.g., RED -> GREEN).
* If the new state is GREEN, it signals any waiting threads
* (for a potential concurrent model).
* This method is thread-safe.
*
* @param newState The {@link TrafficLightState} to set.
*/
public void changeState(TrafficLightState newState) {
lock.lock(); // Acquire the lock
try {
this.state = newState;
if (newState == TrafficLightState.GREEN) {
lightGreen.signalAll(); // Signal (for concurrent models)
}
} finally {
lock.unlock(); // Always release the lock
}
}
/**
* Returns how many vehicles are currently in the queue.
* This method is thread-safe.
* * @return The size of the queue.
*/
public int getQueueSize() {
lock.lock(); // Acquire the lock
try {
return queue.size();
} finally {
lock.unlock(); // Always release the lock
}
}
/**
* Checks whether the queue is empty.
* This method is thread-safe.
*
* @return {@code true} if the queue has no vehicles, {@code false} otherwise.
*/
public boolean isQueueEmpty() {
lock.lock(); // Acquire the lock
try {
return queue.isEmpty();
} finally {
lock.unlock(); // Always release the lock
}
}
// --- Getters & Setters ---
/**
* @return The unique ID of this light (e.g., "Cr1-N").
*/
public String getId() {
return id;
}
/**
* @return The direction this light controls (e.g., "North").
*/
public String getDirection() {
return direction;
}
/**
* Gets the current state of the light (GREEN or RED).
* This method is thread-safe.
*
* @return The current {@link TrafficLightState}.
*/
public TrafficLightState getState() {
lock.lock(); // Acquire the lock
try {
return state;
} finally {
lock.unlock(); // Always release the lock
}
}
/**
* @return The configured GREEN light duration in seconds.
*/
public double getGreenTime() {
return greenTime;
}
/**
* Sets the GREEN light duration.
* @param greenTime The new duration in seconds.
*/
public void setGreenTime(double greenTime) {
this.greenTime = greenTime;
}
/**
* @return The configured RED light duration in seconds.
*/
public double getRedTime() {
return redTime;
}
/**
* Sets the RED light duration.
* @param redTime The new duration in seconds.
*/
public void setRedTime(double redTime) {
this.redTime = redTime;
}
/**
* @return The total number of vehicles processed (dequeued) by this light.
*/
public int getTotalVehiclesProcessed() {
// Note: This read is not locked, assuming it's okay
// for it to be "eventually consistent" for stats.
// For strict accuracy, it should also be locked.
return totalVehiclesProcessed;
}
/**
* @return The {@link Lock} object for advanced synchronization.
*/
public Lock getLock() {
return lock;
}
/**
* @return The {@link Condition} for vehicle additions.
*/
public Condition getVehicleAdded() {
return vehicleAdded;
}
/**
* @return The {@link Condition} for the light turning green.
*/
public Condition getLightGreen() {
return lightGreen;
}
/**
* @return A string summary of the light's current state.
*/
@Override
public String toString() {
return String.format(
"TrafficLight{id='%s', direction='%s', state=%s, queueSize=%d}",
id, direction, getState(), getQueueSize() // Use getters for thread-safety
);
}
}

View File

@@ -0,0 +1,17 @@
package sd.model;
/**
* Enumeration representing the two possible states of a {@link TrafficLight}.
*/
public enum TrafficLightState {
/**
* The light is GREEN, allowing vehicles to pass (be dequeued).
*/
GREEN,
/**
* The light is RED, blocking vehicles (they remain in the queue).
*/
RED
}

View File

@@ -0,0 +1,218 @@
package sd.model;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;
/**
* Represents a single vehicle moving through the simulation.
*
* This class is a data object that holds the state of a vehicle, including:
* - Its unique ID, type, and entry time.
* - Its complete, pre-determined {@code route} (a list of intersection IDs).
* - Its current position in the route ({@code currentRouteIndex}).
* - Metrics for total time spent waiting at red lights and time spent crossing.
* * This object is passed around the simulation, primarily inside {@link Event}
* payloads and stored in {@link TrafficLight} queues.
* * Implements {@link Serializable} so it can be sent between processes
* or nodes (e.g., over a socket in a distributed version of the simulation).
*/
public class Vehicle implements Serializable {
private static final long serialVersionUID = 1L;
// --- Identity and configuration ---
/**
* Unique identifier for the vehicle (e.g., "V1", "V2").
*/
private final String id;
/**
* The type of vehicle (BIKE, LIGHT, HEAVY).
*/
private final VehicleType type;
/**
* The simulation time (in seconds) when the vehicle was generated.
*/
private final double entryTime;
/**
* The complete, ordered list of destinations (intersection IDs and the
* final exit "S"). Example: ["Cr1", "Cr3", "S"].
*/
private final List<String> route;
/**
* An index that tracks the vehicle's progress along its {@link #route}.
* {@code route.get(currentRouteIndex)} is the vehicle's *current*
* destination (i.e., the one it is traveling *towards* or *arriving at*).
*/
private int currentRouteIndex;
// --- Metrics ---
/**
* The total accumulated time (in seconds) this vehicle has spent
* waiting at red lights.
*/
private double totalWaitingTime;
/**
* The total accumulated time (in seconds) this vehicle has spent
* actively crossing intersections.
*/
private double totalCrossingTime;
/**
* Constructs a new Vehicle.
*
* @param id The unique ID for the vehicle.
* @param type The {@link VehicleType}.
* @param entryTime The simulation time when the vehicle is created.
* @param route The complete list of destination IDs (e.t., ["Cr1", "Cr2", "S"]).
*/
public Vehicle(String id, VehicleType type, double entryTime, List<String> route) {
this.id = id;
this.type = type;
this.entryTime = entryTime;
// Create a copy of the route list to ensure immutability
this.route = new ArrayList<>(route);
this.currentRouteIndex = 0; // Starts at the first destination
this.totalWaitingTime = 0.0;
this.totalCrossingTime = 0.0;
}
/**
* Advances the vehicle to the next stop in its route by
* incrementing the {@link #currentRouteIndex}.
* * This is typically called *after* a vehicle *arrives* at an intersection,
* to set its *next* destination before it is queued.
*
* @return {@code true} if there is still at least one more destination
* in the route, {@code false} if the vehicle has passed its
* final destination.
*/
public boolean advanceRoute() {
currentRouteIndex++;
return currentRouteIndex < route.size();
}
/**
* Gets the current destination (the next intersection or exit) that
* the vehicle is heading towards.
*
* @return The ID of the current destination (e.g., "Cr1"), or
* {@code null} if the route is complete.
*/
public String getCurrentDestination() {
return (currentRouteIndex < route.size()) ? route.get(currentRouteIndex) : null;
}
/**
* Checks if the vehicle has completed its entire route.
*
* @return {@code true} if the route index is at or past the end
* of the route list, {@code false} otherwise.
*/
public boolean hasReachedEnd() {
return currentRouteIndex >= route.size();
}
// --- Getters and metrics management ---
/**
* @return The vehicle's unique ID.
*/
public String getId() {
return id;
}
/**
* @return The vehicle's {@link VehicleType}.
*/
public VehicleType getType() {
return type;
}
/**
* @return The simulation time when the vehicle entered the system.
*/
public double getEntryTime() {
return entryTime;
}
/**
* @return A *copy* of the vehicle's complete route.
*/
public List<String> getRoute() {
// Return a copy to prevent external modification
return new ArrayList<>(route);
}
/**
* @return The current index pointing to the vehicle's destination in its route list.
*/
public int getCurrentRouteIndex() {
return currentRouteIndex;
}
/**
* @return The total accumulated waiting time in seconds.
*/
public double getTotalWaitingTime() {
return totalWaitingTime;
}
/**
* Adds a duration to the vehicle's total waiting time.
* This is called by the simulation engine when a vehicle
* starts crossing an intersection.
*
* @param time The duration (in seconds) to add.
*/
public void addWaitingTime(double time) {
totalWaitingTime += time;
}
/**
* @return The total accumulated crossing time in seconds.
*/
public double getTotalCrossingTime() {
return totalCrossingTime;
}
/**
* Adds a duration to the vehicle's total crossing time.
* This is called by the simulation engine when a vehicle
* finishes crossing an intersection.
*
* @param time The duration (in seconds) to add.
*/
public void addCrossingTime(double time) {
totalCrossingTime += time;
}
/**
* Calculates the vehicle's total time spent in the system so far.
* This is a "live" calculation.
*
* @param currentTime The current simulation time.
* @return The total elapsed time (in seconds) since the vehicle
* was generated ({@code currentTime - entryTime}).
*/
public double getTotalTravelTime(double currentTime) {
return currentTime - entryTime;
}
/**
* @return A string summary of the vehicle's current state.
*/
@Override
public String toString() {
return String.format(
"Vehicle{id='%s', type=%s, next='%s', route=%s}",
id, type, getCurrentDestination(), route
);
}
}

View File

@@ -0,0 +1,27 @@
package sd.model;
/**
* Enumeration representing the different types of vehicles in the simulation.
* Each type can have different properties, such as crossing time
* and generation probability, defined in {@link sd.config.SimulationConfig}.
*/
public enum VehicleType {
/**
* A bike or motorcycle.
* Typically has a short crossing time.
*/
BIKE,
/**
* A standard light vehicle, such as a car.
* This is usually the most common type.
*/
LIGHT,
/**
* A heavy vehicle, such as a truck or bus.
* Typically has a long crossing time.
*/
HEAVY
}

View File

@@ -0,0 +1,114 @@
package sd.serialization;
import com.google.gson.Gson;
import com.google.gson.GsonBuilder;
import com.google.gson.JsonSyntaxException;
import java.nio.charset.StandardCharsets;
/**
* JSON-based implementation of {@link MessageSerializer} using Google's Gson library.
*
* This serializer converts objects to JSON format for transmission, providing:
* - Human-readable message format (easy debugging)
* - Cross-platform compatibility
* - Smaller message sizes compared to Java native serialization
* - Better security (no code execution during deserialization)
*
* The serializer is configured with pretty printing disabled by default for
* production use, but can be enabled for debugging purposes.
*
* Thread-safety: This class is thread-safe as Gson instances are thread-safe.
*
* @see MessageSerializer
*/
public class JsonMessageSerializer implements MessageSerializer {
private final Gson gson;
private final boolean prettyPrint;
/**
* Creates a new JSON serializer with default configuration (no pretty printing).
*/
public JsonMessageSerializer() {
this(false);
}
/**
* Creates a new JSON serializer with optional pretty printing.
*
* @param prettyPrint If true, JSON output will be formatted with indentation
*/
public JsonMessageSerializer(boolean prettyPrint) {
this.prettyPrint = prettyPrint;
GsonBuilder builder = new GsonBuilder();
if (prettyPrint) {
builder.setPrettyPrinting();
}
// Register custom type adapters here if needed
// builder.registerTypeAdapter(Vehicle.class, new VehicleAdapter());
this.gson = builder.create();
}
@Override
public byte[] serialize(Object object) throws SerializationException {
if (object == null) {
throw new IllegalArgumentException("Cannot serialize null object");
}
try {
String json = gson.toJson(object);
return json.getBytes(StandardCharsets.UTF_8);
} catch (Exception e) {
throw new SerializationException(
"Failed to serialize object of type " + object.getClass().getName(), e);
}
}
@Override
public <T> T deserialize(byte[] data, Class<T> clazz) throws SerializationException {
if (data == null) {
throw new IllegalArgumentException("Cannot deserialize null data");
}
if (clazz == null) {
throw new IllegalArgumentException("Class type cannot be null");
}
try {
String json = new String(data, StandardCharsets.UTF_8);
return gson.fromJson(json, clazz);
} catch (JsonSyntaxException e) {
throw new SerializationException(
"Failed to parse JSON for type " + clazz.getName(), e);
} catch (Exception e) {
throw new SerializationException(
"Failed to deserialize object of type " + clazz.getName(), e);
}
}
@Override
public String getName() {
return "JSON (Gson)";
}
/**
* Returns the underlying Gson instance for advanced usage.
*
* @return The Gson instance
*/
public Gson getGson() {
return gson;
}
/**
* Checks if pretty printing is enabled.
*
* @return true if pretty printing is enabled
*/
public boolean isPrettyPrint() {
return prettyPrint;
}
}

View File

@@ -0,0 +1,48 @@
package sd.serialization;
/**
* Interface for serializing and deserializing objects for network transmission.
*
* This interface provides a common abstraction for different serialization strategies
* allowing the system to switch between implementations without changing the communication layer.
*
* Implementations must ensure:
* - Thread-safety if used in concurrent contexts
* - Proper exception handling with meaningful error messages
* - Preservation of object state during round-trip serialization
*
* @see JsonMessageSerializer
*/
public interface MessageSerializer {
/**
* Serializes an object into a byte array for transmission.
*
* @param object The object to serialize (must not be null)
* @return A byte array containing the serialized representation
* @throws SerializationException If serialization fails
* @throws IllegalArgumentException If object is null
*/
byte[] serialize(Object object) throws SerializationException;
/**
* Deserializes a byte array back into an object of the specified type.
*
* @param <T> The expected type of the deserialized object
* @param data The byte array containing serialized data (must not be null)
* @param clazz The class of the expected object type (must not be null)
* @return The deserialized object
* @throws SerializationException If deserialization fails
* @throws IllegalArgumentException If data or clazz is null
*/
<T> T deserialize(byte[] data, Class<T> clazz) throws SerializationException;
/**
* Gets the name of this serialization strategy (e.g., "JSON", "Java Native").
* Useful for logging and debugging.
*
* @return The serializer name
*/
String getName();
}

View File

@@ -0,0 +1,134 @@
package sd.serialization;
import sd.model.Message;
import sd.model.MessageType;
import sd.model.Vehicle;
import sd.model.VehicleType;
import java.util.Arrays;
import java.util.List;
/**
* Demonstration of JSON serialization usage in the traffic simulation system.
*
* This class shows practical examples of how to use JSON (Gson) serialization
* for network communication between simulation processes.
*/
public class SerializationExample {
public static void main(String[] args) {
System.out.println("=== JSON Serialization Example ===\n");
// Create a sample vehicle
List<String> route = Arrays.asList("Cr1", "Cr2", "Cr5", "S");
Vehicle vehicle = new Vehicle("V001", VehicleType.LIGHT, 10.5, route);
vehicle.addWaitingTime(2.3);
vehicle.addCrossingTime(1.2);
// Create a message containing the vehicle
Message message = new Message(
MessageType.VEHICLE_TRANSFER,
"Cr1",
"Cr2",
vehicle
);
// ===== JSON Serialization =====
demonstrateJsonSerialization(message);
// ===== Factory Usage =====
demonstrateFactoryUsage(message);
// ===== Performance Test =====
performanceTest(message);
}
private static void demonstrateJsonSerialization(Message message) {
System.out.println("--- JSON Serialization ---");
try {
// Create JSON serializer with pretty printing for readability
MessageSerializer serializer = new JsonMessageSerializer(true);
// Serialize to bytes
byte[] data = serializer.serialize(message);
// Display the JSON
String json = new String(data);
System.out.println("Serialized JSON (" + data.length + " bytes):");
System.out.println(json);
// Deserialize back
Message deserialized = serializer.deserialize(data, Message.class);
System.out.println("\nDeserialized: " + deserialized);
System.out.println("✓ JSON serialization successful\n");
} catch (SerializationException e) {
System.err.println("❌ JSON serialization failed: " + e.getMessage());
}
}
private static void demonstrateFactoryUsage(Message message) {
System.out.println("--- Using SerializerFactory ---");
try {
// Get default serializer (JSON)
MessageSerializer serializer = SerializerFactory.createDefault();
System.out.println("Default serializer: " + serializer.getName());
// Use it
byte[] data = serializer.serialize(message);
Message deserialized = serializer.deserialize(data, Message.class);
System.out.println("Message type: " + deserialized.getType());
System.out.println("From: " + deserialized.getSenderId() +
" → To: " + deserialized.getDestinationId());
System.out.println("✓ Factory usage successful\n");
} catch (SerializationException e) {
System.err.println("❌ Factory usage failed: " + e.getMessage());
}
}
private static void performanceTest(Message message) {
System.out.println("--- Performance Test ---");
int iterations = 1000;
try {
MessageSerializer compactSerializer = new JsonMessageSerializer(false);
MessageSerializer prettySerializer = new JsonMessageSerializer(true);
// Warm up
for (int i = 0; i < 100; i++) {
compactSerializer.serialize(message);
}
// Test compact JSON
long compactStart = System.nanoTime();
byte[] compactData = null;
for (int i = 0; i < iterations; i++) {
compactData = compactSerializer.serialize(message);
}
long compactTime = System.nanoTime() - compactStart;
// Test pretty JSON
byte[] prettyData = prettySerializer.serialize(message);
// Results
System.out.println("Iterations: " + iterations);
System.out.println("\nJSON Compact:");
System.out.println(" Size: " + compactData.length + " bytes");
System.out.println(" Time: " + (compactTime / 1_000_000.0) + " ms total");
System.out.println(" Avg: " + (compactTime / iterations / 1_000.0) + " μs/operation");
System.out.println("\nJSON Pretty-Print:");
System.out.println(" Size: " + prettyData.length + " bytes");
System.out.println(" Size increase: " +
String.format("%.1f%%", ((double)prettyData.length / compactData.length - 1) * 100));
} catch (SerializationException e) {
System.err.println("❌ Performance test failed: " + e.getMessage());
}
}
}

View File

@@ -0,0 +1,41 @@
package sd.serialization;
/**
* Exception thrown when serialization or deserialization operations fail.
*
* This exception wraps underlying errors (I/O exceptions, parsing errors, etc.)
* and provides context about what went wrong during the serialization process.
*/
public class SerializationException extends Exception {
private static final long serialVersionUID = 1L; // Long(64bits) instead of int(32bits)
/**
* Constructs a new serialization exception with the specified detail message.
*
* @param message The detail message
*/
public SerializationException(String message) {
super(message);
}
/**
* Constructs a new serialization exception with the specified detail message
* and cause.
*
* @param message The detail message
* @param cause The cause of this exception
*/
public SerializationException(String message, Throwable cause) {
super(message, cause);
}
/**
* Constructs a new serialization exception with the specified cause.
*
* @param cause The cause of this exception
*/
public SerializationException(Throwable cause) {
super(cause);
}
}

View File

@@ -0,0 +1,66 @@
package sd.serialization;
/**
* Factory for creating {@link MessageSerializer} instances.
*
* This factory provides a centralized way to create and configure JSON serializers
* using Gson, making it easy to configure serialization throughout the application.
*
* The factory can be configured via system properties for easy deployment configuration.
*
* Example usage:
* <pre>
* MessageSerializer serializer = SerializerFactory.createDefault();
* byte[] data = serializer.serialize(myObject);
* </pre>
*/
public class SerializerFactory {
/**
* System property key for enabling pretty-print in JSON serialization.
* Set to "true" for debugging, "false" for production.
*/
public static final String JSON_PRETTY_PRINT_PROPERTY = "sd.serialization.json.prettyPrint";
// Default configuration
private static final boolean DEFAULT_JSON_PRETTY_PRINT = false;
/**
* Private constructor to prevent instantiation.
*/
private SerializerFactory() {
throw new UnsupportedOperationException("Factory class cannot be instantiated");
}
/**
* Creates a JSON serializer based on system configuration.
*
* Pretty-print is determined by checking the system property
* {@value #JSON_PRETTY_PRINT_PROPERTY}. If not set, defaults to false.
*
* @return A configured JsonMessageSerializer instance
*/
public static MessageSerializer createDefault() {
boolean prettyPrint = Boolean.getBoolean(JSON_PRETTY_PRINT_PROPERTY);
return new JsonMessageSerializer(prettyPrint);
}
/**
* Creates a JSON serializer with default configuration (no pretty printing).
*
* @return A JsonMessageSerializer instance
*/
public static MessageSerializer createSerializer() {
return createSerializer(DEFAULT_JSON_PRETTY_PRINT);
}
/**
* Creates a JSON serializer with specified pretty-print setting.
*
* @param prettyPrint Whether to enable pretty printing
* @return A JsonMessageSerializer instance
*/
public static MessageSerializer createSerializer(boolean prettyPrint) {
return new JsonMessageSerializer(prettyPrint);
}
}

View File

@@ -0,0 +1,103 @@
package sd.util;
import java.util.Random;
/**
* Utility class for generating random values used throughout the simulation.
* * Provides static methods for:
* - Generating exponentially distributed intervals (for Poisson processes).
* - Generating random integers and doubles in a range.
* - Making decisions based on probability.
* - Choosing random elements from an array.
* * It uses a single, static {@link Random} instance.
*/
public class RandomGenerator {
/**
* The single, shared Random instance for the entire simulation.
*/
private static final Random random = new Random();
/**
* Returns a random time interval that follows an exponential distribution.
* * This is a key component for modeling a Poisson process, where the
* *inter-arrival times* (time between events) are exponentially distributed.
* The formula used is the inverse transform sampling method:
* {@code Time = -ln(1 - U) / λ}
* where U is a uniform random number [0, 1) and λ (lambda) is the
* average arrival rate.
*
* @param lambda The average arrival rate (λ) (e.g., 0.5 vehicles per second).
* @return The time interval (in seconds) until the next arrival.
*/
public static double generateExponentialInterval(double lambda) {
// Math.log is the natural logarithm (ln)
// random.nextDouble() returns a value in [0.0, 1.0)
return Math.log(1 - random.nextDouble()) / -lambda;
}
/**
* Returns a random integer between {@code min} and {@code max}, inclusive.
*
* @param min The minimum possible value.
* @param max The maximum possible value.
* @return A random integer in the range [min, max].
*/
public static int generateRandomInt(int min, int max) {
// random.nextInt(N) returns a value from 0 to N-1
// (max - min + 1) is the total number of integers in the range
// + min offsets the range
return random.nextInt(max - min + 1) + min;
}
/**
* Returns a random double between {@code min} (inclusive) and {@code max} (exclusive).
*
* @param min The minimum possible value.
* @param max The maximum possible value.
* @return A random double in the range [min, max).
*/
public static double generateRandomDouble(double min, double max) {
return min + (max - min) * random.nextDouble();
}
/**
* Returns {@code true} with a given probability.
* * This is useful for making weighted decisions. For example,
* {@code occursWithProbability(0.3)} will return {@code true}
* approximately 30% of the time.
*
* @param probability A value between 0.0 (never) and 1.0 (always).
* @return {@code true} or {@code false}, based on the probability.
*/
public static boolean occursWithProbability(double probability) {
return random.nextDouble() < probability;
}
/**
* Picks a random element from the given array.
*
* @param <T> The generic type of the array.
* @param array The array to choose from.
* @return A randomly selected element from the array.
* @throws IllegalArgumentException if the array is null or empty.
*/
public static <T> T chooseRandom(T[] array) {
if (array == null || array.length == 0) {
throw new IllegalArgumentException("Array cannot be null or empty.");
}
return array[random.nextInt(array.length)];
}
/**
* Sets the seed of the shared random number generator.
* This is extremely useful for debugging and testing, as it allows
* the simulation to be run multiple times with the *exact same*
* sequence of "random" events, making the results reproducible.
*
* @param seed The seed to use.
*/
public static void setSeed(long seed) {
random.setSeed(seed);
}
}

View File

@@ -0,0 +1,379 @@
package sd.util;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import sd.config.SimulationConfig;
import sd.model.Intersection;
import sd.model.Vehicle;
import sd.model.VehicleType;
/**
* Collects, manages, and reports statistics throughout the simulation.
* * This class acts as the central bookkeeper for simulation metrics. It tracks:
* - Overall system statistics (total vehicles, completion time, wait time).
* - Per-vehicle-type statistics (counts, average wait time by type).
* - Per-intersection statistics (arrivals, departures).
* * It also maintains "in-flight" data, such as the arrival time of a
* vehicle at its *current* intersection, which is necessary to
* calculate waiting time when the vehicle later departs.
*/
public class StatisticsCollector {
// --- Vehicle tracking (for in-flight vehicles) ---
/**
* Tracks the simulation time when a vehicle arrives at its *current* intersection.
* This is used later to calculate waiting time (Depart_Time - Arrive_Time).
* Key: Vehicle ID (String)
* Value: Arrival Time (Double)
*/
private final Map<String, Double> vehicleArrivalTimes;
/**
* Tracks the sequence of intersections a vehicle has visited.
* Key: Vehicle ID (String)
* Value: List of Intersection IDs (String)
*/
private final Map<String, List<String>> vehicleIntersectionHistory;
// --- Overall system statistics ---
/** Total number of vehicles created by the {@link VehicleGenerator}. */
private int totalVehiclesGenerated;
/** Total number of vehicles that have reached their final destination ("S"). */
private int totalVehiclesCompleted;
/** The sum of all *completed* vehicles' total travel times. Used for averaging. */
private double totalSystemTime;
/** The sum of all *completed* vehicles' total waiting times. Used for averaging. */
private double totalWaitingTime;
// --- Per-vehicle-type statistics ---
/**
* Tracks the total number of vehicles generated, broken down by type.
* Key: {@link VehicleType}
* Value: Count (Integer)
*/
private final Map<VehicleType, Integer> vehicleTypeCount;
/**
* Tracks the total waiting time, broken down by vehicle type.
* Key: {@link VehicleType}
* Value: Total Wait Time (Double)
*/
private final Map<VehicleType, Double> vehicleTypeWaitTime;
// --- Per-intersection statistics ---
/**
* A map to hold statistics objects for each intersection.
* Key: Intersection ID (String)
* Value: {@link IntersectionStats} object
*/
private final Map<String, IntersectionStats> intersectionStats;
/**
* Constructs a new StatisticsCollector.
* Initializes all maps and counters.
*
* @param config The {@link SimulationConfig} (not currently used, but
* could be for configuration-dependent stats).
*/
public StatisticsCollector(SimulationConfig config) {
this.vehicleArrivalTimes = new HashMap<>();
this.vehicleIntersectionHistory = new HashMap<>();
this.totalVehiclesGenerated = 0;
this.totalVehiclesCompleted = 0;
this.totalSystemTime = 0.0;
this.totalWaitingTime = 0.0;
this.vehicleTypeCount = new HashMap<>();
this.vehicleTypeWaitTime = new HashMap<>();
this.intersectionStats = new HashMap<>();
// Initialize vehicle type counters to 0
for (VehicleType type : VehicleType.values()) {
vehicleTypeCount.put(type, 0);
vehicleTypeWaitTime.put(type, 0.0);
}
}
/**
* Records that a new vehicle has been generated.
* This is called by the {@link sd.engine.SimulationEngine}
* during a {@code VEHICLE_GENERATION} event.
*
* @param vehicle The {@link Vehicle} that was just created.
* @param currentTime The simulation time of the event.
*/
public void recordVehicleGeneration(Vehicle vehicle, double currentTime) {
totalVehiclesGenerated++;
// Track by vehicle type
VehicleType type = vehicle.getType();
vehicleTypeCount.put(type, vehicleTypeCount.get(type) + 1);
// Initialize history tracking for this vehicle
vehicleIntersectionHistory.put(vehicle.getId(), new ArrayList<>());
}
/**
* Records that a vehicle has arrived at an intersection queue.
* This is called by the {@link sd.engine.SimulationEngine}
* during a {@code VEHICLE_ARRIVAL} event.
*
* @param vehicle The {@link Vehicle} that arrived.
* @param intersectionId The ID of the intersection it arrived at.
* @param currentTime The simulation time of the arrival.
*/
public void recordVehicleArrival(Vehicle vehicle, String intersectionId, double currentTime) {
// Store arrival time - this is the "start waiting" time
vehicleArrivalTimes.put(vehicle.getId(), currentTime);
// Track intersection history
List<String> history = vehicleIntersectionHistory.get(vehicle.getId());
if (history != null) {
history.add(intersectionId);
}
// Update per-intersection statistics
getOrCreateIntersectionStats(intersectionId).recordArrival();
}
/**
* Records that a vehicle has completed its route and exited the system.
* This is where final metrics for the vehicle are aggregated.
* This is called by the {@link sd.engine.SimulationEngine}
* when a vehicle reaches destination "S".
*
* @param vehicle The {@link Vehicle} that is exiting.
* @param currentTime The simulation time of the exit.
*/
public void recordVehicleExit(Vehicle vehicle, double currentTime) {
totalVehiclesCompleted++;
// Calculate and aggregate total system time
double systemTime = vehicle.getTotalTravelTime(currentTime);
totalSystemTime += systemTime;
// Aggregate waiting time
double waitTime = vehicle.getTotalWaitingTime();
totalWaitingTime += waitTime;
// Aggregate waiting time by vehicle type
VehicleType type = vehicle.getType();
vehicleTypeWaitTime.put(type, vehicleTypeWaitTime.get(type) + waitTime);
// Clean up tracking maps to save memory
vehicleArrivalTimes.remove(vehicle.getId());
vehicleIntersectionHistory.remove(vehicle.getId());
}
/**
* Gets the time a vehicle arrived at its *current* intersection.
* This is used by the {@link sd.engine.SimulationEngine} to calculate
* wait time just before the vehicle crosses.
*
* @param vehicle The {@link Vehicle} to check.
* @return The arrival time, or 0.0 if not found.
*/
public double getArrivalTime(Vehicle vehicle) {
return vehicleArrivalTimes.getOrDefault(vehicle.getId(), 0.0);
}
/**
* Prints a "snapshot" of the current simulation statistics.
* This is called periodically by the {@link sd.engine.SimulationEngine}
* during a {@code STATISTICS_UPDATE} event.
*
* @param intersections A map of all intersections (to get queue data).
* @param currentTime The current simulation time.
*/
public void printCurrentStatistics(Map<String, Intersection> intersections, double currentTime) {
System.out.printf("--- Statistics at t=%.2f ---%n", currentTime);
System.out.printf("Vehicles: Generated=%d, Completed=%d, In-System=%d%n",
totalVehiclesGenerated,
totalVehiclesCompleted,
totalVehiclesGenerated - totalVehiclesCompleted);
if (totalVehiclesCompleted > 0) {
System.out.printf("Average System Time (so far): %.2fs%n", totalSystemTime / totalVehiclesCompleted);
System.out.printf("Average Waiting Time (so far): %.2fs%n", totalWaitingTime / totalVehiclesCompleted);
}
// Print per-intersection queue sizes
System.out.println("\nIntersection Queues:");
for (Map.Entry<String, Intersection> entry : intersections.entrySet()) {
String id = entry.getKey();
Intersection intersection = entry.getValue();
System.out.printf(" %s: Queue=%d, Received=%d, Sent=%d%n",
id,
intersection.getTotalQueueSize(),
intersection.getTotalVehiclesReceived(),
intersection.getTotalVehiclesSent());
}
}
/**
* Prints the final simulation summary statistics at the end of the run.
*
* @param intersections A map of all intersections.
* @param currentTime The final simulation time.
*/
public void printFinalStatistics(Map<String, Intersection> intersections, double currentTime) {
System.out.println("\n=== SIMULATION SUMMARY ===");
System.out.printf("Duration: %.2f seconds%n", currentTime);
System.out.printf("Total Vehicles Generated: %d%n", totalVehiclesGenerated);
System.out.printf("Total Vehicles Completed: %d%n", totalVehiclesCompleted);
System.out.printf("Vehicles Still in System: %d%n", totalVehiclesGenerated - totalVehiclesCompleted);
// Overall averages
if (totalVehiclesCompleted > 0) {
System.out.printf("%nAVERAGE METRICS (for completed vehicles):%n");
System.out.printf(" System Time: %.2f seconds%n", totalSystemTime / totalVehiclesCompleted);
System.out.printf(" Waiting Time: %.2f seconds%n", totalWaitingTime / totalVehiclesCompleted);
System.out.printf(" Throughput: %.2f vehicles/second%n", totalVehiclesCompleted / currentTime);
}
// Vehicle type breakdown
System.out.println("\nVEHICLE TYPE DISTRIBUTION:");
for (VehicleType type : VehicleType.values()) {
int count = vehicleTypeCount.get(type);
if (count > 0) {
double percentage = (count * 100.0) / totalVehiclesGenerated;
// Calculate avg wait *only* for this type
// This assumes all generated vehicles of this type *completed*
// A more accurate way would be to track completed vehicle types
double avgWait = vehicleTypeWaitTime.get(type) / count;
System.out.printf(" %s: %d (%.1f%%), Avg Wait: %.2fs%n",
type, count, percentage, avgWait);
}
}
// Per-intersection statistics
System.out.println("\nINTERSECTION STATISTICS:");
for (Map.Entry<String, Intersection> entry : intersections.entrySet()) {
String id = entry.getKey();
Intersection intersection = entry.getValue();
System.out.printf(" %s:%n", id);
System.out.printf(" Vehicles Received: %d%n", intersection.getTotalVehiclesReceived());
System.out.printf(" Vehicles Sent: %d%n", intersection.getTotalVehiclesSent());
System.out.printf(" Final Queue Size: %d%n", intersection.getTotalQueueSize());
// Traffic light details
intersection.getTrafficLights().forEach(light -> {
System.out.printf(" Light %s: State=%s, Queue=%d, Processed=%d%n",
light.getDirection(),
light.getState(),
light.getQueueSize(),
light.getTotalVehiclesProcessed());
});
}
// System health indicators
System.out.println("\nSYSTEM HEALTH:");
int totalQueuedVehicles = intersections.values().stream()
.mapToInt(Intersection::getTotalQueueSize)
.sum();
System.out.printf(" Total Queued Vehicles (at end): %d%n", totalQueuedVehicles);
if (totalVehiclesGenerated > 0) {
double completionRate = (totalVehiclesCompleted * 100.0) / totalVehiclesGenerated;
System.out.printf(" Completion Rate: %.1f%%%n", completionRate);
}
}
/**
* Gets or creates the statistics object for a given intersection.
* Uses {@code computeIfAbsent} for efficient, thread-safe-like instantiation.
*
* @param intersectionId The ID of the intersection.
* @return The {@link IntersectionStats} object for that ID.
*/
private IntersectionStats getOrCreateIntersectionStats(String intersectionId) {
// If 'intersectionId' is not in the map, create a new IntersectionStats()
// and put it in the map, then return it.
// Otherwise, just return the one that's already there.
return intersectionStats.computeIfAbsent(intersectionId, k -> new IntersectionStats());
}
/**
* Inner class to track per-intersection statistics.
* This is a simple data holder.
*/
private static class IntersectionStats {
private int totalArrivals;
private int totalDepartures;
public IntersectionStats() {
this.totalArrivals = 0;
this.totalDepartures = 0;
}
public void recordArrival() {
totalArrivals++;
}
public void recordDeparture() {
totalDepartures++;
}
public int getTotalArrivals() {
return totalArrivals;
}
public int getTotalDepartures() {
return totalDepartures;
}
}
// --- Public Getters for Final Statistics ---
/**
* @return Total vehicles generated during the simulation.
*/
public int getTotalVehiclesGenerated() {
return totalVehiclesGenerated;
}
/**
* @return Total vehicles that completed their route.
*/
public int getTotalVehiclesCompleted() {
return totalVehiclesCompleted;
}
/**
* @return The sum of all travel times for *completed* vehicles.
*/
public double getTotalSystemTime() {
return totalSystemTime;
}
/**
* @return The sum of all waiting times for *completed* vehicles.
*/
public double getTotalWaitingTime() {
return totalWaitingTime;
}
/**
* @return The average travel time for *completed* vehicles.
*/
public double getAverageSystemTime() {
return totalVehiclesCompleted > 0 ? totalSystemTime / totalVehiclesCompleted : 0.0;
}
/**
* @return The average waiting time for *completed* vehicles.
*/
public double getAverageWaitingTime() {
return totalVehiclesCompleted > 0 ? totalWaitingTime / totalVehiclesCompleted : 0.0;
}
}

View File

@@ -0,0 +1,229 @@
package sd.util;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import sd.config.SimulationConfig;
import sd.model.Vehicle;
import sd.model.VehicleType;
/**
* Generates vehicles for the simulation.
* * This class is responsible for two key tasks:
* 1. Determining *when* the next vehicle should arrive, based on the
* arrival model (POISSON or FIXED) from the {@link SimulationConfig}.
* 2. Creating a new {@link Vehicle} object with a randomly selected
* type (e.g., BIKE, LIGHT) and a randomly selected route.
* * Routes are predefined and organized by entry point (E1, E2, E3).
*/
public class VehicleGenerator {
private final SimulationConfig config;
private final String arrivalModel;
private final double arrivalRate; // Lambda (λ) for POISSON
private final double fixedInterval; // Interval for FIXED
// --- Predefined Routes ---
// These lists store all possible routes, grouped by where they start.
/** Routes starting from entry point E1. */
private final List<RouteWithProbability> e1Routes;
/** Routes starting from entry point E2. */
private final List<RouteWithProbability> e2Routes;
/** Routes starting from entry point E3. */
private final List<RouteWithProbability> e3Routes;
/**
* Constructs a new VehicleGenerator.
* It reads the necessary configuration and initializes the
* predefined routes.
*
* @param config The {@link SimulationConfig} object.
*/
public VehicleGenerator(SimulationConfig config) {
this.config = config;
// Cache configuration values for performance
this.arrivalModel = config.getArrivalModel();
this.arrivalRate = config.getArrivalRate();
this.fixedInterval = config.getFixedArrivalInterval();
// Initialize route lists
this.e1Routes = new ArrayList<>();
this.e2Routes = new ArrayList<>();
this.e3Routes = new ArrayList<>();
initializePossibleRoutes();
}
/**
* Defines all possible routes that vehicles can take, organized by
* their entry point (E1, E2, E3). Each route is given a
* probability, which determines how often it's chosen.
*/
private void initializePossibleRoutes() {
// E1 routes (Starts at Cr1)
e1Routes.add(new RouteWithProbability(
Arrays.asList("Cr1", "Cr4", "Cr5", "S"), 0.34)); // E1 -> Cr1 -> Cr4 -> Cr5 -> Exit
e1Routes.add(new RouteWithProbability(
Arrays.asList("Cr1", "Cr2", "Cr5", "S"), 0.33)); // E1 -> Cr1 -> Cr2 -> Cr5 -> Exit
e1Routes.add(new RouteWithProbability(
Arrays.asList("Cr1", "Cr2", "Cr3", "S"), 0.33)); // E1 -> Cr1 -> Cr2 -> Cr3 -> Exit
// E2 routes (Starts at Cr2)
e2Routes.add(new RouteWithProbability(
Arrays.asList("Cr2", "Cr5", "S"), 0.34)); // E2 -> Cr2 -> Cr5 -> Exit
e2Routes.add(new RouteWithProbability(
Arrays.asList("Cr2", "Cr3", "S"), 0.33)); // E2 -> Cr2 -> Cr3 -> Exit
e2Routes.add(new RouteWithProbability(
Arrays.asList("Cr2", "Cr1", "Cr4", "Cr5", "S"), 0.33)); // E2 -> Cr2 -> ... -> Exit
// E3 routes (Starts at Cr3)
e3Routes.add(new RouteWithProbability(
Arrays.asList("Cr3", "S"), 0.34)); // E3 -> Cr3 -> Exit
e3Routes.add(new RouteWithProbability(
Arrays.asList("Cr3", "Cr2", "Cr5", "S"), 0.33)); // E3 -> Cr3 -> Cr2 -> Cr5 -> Exit
e3Routes.add(new RouteWithProbability(
Arrays.asList("Cr3", "Cr2", "Cr1", "Cr4", "Cr5", "S"), 0.33)); // E3 -> Cr3 -> ... -> Exit
}
/**
* Calculates the *absolute* time of the next vehicle arrival
* based on the configured model.
* * @param currentTime The current simulation time, used as the base.
* @return The absolute time (e.g., {@code currentTime + interval})
* when the next vehicle should be generated.
*/
public double getNextArrivalTime(double currentTime) {
if ("POISSON".equalsIgnoreCase(arrivalModel)) {
// For a Poisson process, the time *between* arrivals
// follows an exponential distribution.
double interval = RandomGenerator.generateExponentialInterval(arrivalRate);
return currentTime + interval;
} else {
// For a Fixed model, the interval is constant.
return currentTime + fixedInterval;
}
}
/**
* Generates a new {@link Vehicle} object.
* This involves:
* 1. Selecting a random {@link VehicleType} based on probabilities.
* 2. Selecting a random route (entry point + path) based on probabilities.
*
* @param vehicleId The unique identifier for the new vehicle (e.g., "V123").
* @param entryTime The simulation time when this vehicle is being created.
* @return A new, configured {@link Vehicle} object.
*/
public Vehicle generateVehicle(String vehicleId, double entryTime) {
VehicleType type = selectVehicleType();
List<String> route = selectRandomRoute();
return new Vehicle(vehicleId, type, entryTime, route);
}
/**
* Selects a {@link VehicleType} (BIKE, LIGHT, HEAVY) based on the
* probabilities defined in the {@link SimulationConfig}.
* * Uses a standard "cumulative probability" technique:
* 1. Get a random number {@code rand} from [0, 1).
* 2. If {@code rand < P(Bike)}, return BIKE.
* 3. Else if {@code rand < P(Bike) + P(Light)}, return LIGHT.
* 4. Else, return HEAVY.
*
* @return The selected {@link VehicleType}.
*/
private VehicleType selectVehicleType() {
double bikeProbability = config.getBikeVehicleProbability();
double lightProbability = config.getLightVehicleProbability();
double heavyProbability = config.getHeavyVehicleProbability();
// Normalize probabilities in case they don't sum to exactly 1.0
double total = bikeProbability + lightProbability + heavyProbability;
if (total == 0) return VehicleType.LIGHT; // Avoid division by zero
bikeProbability /= total;
lightProbability /= total;
double rand = Math.random();
if (rand < bikeProbability) {
return VehicleType.BIKE;
} else if (rand < bikeProbability + lightProbability) {
return VehicleType.LIGHT;
} else {
return VehicleType.HEAVY;
}
}
/**
* Selects a random route for a new vehicle.
* This is a two-step process:
* 1. Randomly select an entry point (E1, E2, or E3) with equal probability.
* 2. From the chosen entry point's list of routes, select one
* based on their defined probabilities (using cumulative probability).
*
* @return A {@link List} of strings representing the chosen route (e.g., ["Cr1", "Cr4", "S"]).
*/
private List<String> selectRandomRoute() {
// Step 1: Randomly select an entry point (E1, E2, or E3)
double entryRandom = Math.random();
List<RouteWithProbability> selectedRoutes;
if (entryRandom < 0.333) {
selectedRoutes = e1Routes;
} else if (entryRandom < 0.666) {
selectedRoutes = e2Routes;
} else {
selectedRoutes = e3Routes;
}
// Step 2: Select a route from the chosen list based on cumulative probabilities
double routeRand = Math.random();
double cumulative = 0.0;
for (RouteWithProbability routeWithProb : selectedRoutes) {
cumulative += routeWithProb.probability;
if (routeRand <= cumulative) {
// Return a *copy* of the route to prevent modification
return new ArrayList<>(routeWithProb.route);
}
}
// Fallback: This should only be reached if probabilities don't sum to 1
// (due to floating point errors)
return new ArrayList<>(selectedRoutes.get(0).route);
}
/**
* @return A string providing information about the generator's configuration.
*/
public String getInfo() {
int totalRoutes = e1Routes.size() + e2Routes.size() + e3Routes.size();
return String.format(
"VehicleGenerator{model=%s, rate=%.2f, interval=%.2f, routes=%d (E1:%d, E2:%d, E3:%d)}",
arrivalModel, arrivalRate, fixedInterval, totalRoutes,
e1Routes.size(), e2Routes.size(), e3Routes.size()
);
}
/**
* A private inner "struct-like" class to hold a route (a List of strings)
* and its associated selection probability.
*/
private static class RouteWithProbability {
final List<String> route;
final double probability;
/**
* Constructs a new RouteWithProbability pair.
* @param route The list of intersection IDs.
* @param probability The probability (0.0 to 1.0) of this route
* being chosen *from its entry group*.
*/
RouteWithProbability(List<String> route, double probability) {
this.route = route;
this.probability = probability;
}
}
}

View File

@@ -1,95 +0,0 @@
package server;
import java.io.IOException;
import java.net.DatagramSocket;
import java.net.InetAddress;
import java.net.MulticastSocket;
import java.net.ServerSocket;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.logging.Logger;
import server.structs.SystemStateManager;
import server.handlers.ActiveUsersHandler;
import server.handlers.BroadcastHandler;
import server.handlers.UnicastHandler;
import server.handlers.DataPersistence;
import server.handlers.ThingHandler;
import server.handlers.MulticastHandler;
//import server.handlers.RequestsStatsThread;
/**
* The Server class represents the main server application.
* It handles direct connections, broadcasts, multicasts, events, active users, request statistics,
* data persistence, and provides methods for starting and closing the server.
*/
public class Server {
private static final Logger logger = Logger.getLogger(Server.class.getName());
private static final ExecutorService executorService = Executors.newFixedThreadPool(100);
public static final int BUFFER_SIZE = 1024;
public static final int SERVER_PORT = 7500;
public static final int USER_PORT = 7501;
public static final int MULTICAST_PORT = 7502;
public static final String BROADCAST_ADDRESS = "255.255.255.255";
/**
* The main method of the Server class.
* It loads the shared data, creates sockets, and starts various threads for server operations.
*
* @param args The command line arguments.
*/
public static void main(String[] args) {
try {
SystemStateManager.loadData();
} catch (Exception ignored) {
}
executorService.execute(() -> handleUnicast(SERVER_PORT));
try {
SystemStateManager.setMulticastSocket(new MulticastSocket(MULTICAST_PORT));
DatagramSocket broadcastSocket = new DatagramSocket(USER_PORT, InetAddress.getByName(BROADCAST_ADDRESS));
broadcastSocket.setBroadcast(true);
SystemStateManager.setBroadcastSocket(broadcastSocket);
} catch (IOException io) {
logger.severe("Error Creating Sockets! " + io.getMessage());
close();
}
executorService.execute(new BroadcastHandler());
executorService.execute(new MulticastHandler());
executorService.execute(new ThingHandler());
executorService.execute(new ActiveUsersHandler());
//executorService.execute(new RequestsStats());
executorService.execute(new DataPersistence());
}
/**
* Handles direct connections on the specified port.
*
* @param port The port number for direct connections.
*/
public static void handleUnicast(int port) {
try (ServerSocket serverSocket = new ServerSocket(port)) {
while (true) {
executorService.execute(new UnicastHandler(serverSocket.accept()));
}
} catch (Exception e) {
logger.severe("Error Handling Unicast Connection! " + e.getMessage());
close();
}
}
/**
* Closes the server by shutting down the executor service, saving the shared data, and exiting the application.
*/
public static void close() {
try {
executorService.shutdown();
SystemStateManager.saveData();
System.exit(0);
} catch (Exception ignored) {
}
}
}

View File

@@ -1,195 +0,0 @@
package server.handlers;
import java.io.IOException;
import java.net.DatagramPacket;
import java.net.InetAddress;
import java.util.ArrayList;
import java.util.List;
import java.util.logging.Level;
import java.util.logging.Logger;
import org.json.JSONException;
import org.json.JSONObject;
import server.Server;
import server.structs.SystemStateManager;
import server.structs.intfaces.Request;
import server.structs.intfaces.User;
import server.utils.MessageProtocolHandler;
import server.utils.UserHandler;
import shared.enums.ConnType;
/**
* Handles asynchronous request acceptance in the emergency communication system.
* Manages the workflow of request acceptance based on connection type and user hierarchy.
*
* Features:
* - Multi-mode communication support (unicast, multicast, broadcast)
* - Hierarchy-based request handling
* - Asynchronous operation
* - Request acknowledgment tracking
*
* @author 0x1eo
* @since 2024-12-13
*/
public class AcceptRequestHandler implements Runnable {
private static final Logger logger = Logger.getLogger(AcceptRequestHandler.class.getName());
private static final String MULTICAST_ADDRESS_PATTERN =
"^(22[4-9]|23[0-9]|2[4-9][0-9]|[3-9][0-9]{2}|[12][0-9]{3})"
+ "\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)"
+ "\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)"
+ "\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$";
private final ConnType connectionType;
private final Request request;
/**
* Creates a new request acceptance handler.
*
* @param connectionType the type of network connection to use
* @param request the request to be processed
*/
public AcceptRequestHandler(ConnType connectionType, Request request) {
this.connectionType = connectionType;
this.request = request;
}
@Override
public void run() {
try {
JSONObject requestJson = createRequestJson();
handleRequestByConnectionType(requestJson);
} catch (IOException e) {
logger.log(Level.SEVERE, "Failed to send request answer", e);
} catch (JSONException e) {
logger.log(Level.SEVERE, "Failed to create request JSON", e);
}
}
private JSONObject createRequestJson() throws JSONException {
JSONObject json = new JSONObject();
json.put("command", "requestAnswer");
json.put("from", request.getSender());
json.put("content", request.getMessage());
json.put("to", determineReceiver());
return json;
}
private String determineReceiver() {
Object receiver = request.getReceiver();
if (receiver instanceof User) {
return ((User) receiver).getUsername();
}
if (receiver instanceof String) {
String receiverStr = (String) receiver;
if ("broadcast".equals(receiverStr) || receiverStr.matches(MULTICAST_ADDRESS_PATTERN)) {
return receiverStr;
}
logger.severe("Invalid receiver string format");
throw new IllegalStateException("Invalid receiver format");
}
logger.severe("Invalid receiver type");
throw new IllegalStateException("Invalid receiver type");
}
private void handleRequestByConnectionType(JSONObject requestJson) throws IOException, JSONException {
switch (connectionType) {
case UNICAST:
handleUnicastRequest(requestJson);
break;
case MULTICAST:
handleMulticastRequest(requestJson);
break;
case BROADCAST:
handleBroadcastRequest(requestJson);
break;
default:
logger.warning("Unsupported connection type: " + connectionType);
}
}
private void handleUnicastRequest(JSONObject requestJson) throws IOException, JSONException {
User receiver = request.getReceiver();
String response = UserHandler.sendAndReceiveSomething(receiver, requestJson.toString());
if (response != null && new JSONObject(response).getString("response").equals("YES")) {
request.setTruster(receiver);
notifyUsers(receiver);
}
}
private void handleMulticastRequest(JSONObject requestJson) throws IOException, JSONException {
User group = request.getReceiver(); // Now correctly returns a User
List<User> eligibleUsers = getEligibleUsers(
new ArrayList<>(SystemStateManager.getUsersFromGroup(group.getUsername())), // Assuming you want to get users from the group name
request.getSender()
);
for (User user : eligibleUsers) {
if (tryAcceptRequest(user, requestJson)) {
sendMulticastNotification(group.toString());
break;
}
}
}
private void handleBroadcastRequest(JSONObject requestJson) throws IOException, JSONException {
List<User> eligibleUsers = getEligibleUsers(
new ArrayList<>(SystemStateManager.getUsers()),
request.getSender()
);
for (User user : eligibleUsers) {
if (tryAcceptRequest(user, requestJson)) {
sendBroadcastNotification();
break;
}
}
}
private List<User> getEligibleUsers(List<User> users, User sender) {
users.remove(sender);
users.removeIf(user -> !SystemStateManager.getOnlineUsers().contains(user));
users.removeIf(user -> !user.getHierarchy().isHigherThan(sender.getHierarchy()));
users.sort((u1, u2) -> u2.getHierarchy().getValue() - u1.getHierarchy().getValue());
return users;
}
private boolean tryAcceptRequest(User user, JSONObject requestJson) throws IOException, JSONException {
String response = UserHandler.sendAndReceiveSomething(user, requestJson.toString());
if (response != null && new JSONObject(response).getString("response").equals("YES")) {
request.setTruster(user);
return true;
}
return false;
}
private void notifyUsers(User receiver) throws IOException {
UserHandler.sendSomething(request.getSender(),
MessageProtocolHandler.notificationToJson(request).toString());
UserHandler.sendSomething(receiver,
MessageProtocolHandler.notificationToJson(request).toString());
}
private void sendMulticastNotification(String group) throws IOException {
String eventJson = MessageProtocolHandler.notificationToJson(request).toString();
DatagramPacket packet = new DatagramPacket(
eventJson.getBytes(),
eventJson.length(),
InetAddress.getByName(group),
Server.MULTICAST_PORT
);
SystemStateManager.getMulticastSocket().send(packet);
}
private void sendBroadcastNotification() throws IOException {
String eventJson = MessageProtocolHandler.notificationToJson(request).toString();
DatagramPacket packet = new DatagramPacket(
eventJson.getBytes(),
eventJson.length(),
InetAddress.getByName(Server.BROADCAST_ADDRESS),
Server.USER_PORT
);
SystemStateManager.getBroadcastSocket().send(packet);
}
}

View File

@@ -1,61 +0,0 @@
package server.handlers;
import java.io.IOException;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.List;
import java.util.logging.Logger;
import org.json.JSONException;
import org.json.JSONObject;
import server.structs.SystemStateManager;
import server.structs.intfaces.User;
import server.utils.UserHandler;
/**
* This class represents a thread that periodically checks the number of online users and sends a message to the user with the highest role.
*/
public class ActiveUsersHandler implements Runnable {
private static final Logger logger = Logger.getLogger(ActiveUsersHandler.class.getName());
/**
* The run method of the ActiveUsersThread class.
* This method is executed when the thread starts.
* It periodically checks the number of online users and sends a message to the user with the highest role.
*/
@Override
public void run() {
// Number of Online Users Only for the highest role
while (true) {
try {
Thread.sleep(10000);
} catch (InterruptedException ignored) {
Thread.currentThread().interrupt();
}
List<User> onlineUsers = SystemStateManager.getOnlineUsers();
logger.info("Number of Online Users: " + onlineUsers.size());
if (onlineUsers.size() == 0) {
continue;
}
User highestRoleUser = SystemStateManager.getHighestHierarchyUser(onlineUsers);
if (highestRoleUser == null) {
logger.severe("Highest Role User is null!");
continue;
}
try {
JSONObject jsonObject = new JSONObject();
jsonObject.put("command", "message");
jsonObject.put("from", "server");
jsonObject.put("to", highestRoleUser.getUsername());
jsonObject.put("content", "Number of Online Users: " + onlineUsers.size());
SimpleDateFormat sdf = new SimpleDateFormat("dd-MM-yyyy HH:mm");
jsonObject.put("date", sdf.format(new Date()));
UserHandler.sendSomething(highestRoleUser, jsonObject.toString());
} catch (IOException | JSONException ignored) {
logger.severe("Error Sending Active Users! " + ignored.getMessage());
}
}
}
}

View File

@@ -1,57 +0,0 @@
package server.handlers;
import java.io.IOException;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
import java.util.logging.Logger;
import server.Server;
import server.structs.SystemStateManager;
import server.utils.InputCommandRouter;
import server.utils.InputCommandRouter;
import shared.enums.ConnType;
/**
* The BroadcastThread class represents a thread that handles broadcasting messages to all connected clients.
*/
public class BroadcastHandler implements Runnable {
private static final Logger logger = Logger.getLogger(BroadcastHandler.class.getName());
/**
* Constructs a new BroadcastThread.
*/
public BroadcastHandler() {}
/**
* Runs the broadcast thread.
*/
@Override
public void run() {
try (
DatagramSocket broadcastSocket = SystemStateManager.getBroadcastSocket();
) {
while (true) {
byte[] buffer = new byte[Server.BUFFER_SIZE];
DatagramPacket packet = new DatagramPacket(buffer, buffer.length);
broadcastSocket.receive(packet);
if (packet.getAddress().equals(InetAddress.getLocalHost())) {
continue;
}
String input = new String(packet.getData());
String output = InputCommandRouter.processInput(ConnType.BROADCAST, packet, input);
if (output == null) {
continue;
}
DatagramPacket response = new DatagramPacket(output.getBytes(), output.length(), packet.getAddress(), packet.getPort());
try {
broadcastSocket.send(response);
} catch (IOException io) {
logger.severe("Error Sending Broadcast Response: " + io.getMessage());
}
}
} catch (IOException io) {
logger.severe("Error Handling Broadcast Connection! " + io.getMessage());
}
}
}

View File

@@ -1,30 +0,0 @@
package server.handlers;
import java.util.logging.Logger;
import server.structs.SystemStateManager;
/**
* This class represents a thread responsible for persisting data at regular intervals.
*/
public class DataPersistence implements Runnable {
private static final Logger logger = Logger.getLogger(DataPersistence.class.getName());
/**
* The run method of the DataPersistenceThread.
* This method is responsible for saving data at regular intervals.
*/
@Override
public void run() {
while (true) {
try {
Thread.sleep(10000);
SystemStateManager.saveData();
logger.info("Data Saved");
} catch (Exception e) {
logger.severe("Error Saving Data! " + e.getMessage());
}
}
}
}

View File

@@ -1,57 +0,0 @@
package server.handlers;
import java.io.IOException;
import java.util.List;
import java.util.logging.Logger;
import org.json.JSONException;
import org.json.JSONObject;
import server.structs.SystemStateManager;
import server.structs.intfaces.Notification;
import server.structs.intfaces.User;
import server.utils.MessageProtocolHandler;
import server.utils.UserHandler;
/**
* This class represents a thread that retrieves and sends message history for a user.
*/
public class MessageHistoryHandler implements Runnable {
private static final Logger logger = Logger.getLogger(MessageHistoryHandler.class.getName());
private User user;
/**
* Constructs a new MessageHistoryThread object.
*
* @param user the user for whom the message history will be retrieved and sent
*/
public MessageHistoryHandler(User user) {
this.user = user;
}
/**
* Runs the thread, retrieving and sending the message history for the user.
*/
@Override
public void run() {
try {
Thread.sleep(1000);
} catch (InterruptedException ignored) {
Thread.currentThread().interrupt();
}
List<? extends Notification> notifications = SystemStateManager.getUserNotifications(user);
if (notifications.isEmpty()) {
return;
}
JSONObject jsonObject = new JSONObject();
try {
jsonObject.put("command", "history");
jsonObject.put("notifications", MessageProtocolHandler.notificationsToJson(notifications));
UserHandler.sendSomething(user, jsonObject.toString());
} catch (JSONException | IOException error) {
logger.severe("Error Sending Message History! " + error.getMessage());
}
}
}

View File

@@ -1,58 +0,0 @@
package server.handlers;
import java.io.IOException;
import java.net.DatagramPacket;
import java.net.InetAddress;
import java.net.MulticastSocket;
import java.util.logging.Logger;
import server.Server;
import server.structs.SystemStateManager;
import server.utils.InputCommandRouter;
import shared.enums.ConnType;
/**
* MulticastThread class.
* This class is responsible for handling the multicast connection.
* It receives multicast packets, processes them, and sends responses back to the clients.
*/
public class MulticastHandler implements Runnable {
private static final Logger logger = Logger.getLogger(MulticastHandler.class.getName());
/**
* MulticastThread constructor.
*/
public MulticastHandler() {}
/**
* Runs the multicast thread.
* It continuously receives multicast packets, processes them, and sends responses back to the clients.
*/
@Override
public void run() {
try (
MulticastSocket multicastSocket = SystemStateManager.getMulticastSocket()) {
while (true) {
byte[] buffer = new byte[Server.BUFFER_SIZE];
DatagramPacket packet = new DatagramPacket(buffer, buffer.length);
multicastSocket.receive(packet);
if (packet.getAddress().equals(InetAddress.getLocalHost())) {
continue;
}
String input = new String(packet.getData());
String output = InputCommandRouter.processInput(ConnType.MULTICAST, packet, input);
if (output == null) {
continue;
}
DatagramPacket response = new DatagramPacket(output.getBytes(), output.length(), packet.getAddress(), packet.getPort());
try {
multicastSocket.send(response);
} catch (IOException io) {
logger.severe("Error sending Multicast Response: " + io.getMessage());
}
}
} catch (IOException io) {
logger.severe("Error Handling Multicast Connection! " + io.getMessage());
}
}
}

View File

@@ -1,119 +0,0 @@
package server.handlers;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.net.Socket;
import java.util.List;
import java.util.logging.Logger;
import org.json.JSONException;
import org.json.JSONObject;
import server.Server;
import server.structs.SystemStateManager;
import server.structs.intfaces.Notification;
import server.structs.intfaces.Message;
import server.structs.intfaces.Request;
import server.structs.intfaces.User;
import server.utils.MessageProtocolHandler;
/**
* Handles the delivery of notifications to users in a server-side communication system.
*
* This class is a runnable thread responsible for continuously processing and delivering
* notifications from the system state manager to their intended recipients. It manages
* different types of notifications such as messages and requests, ensuring they are
* transmitted to the appropriate users via network sockets.
*
* Key responsibilities:
* <ul>
* <li>Periodically retrieves pending notifications from the system state manager</li>
* <li>Validates and delivers notifications to their intended users</li>
* <li>Handles socket connections and communication protocols</li>
* <li>Manages error scenarios such as closed sockets or failed JSON conversions</li>
* </ul>
*
* The handler operates in an infinite loop, sleeping briefly between notification checks
* to prevent excessive CPU usage. It supports different notification types and logs
* critical events for monitoring and debugging purposes.
*
* @author 0x1eo
* @since 2024-12-13
* @see SystemStateManager
* @see Notification
* @see Message
* @see Request
*/
public class ThingHandler implements Runnable {
private static final Logger logger = Logger.getLogger(ThingHandler.class.getName());
/**
* The run method is the entry point for the thread.
* It continuously checks for events in the shared object and delivers them to the appropriate users.
*/
@Override
public void run() {
while (true) {
try {
Thread.sleep(1000);
} catch (InterruptedException ignored) {
Thread.currentThread().interrupt();
}
List<? extends Notification> notifications = SystemStateManager.getNotificationsToDeliver();
logger.info("Notifications to deliver: " + notifications.size());
for (int i = 0; i < notifications.size(); i++) {
Notification notification = notifications.get(i);
Object receiver = notification.getReceiver();
if (receiver instanceof User) {
User user = ((User) receiver);
logger.info("Event to deliver to " + user.getUsername());
Socket socket = SystemStateManager.getUserSocket(user);
if (socket == null || socket.isClosed() || !socket.isConnected()) {
logger.severe("User Socket is Null or Closed");
SystemStateManager.removeNotificationDelivered(notification);
continue;
}
try (
Socket newSocket = new Socket(socket.getInetAddress(), Server.USER_PORT);
BufferedReader in = new BufferedReader(new InputStreamReader(newSocket.getInputStream()));
PrintWriter out = new PrintWriter(newSocket.getOutputStream(), true)) {
if (notification instanceof Message) {
Message message = ((Message) notification);
JSONObject json = MessageProtocolHandler.notificationToJson(message);
if (json == null) {
logger.severe("Event to JSON returned null!");
SystemStateManager.removeNotificationDelivered(notification);
continue;
}
out.println(MessageProtocolHandler.notificationToJson(message).toString());
logger.info("Message delivered to " + user.getUsername());
} else if (notification instanceof Request) {
Request request = ((Request) notification);
JSONObject json = MessageProtocolHandler.notificationToJson(request);
if (json == null) {
logger.severe("Event to JSON returned null!");
SystemStateManager.removeNotificationDelivered(notification);
continue;
}
out.println(MessageProtocolHandler.notificationToJson(request).toString());
logger.info("Request delivered to " + user.getUsername());
}
SystemStateManager.removeNotificationDelivered(notification);
} catch (IOException io) {
SystemStateManager.removeUserSocket(user);
} catch (JSONException json) {
SystemStateManager.removeNotificationDelivered(notification);
}
} else {
logger.severe("Receiver is not a user!");
SystemStateManager.removeNotificationDelivered(notification);
}
}
}
}
}

View File

@@ -1,60 +0,0 @@
package server.handlers;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.net.Socket;
import java.util.logging.Logger;
import server.utils.InputCommandRouter;
import shared.enums.ConnType;
/**
* Represents a thread that handles direct connections with clients.
*/
public class UnicastHandler implements Runnable {
private static final Logger logger = Logger.getLogger(UnicastHandler.class.getName());
private Socket socket;
/**
* Constructs a DirectThread object with the specified socket.
*
* @param socket the socket representing the client connection
*/
public UnicastHandler(Socket socket) {
this.socket = socket;
}
/**
* Runs the thread and handles the communication with the client.
*/
@Override
public void run() {
try (
BufferedReader in = new BufferedReader(new InputStreamReader(socket.getInputStream()));
PrintWriter out = new PrintWriter(socket.getOutputStream(), true);) {
try {
while (true) {
String input = in.readLine();
if (input == null) {
in.close();
out.close();
if (!socket.isClosed()) socket.close();
return;
}
String output = InputCommandRouter.processInput(ConnType.UNICAST, socket, input);
if (output == null) {
continue;
}
out.println(output);
}
} catch (IOException io) {
logger.severe("Error Handling Direct Message! " + io.getMessage());
}
} catch (IOException io) {
logger.severe("Error Handling Direct Connection! " + io.getMessage());
}
}
}

View File

@@ -1,453 +0,0 @@
package server.structs;
import java.io.*;
import java.net.*;
import java.util.*;
import java.util.stream.Collectors;
import server.structs.intfaces.*;
import shared.enums.Hierarchy;
/**
* Manages network communications and user data for the emergency chat server.
* Implements thread-safe operations for managing users, connections, and messages.
*
* @author 0x1eo
* @since 2024-12-12
*/
public class SystemStateManager {
// Maps usernames to their corresponding User objects for quick lookup
private static final Map<String, User> users = new HashMap<>();
// Maintains active socket connections for online users
private static final Map<User, Socket> userSockets = new HashMap<>();
// Stores pending notifications for each user in priority order
private static final Map<User, TreeSet<Notification>> userNotifications = new HashMap<>();
// Queue of notifications pending delivery to users
private static final List<Notification> notificationsToDeliver = new ArrayList<>();
// Maps multicast group addresses to their member users
private static final Map<String, List<User>> groups = new HashMap<>();
// Socket for handling multicast communication
private static MulticastSocket multicastSocket;
// Socket for handling broadcast messages
private static DatagramSocket broadcastSocket;
// Private constructor to prevent instantiation
private SystemStateManager() {
throw new AssertionError("Utility class - do not instantiate");
}
//#region User Management
/**
* Adds a new user to the system.
*
* @param user the user to be added
* @throws IllegalArgumentException if user is null or if username already exists
*/
public static void addUser(User user) {
validateNotNull("User", user);
synchronized (users) {
if (users.containsKey(user.getUsername())) {
throw new IllegalArgumentException("User already exists!");
}
users.put(user.getUsername(), user);
}
}
/**
* Retrieves a user by their username.
*
* @param username the username to look up
* @return the User object if found, null otherwise
* @throws IllegalArgumentException if username is null or empty
*/
public static User getUser(String username) {
validateNotEmpty("Username", username);
synchronized (users) {
return users.get(username);
}
}
/**
* Returns a list of all registered users in the system.
*
* @return new ArrayList containing all users
*/
public static List<User> getUsers() {
synchronized (users) {
return new ArrayList<>(users.values());
}
}
/**
* Gets the user with the highest hierarchy level from a list of users.
*
* @param userList list of users to check
* @return user with highest hierarchy level, or null if list is empty
*/
public static User getHighestHierarchyUser(List<User> userList) {
if (userList == null || userList.isEmpty()) {
return null;
}
return userList.stream()
.max((u1, u2) -> {
Hierarchy h1 = u1.getHierarchy();
Hierarchy h2 = u2.getHierarchy();
return Integer.compare(h1.getValue(), h2.getValue());
})
.orElse(null);
}
//#endregion
//#region Socket Management
/**
* Associates a socket connection with a user.
*
* @param user the user to associate the socket with
* @param socket the socket connection
* @throws IllegalArgumentException if either parameter is null
*/
public static void addUserSocket(User user, Socket socket) {
validateNotNull("User", user);
validateNotNull("Socket", socket);
synchronized (userSockets) {
userSockets.put(user, socket);
}
}
/**
* Retrieves the active socket connection for a user.
*
* @param user the user whose socket to retrieve
* @return the Socket object if found, null otherwise
* @throws IllegalArgumentException if user is null
*/
public static Socket getUserSocket(User user) {
validateNotNull("User", user);
synchronized (userSockets) {
return userSockets.get(user);
}
}
/**
* Returns a list of currently online users.
* A user is considered online if they have an active socket connection.
*
* @return list of users with active socket connections
*/
public static List<User> getOnlineUsers() {
synchronized (userSockets) {
return userSockets.entrySet().stream()
.filter(entry -> isSocketActive(entry.getValue()))
.map(Map.Entry::getKey)
.collect(Collectors.toList());
}
}
/**
* Checks if a socket connection is active and valid.
*
* @param socket the socket to check
* @return true if socket is active and operational
*/
private static boolean isSocketActive(Socket socket) {
return socket != null &&
!socket.isClosed() &&
socket.isConnected() &&
!socket.isInputShutdown() &&
!socket.isOutputShutdown();
}
/**
* Removes a user's socket connection.
*
* @param user the user whose socket to remove
* @throws IllegalArgumentException if user is null
*/
public static void removeUserSocket(User user) {
validateNotNull("User", user);
synchronized (userSockets) {
userSockets.remove(user);
}
}
//#endregion
//#region Notification Management
/**
* Adds a notification for a specific user.
*
* @param user the target user
* @param notification the notification to add
* @throws IllegalArgumentException if either parameter is null
*/
public static void addUserNotification(User user, Notification notification) {
validateNotNull("User", user);
validateNotNull("Notification", notification);
synchronized (userNotifications) {
userNotifications.computeIfAbsent(user, k -> new TreeSet<>()).add(notification);
}
}
/**
* Retrieves all notifications for a user.
*
* @param user the user whose notifications to retrieve
* @return list of notifications, empty list if none found
* @throws IllegalArgumentException if user is null
*/
public static List<Notification> getUserNotifications(User user) {
validateNotNull("User", user);
synchronized (userNotifications) {
TreeSet<Notification> notifications = userNotifications.get(user);
return notifications != null ? new ArrayList<>(notifications) : new ArrayList<>();
}
}
/**
* Gets all pending requests in the system.
*
* @return list of all Request objects
*/
public static List<Request> getRequests() {
synchronized (userNotifications) {
return userNotifications.values().stream()
.flatMap(Collection::stream)
.filter(notification -> notification instanceof Request)
.map(notification -> (Request) notification)
.collect(Collectors.toList());
}
}
/**
* Filters a collection of requests to return only accepted ones.
*
* @param requests collection of requests to filter
* @return list of requests that have been accepted
*/
public static List<Request> getAcceptedRequests(Collection<Request> requests) {
return requests.stream()
.filter(request -> request.getTruster() != null)
.collect(Collectors.toList());
}
/**
* Adds a notification to the delivery queue.
*
* @param notification the notification to queue
* @throws IllegalArgumentException if notification is null
*/
public static void addNotificationToDeliver(Notification notification) {
validateNotNull("Notification", notification);
synchronized (notificationsToDeliver) {
notificationsToDeliver.add(notification);
}
}
/**
* Returns all notifications pending delivery.
*
* @return list of queued notifications
*/
public static List<Notification> getNotificationsToDeliver() {
synchronized (notificationsToDeliver) {
return new ArrayList<>(notificationsToDeliver);
}
}
/**
* Removes a delivered notification from the queue.
*
* @param notification the notification to remove
* @throws IllegalArgumentException if notification is null
*/
public static void removeNotificationDelivered(Notification notification) {
validateNotNull("Notification", notification);
synchronized (notificationsToDeliver) {
notificationsToDeliver.remove(notification);
}
}
//#endregion
//#region Group Management
/**
* Adds a user to a multicast group.
*
* @param group the multicast group address
* @param user the user to add
* @throws IllegalArgumentException if group is invalid or user is null
*/
public static void addUserToGroup(String group, User user) {
validateNotEmpty("Group", group);
validateNotNull("User", user);
validateMulticastAddress(group);
synchronized (groups) {
groups.computeIfAbsent(group, k -> new ArrayList<>()).add(user);
}
}
/**
* Gets all users in a specific group.
*
* @param group the group address
* @return list of users in the group
* @throws IllegalArgumentException if group is null or empty
*/
public static List<User> getUsersFromGroup(String group) {
validateNotEmpty("Group", group);
synchronized (groups) {
List<User> groupUsers = groups.get(group);
return groupUsers != null ? new ArrayList<>(groupUsers) : new ArrayList<>();
}
}
//#endregion
//#region Socket Getters/Setters
/**
* Gets the system's multicast socket.
*
* @return the MulticastSocket instance
*/
public static MulticastSocket getMulticastSocket() {
return multicastSocket;
}
/**
* Sets the system's multicast socket.
*
* @param socket the MulticastSocket to use
*/
public static void setMulticastSocket(MulticastSocket socket) {
multicastSocket = socket;
}
/**
* Gets the system's broadcast socket.
*
* @return the DatagramSocket instance
*/
public static DatagramSocket getBroadcastSocket() {
return broadcastSocket;
}
/**
* Sets the system's broadcast socket.
*
* @param socket the DatagramSocket to use
*/
public static void setBroadcastSocket(DatagramSocket socket) {
broadcastSocket = socket;
}
//#endregion
//#region Data Persistence
/**
* Gets a map of all data structures for persistence.
*
* @return map of structure names to their objects
*/
private static Map<String, Object> getDataStructures() {
Map<String, Object> structures = new HashMap<>();
structures.put("users.bin", users);
structures.put("userNotifications.bin", userNotifications);
structures.put("notificationsToDeliver.bin", notificationsToDeliver);
structures.put("groups.bin", groups);
return structures;
}
/**
* Saves all system state to persistent storage.
*
* @throws IOException if an I/O error occurs during saving
*/
public static void saveData() throws IOException {
for (Map.Entry<String, Object> entry : getDataStructures().entrySet()) {
try (ObjectOutputStream out = new ObjectOutputStream(
new FileOutputStream("./" + entry.getKey()))) {
out.writeObject(entry.getValue());
}
}
}
/**
* Loads system state from persistent storage.
*
* @throws IOException if an I/O error occurs during loading
* @throws ClassNotFoundException if a serialized class cannot be found
*/
public static void loadData() throws IOException, ClassNotFoundException {
for (Map.Entry<String, Object> entry : getDataStructures().entrySet()) {
try (ObjectInputStream in = new ObjectInputStream(
new FileInputStream(entry.getKey()))) {
Object data = in.readObject();
loadDataStructure(entry.getKey(), data);
}
}
}
/**
* Loads a specific data structure from serialized data.
*
* @param key the identifier for the data structure
* @param data the serialized data to load
*/
private static void loadDataStructure(String key, Object data) {
switch (key) {
case "users.bin":
users.putAll((Map<String, User>) data);
break;
case "userNotifications.bin":
userNotifications.putAll((Map<User, TreeSet<Notification>>) data);
break;
case "notificationsToDeliver.bin":
notificationsToDeliver.addAll((List<Notification>) data);
break;
case "groups.bin":
groups.putAll((Map<String, List<User>>) data);
break;
}
}
//#endregion
//#region Validation Helpers
/**
* Validates that an object is not null.
*
* @param field name of the field being validated
* @param value the value to check
* @throws IllegalArgumentException if value is null
*/
private static void validateNotNull(String field, Object value) {
if (value == null) {
throw new IllegalArgumentException(field + " cannot be null!");
}
}
/**
* Validates that a string is not null or empty.
*
* @param field name of the field being validated
* @param value the string to check
* @throws IllegalArgumentException if value is null or empty
*/
private static void validateNotEmpty(String field, String value) {
if (value == null || value.trim().isEmpty()) {
throw new IllegalArgumentException(field + " cannot be null or empty!");
}
}
/**
* Validates that a string represents a valid multicast address.
*
* @param address the address to validate
* @throws IllegalArgumentException if address format is invalid
*/
private static void validateMulticastAddress(String address) {
if (!address.matches("^(22[4-9]|23[0-9]|2[4-9][0-9]|[3-9][0-9]{2}|[12][0-9]{3})"
+ "\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)"
+ "\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)"
+ "\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$")) {
throw new IllegalArgumentException("Invalid multicast address format!");
}
}
//#endregion
}

View File

@@ -1,28 +0,0 @@
package server.structs.abstractions;
import server.structs.intfaces.Message;
import server.structs.intfaces.User;
/**
* Abstract implementation of Message interface for the emergency communication system.
* Represents the base message type that can be exchanged between users.
*
* @author 0x1eo
* @since 2024-12-13
* @see Message
* @see AbstractNotification
*/
public abstract class AbstractMessage extends AbstractNotification implements Message {
/**
* Creates a new message.
*
* @param sender the user sending the message
* @param receiver the recipient (user, broadcast, or multicast group)
* @param content the message content
* @throws IllegalArgumentException if sender or content is null
*/
protected AbstractMessage(User sender, Object receiver, String content) {
super(sender, receiver, content);
}
}

View File

@@ -1,111 +0,0 @@
package server.structs.abstractions;
import java.time.Instant;
import java.util.Objects;
import server.structs.intfaces.Notification;
import server.structs.intfaces.User;
/**
* Abstract base implementation for notifications in the emergency communication system.
* Provides common functionality for all types of communications including
* messages, requests, and alerts.
*
* Features:
* - Timestamp-based ordering
* - Sender and receiver tracking
* - Message content storage
* - Thread-safe immutable timestamp
*
* @author 0x1eo
* @since 2024-12-13 02:47:23
* @see Notification
*/
public abstract class AbstractNotification implements Notification {
protected User sender;
protected User receiver;
protected String message;
protected final Instant timestamp;
/**
* Creates a new notification.
*
* @param sender the sender's identifier object
* @param receiver the recipient's identifier object
* @param message the notification message content
* @throws IllegalArgumentException if sender, receiver or message is null
*/
protected AbstractNotification(Object sender, Object receiver, String message) {
setSender(sender);
setReceiver(receiver);
setMessage(message);
this.timestamp = Instant.now();
}
@Override
public User getSender() {
return sender;
}
@Override
public void setSender(Object sender) {
if (sender == null) {
throw new IllegalArgumentException("Sender cannot be null");
}
this.sender = (User)sender;
}
@Override
public User getReceiver() { return receiver; }
@Override
public void setReceiver(Object receiver) {
if (receiver == null) {
throw new IllegalArgumentException("Receiver cannot be null");
}
this.receiver = (User)receiver;
}
@Override
public String getMessage() { return message; }
@Override
public void setMessage(String message) {
if (message == null) {
throw new IllegalArgumentException("Message cannot be null");
}
this.message = message;
}
@Override
public Instant getTimestamp() { return timestamp; }
@Override
public void setTimestamp(Instant timestamp) {
throw new UnsupportedOperationException("Timestamp cannot be modified after creation");
}
@Override
public boolean equals(Object obj) {
if (this == obj) return true;
if (!(obj instanceof Notification)) return false;
Notification other = (Notification) obj;
return Objects.equals(sender, other.getSender()) &&
Objects.equals(receiver, other.getReceiver()) &&
Objects.equals(message, other.getMessage()) &&
Objects.equals(timestamp, other.getTimestamp());
}
@Override
public int hashCode() { return Objects.hash(sender, receiver, message, timestamp); }
@Override
public String toString() {
return String.format("Notification[from=%s, to=%s, message='%s', time=%s]",
sender,
receiver,
message,
timestamp);
}
}

View File

@@ -1,88 +0,0 @@
package server.structs.abstractions;
import server.structs.intfaces.Request;
import server.structs.intfaces.User;
/**
* Abstract base implementation for requests in the emergency communication system.
* Extends AbstractNotification to provide request-specific functionality including
* request author tracking.
*
* Features:
* - Request author (truster) tracking
* - Inherits notification base features
* - Supports emergency communication protocol
* - Immutable creation timestamp
*
* @author 0x1eo
* @since 2024-12-13
* @see Request
* @see AbstractNotification
* @see User
*/
public abstract class AbstractRequest extends AbstractNotification implements Request {
protected User truster;
/**
* Creates a new request in the emergency system.
*
* @param sender the user initiating the request
* @param receiver the intended recipient
* @param content the request content/message
* @throws IllegalArgumentException if any parameter is null, or if receiver is empty
*/
protected AbstractRequest(User sender, String receiver, String content) {
super(sender.getUsername(), receiver, content);
setTruster(sender); // Initialize truster with the sender
}
/**
* Gets the author (requesting user) of this request.
*
* @return the user who authored this request
*/
@Override
public User getTruster() {
return truster;
}
/**
* Sets the author (requesting user) of this request.
*
* @param author the user who authored this request
* @throws IllegalArgumentException if author is null
*/
@Override
public void setTruster(User author) {
if (author == null) {
throw new IllegalArgumentException("Request author cannot be null");
}
this.truster = author;
}
@Override
public String toString() {
return String.format("Request[from=%s, to=%s, content='%s', author=%s, time=%s]",
getSender(),
getReceiver(),
getMessage(),
truster.getUsername(),
getTimestamp());
}
@Override
public boolean equals(Object obj) {
if (!super.equals(obj)) return false;
if (!(obj instanceof Request)) return false;
Request other = (Request) obj;
return truster.equals(other.getTruster());
}
@Override
public int hashCode() {
int result = super.hashCode();
result = 31 * result + truster.hashCode();
return result;
}
}

View File

@@ -1,125 +0,0 @@
package server.structs.abstractions;
import java.util.Objects;
import server.structs.intfaces.User;
import shared.enums.Hierarchy;
/**
* Abstract base implementation of the User interface that represents
* a user in the emergency communication system with hierarchical privileges.
*
* Features:
* - Username and full name management
* - Secure password storage
* - Hierarchical role-based access
* - Natural ordering based on hierarchy
*
* @author 0x1eo
* @since 2024-12-13
* @see User
* @see Hierarchy
*/
public abstract class AbstractUser implements User {
private String username;
private String name;
private String password;
private Hierarchy hierarchy;
/**
* Creates a new user with the specified credentials and hierarchy level.
*
* @param username unique identifier for the user
* @param name full name of the user
* @param password user's authentication credential
* @param hierarchy user's position in the system hierarchy
* @throws IllegalArgumentException if any parameter is null or empty strings
*/
protected AbstractUser(String username, String name, String password, Hierarchy hierarchy) {
setUsername(username);
setName(name);
setPassword(password);
setHierarchy(hierarchy);
}
@Override
public String getUsername() {
return username;
}
@Override
public void setUsername(String username) {
if (username == null || username.trim().isEmpty()) {
throw new IllegalArgumentException("Username cannot be null or empty");
}
this.username = username.trim();
}
@Override
public String getName() {
return name;
}
@Override
public void setName(String name) {
if (name == null || name.trim().isEmpty()) {
throw new IllegalArgumentException("Name cannot be null or empty");
}
this.name = name.trim();
}
@Override
public String getPassword() {
return password;
}
@Override
public void setPassword(String password) {
if (password == null || password.trim().isEmpty()) {
throw new IllegalArgumentException("Password cannot be null or empty");
}
this.password = password;
}
@Override
public Hierarchy getHierarchy() {
return hierarchy;
}
@Override
public void setHierarchy(Hierarchy hierarchy) {
if (hierarchy == null) {
throw new IllegalArgumentException("Hierarchy cannot be null");
}
this.hierarchy = hierarchy;
}
@Override
public int compareTo(User other) {
return this.hierarchy.getValue() - other.getHierarchy().getValue();
}
@Override
public boolean equals(Object obj) {
if (this == obj) return true;
if (!(obj instanceof User)) return false;
User other = (User) obj;
return Objects.equals(username, other.getUsername()) &&
Objects.equals(name, other.getName()) &&
Objects.equals(password, other.getPassword()) &&
Objects.equals(hierarchy, other.getHierarchy());
}
@Override
public int hashCode() {
return Objects.hash(username, name, password, hierarchy);
}
@Override
public String toString() {
return String.format("User[username='%s', name='%s', hierarchy=%s]",
username,
name,
hierarchy.getDisplayName());
}
}

View File

@@ -1,46 +0,0 @@
package server.structs.implementations;
import server.structs.abstractions.AbstractMessage;
import server.structs.intfaces.Message;
import server.structs.intfaces.User;
/**
* Standard message implementation for the emergency communication system.
* Provides a concrete implementation for direct, broadcast, and group messages.
*
* Features:
* - Direct user-to-user messaging
* - Broadcast messaging support
* - Multicast group communication
* - Emergency notifications
* - Timestamp-based ordering
*
* @author 0x1eo
* @since 2024-12-13 03:42:45 UTC
* @see Message
* @see AbstractMessage
* @see User
*/
public class StandardMessage extends AbstractMessage {
/**
* Creates a new message in the emergency system.
*
* @param sender the user initiating the message
* @param receiver the recipient (user, broadcast address, or multicast group)
* @param content the message content
* @throws IllegalArgumentException if sender or content is null
*/
public StandardMessage(User sender, Object receiver, String content) {
super(sender, receiver, content);
}
@Override
public String toString() {
return String.format("Message[from=%s, to=%s, content='%s', time=%s]",
getSender(),
getReceiver(),
getMessage(),
getTimestamp());
}
}

View File

@@ -1,44 +0,0 @@
package server.structs.implementations;
import server.structs.abstractions.AbstractNotification;
import server.structs.intfaces.User;
import server.utils.UserHandler;
/**
* Standard notification implementation for the emergency communication system.
* Provides a concrete implementation of AbstractNotification for general-purpose
* system notifications.
*
* Features:
* - Direct messaging support
* - Broadcast capability
* - Multicast group messaging
* - System alerts and announcements
*
* @author 0x1eo
* @since 2024-12-13 03:41:39 UTC
* @see AbstractNotification
*/
public class StandardNotification extends AbstractNotification {
/**
* Creates a new standard notification.
*
* @param sender the sender's identifier (user, system, or service)
* @param receiver the recipient's identifier (user, broadcast, or multicast group)
* @param message the notification content
* @throws IllegalArgumentException if any parameter is null
*/
public StandardNotification(Object sender, Object receiver, String message) {
super(sender, receiver, message);
}
public String convertToUser(Object obj) {
if (obj instanceof String) {
// Use your user lookup mechanism
return UserHandler.findUser(String.valueOf(obj));
}
throw new IllegalArgumentException("Cannot convert to User: " + obj);
}
}

View File

@@ -1,17 +0,0 @@
package server.structs.implementations;
import server.structs.abstractions.AbstractRequest;
import server.structs.intfaces.User;
/**
* Standard request implementation for the emergency communication system.
*
* @author 0x1eo
* @since 2024-12-13
*/
public class StandardRequest extends AbstractRequest {
public StandardRequest(User sender, String receiver, String content) {
super(sender, receiver, content);
}
}

View File

@@ -1,17 +0,0 @@
package server.structs.implementations;
import server.structs.abstractions.AbstractUser;
import shared.enums.Hierarchy;
/**
* Standard user implementation for the emergency communication system.
*
* @author 0x1eo
* @since 2024-12-13
*/
public class StandardUser extends AbstractUser {
public StandardUser(String username, String name, String password, Hierarchy hierarchy) {
super(username, name, password, hierarchy);
}
}

View File

@@ -1,15 +0,0 @@
package server.structs.intfaces;
/**
* Represents a message in the communication system.
* Extends the base Notification interface to provide message-specific functionality.
* This interface serves as a marker for distinguishing message types from other notifications.
*
* @author 0x1eo
* @since 2024-12-12
* @see Notification
*/
public interface Message extends Notification {
// Marker interface - no additional methods required
// Implementation classes should provide message-specific functionality
}

View File

@@ -1,86 +0,0 @@
package server.structs.intfaces;
import java.io.Serializable;
import java.time.Instant;
/**
* Represents a notification in the communication system.
* Provides methods for managing notification metadata and content.
* Implements Serializable for network transmission and Comparable for ordering.
*
* @author 0x1eo
* @since 2024-12-12
*/
public interface Notification extends Serializable, Comparable<Notification> {
/**
* Gets the sender of the notification.
*
* @return the sender's identifier
*/
User getSender();
/**
* Sets the sender of the notification.
*
* @param sender the sender's identifier
* @throws IllegalArgumentException if sender is null or empty
*/
void setSender(Object sender);
/**
* Gets the receiver of the notification.
*
* @return the receiver's identifier
*/
User getReceiver();
/**
* Sets the receiver of the notification.
*
* @param receiver the receiver's identifier
* @throws IllegalArgumentException if receiver is null or empty
*/
void setReceiver(Object receiver);
/**
* Gets the content of the notification.
*
* @return the notification message content
*/
String getMessage();
/**
* Sets the content of the notification.
*
* @param message the notification message content
* @throws IllegalArgumentException if message is null
*/
void setMessage(String message);
/**
* Gets the timestamp of the notification.
*
* @return the instant when the notification was created
*/
Instant getTimestamp();
/**
* Sets the timestamp of the notification.
*
* @param timestamp the instant when the notification was created
* @throws IllegalArgumentException if timestamp is null
*/
void setTimestamp(Instant timestamp);
/**
* Provides a default natural ordering for notifications based on timestamp.
*
* @param other the notification to compare with
* @return negative if this is earlier, zero if same time, positive if later
*/
@Override
default int compareTo(Notification other) {
return this.getTimestamp().compareTo(other.getTimestamp());
}
}

View File

@@ -1,29 +0,0 @@
package server.structs.intfaces;
/**
* Represents a request in the communication system.
* Extends the Notification interface to add request-specific functionality.
* A request is a special type of notification that includes an author (requesting user).
*
* @author 0x1eo
* @since 2024-12-12
* @see Notification
* @see User
*/
public interface Request extends Notification {
/**
* Gets the author (requesting user) of this request.
*
* @return the user who authored this request
*/
User getTruster();
/**
* Sets the author (requesting user) of this request.
*
* @param author the user who authored this request
* @throws IllegalArgumentException if author is null
*/
void setTruster(User author);
}

View File

@@ -1,101 +0,0 @@
package server.structs.intfaces;
import java.io.Serializable;
import shared.enums.Hierarchy;
/**
* Represents a user in the system with their credentials and permissions.
* Implements Serializable for network transmission and Comparable for user ordering.
*
* @author 0x1eo
* @since 2024-12-12
*/
public interface User extends Serializable, Comparable<User> {
/**
* Gets the user's unique username.
*
* @return the username
*/
String getUsername();
/**
* Sets the user's username.
*
* @param username the username to set
* @throws IllegalArgumentException if username is null or empty
*/
void setUsername(String username); // Fixed method name from setUserName
/**
* Gets the user's password (hashed).
*
* @return the hashed password
*/
String getPassword();
/**
* Sets the user's password.
* Implementation should ensure the password is properly hashed before storage.
*
* @param password the password to set
* @throws IllegalArgumentException if password is null or empty
*/
void setPassword(String password);
/**
* Gets the user's display name.
*
* @return the user's full name
*/
String getName();
/**
* Sets the user's display name.
*
* @param name the name to set
* @throws IllegalArgumentException if name is null or empty
*/
void setName(String name);
/**
* Gets the user's hierarchy level in the system.
*
* @return the user's hierarchy level
*/
Hierarchy getHierarchy();
/**
* Sets the user's hierarchy level.
*
* @param hierarchy the hierarchy level to set
* @throws IllegalArgumentException if hierarchy is null
*/
void setHierarchy(Hierarchy hierarchy);
/**
* Provides a default natural ordering for users based on username.
*
* @param other the user to compare with
* @return negative if this username comes before, zero if equal, positive if after
*/
@Override
default int compareTo(User other) {
return this.getUsername().compareToIgnoreCase(other.getUsername());
}
/**
* Checks if the user has at least the specified hierarchy level.
*
* @param minimumHierarchy the minimum required hierarchy level
* @return true if user's hierarchy is at least the specified level
* @throws IllegalArgumentException if minimumHierarchy is null
*/
default boolean hasMinimumHierarchy(Hierarchy minimumHierarchy) {
if (minimumHierarchy == null) {
throw new IllegalArgumentException("Minimum hierarchy cannot be null");
}
return this.getHierarchy().ordinal() >= minimumHierarchy.ordinal();
}
}

View File

@@ -1,90 +0,0 @@
package server.utils;
import java.net.Socket;
import java.util.logging.Logger;
import org.json.JSONException;
import org.json.JSONObject;
import server.structs.SystemStateManager;
import server.structs.intfaces.User;
import shared.enums.ConnType;
/**
* This class represents the protocol used for processing input in the server.
*/
public class InputCommandRouter {
private static final Logger logger = Logger.getLogger(InputCommandRouter.class.getName());
/**
* Processes the input based on the given connection type, socket packet, and input string.
*
* @param connType The type of connection (DIRECT or INDIRECT).
* @param socketPacket The socket packet object.
* @param input The input string to be processed.
* @return The response as a JSON string.
*/
public static String processInput(ConnType connType, Object socketPacket, String input) {
JSONObject response = new JSONObject();
try {
JSONObject json = new JSONObject(input);
if (!json.has("command")) {
response.put("response", "Invalid command!");
return response.toString();
}
// Register the user's socket if it is not already registered
Socket socket;
if (connType == ConnType.UNICAST) {
if (json.has("username") || json.has("from")) {
User User = null;
if (json.has("username")) {
User = SystemStateManager.getUser(json.getString("username"));
}
if (json.has("from")) {
User = SystemStateManager.getUser(json.getString("from"));
}
if (User != null) {
if (socketPacket instanceof Socket) {
socket = (Socket) socketPacket;
if (socket != SystemStateManager.getUserSocket(User)) {
SystemStateManager.addUserSocket(User, socket);
}
}
}
}
}
// Process the input based on the command
switch (json.getString("command")) {
case "register":
if (connType != ConnType.UNICAST) {
return null;
}
socket = (Socket) socketPacket;
return UserHandler.register(json, socketPacket);
case "login":
if (connType != ConnType.UNICAST) {
return null;
}
socket = (Socket) socketPacket;
return UserHandler.login(json, socketPacket);
case "message":
MessageProtocolHandler.receiveMessage(connType, json);
return null;
case "request":
MessageProtocolHandler.receiveRequest(connType, json, socketPacket);
return null;
case "joinGroup":
UserHandler.joinGroup(json);
return null;
default:
logger.severe("Invalid command received! " + input);
return null;
}
} catch (JSONException e) {
logger.severe("Invalid JSON received! " + e.getMessage());
return null;
}
}
}

View File

@@ -1,260 +0,0 @@
package server.utils;
import java.text.SimpleDateFormat;
import java.util.Collection;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.logging.Logger;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;
import server.structs.SystemStateManager;
import server.structs.implementations.StandardMessage;
import server.structs.implementations.StandardRequest;
import server.structs.intfaces.Notification;
import server.structs.intfaces.Message;
import server.structs.intfaces.Request;
import server.structs.intfaces.User;
import server.handlers.AcceptRequestHandler;
import shared.enums.ConnType;
public class MessageProtocolHandler {
private static final Logger logger = Logger.getLogger(MessageProtocolHandler.class.getName());
private static final ExecutorService executorService = Executors.newFixedThreadPool(50);
/**
* Returns the ExecutorService used by the EventsHandler.
*
* @return the ExecutorService used by the EventsHandler
*/
public static ExecutorService getExecutorService() {
return executorService;
}
/**
* Converts an event to a JSON object.
*
* @param notification The event to convert.
* @return The JSON object representation of the event.
*/
public static <N extends Notification> JSONObject notificationToJson(N notification) throws JSONException {
JSONObject json = new JSONObject();
json.put("from", notification.getSender());
Object receiver = notification.getReceiver();
if (receiver instanceof User) {
json.put("to", ((User) receiver).getUsername());
} else if (receiver instanceof String) {
String receiverString = (String) receiver;
if (receiverString.equals("broadcast")) {
json.put("to", "broadcast");
} else if (receiverString.matches(
"^(22[4-9]|23[0-9]|2[4-9][0-9]|[3-9][0-9]{2}|[12][0-9]{3})\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$")) {
json.put("to", receiverString);
}
} else {
logger.severe("Invalid receiver type!");
}
json.put("content", notification.getMessage());
SimpleDateFormat sdf = new SimpleDateFormat("dd-MM-yyyy HH:mm");
json.put("date", sdf.format(notification.getTimestamp()));
if (notification instanceof Message) {
json.put("command", "message");
return json;
} else if (notification instanceof Request) {
json.put("command", "request");
Request request = (Request) notification;
if (request.getTruster() != null) {
json.put("accepter", request.getTruster().getUsername());
} else {
json.put("accepter", "");
}
return json;
}
throw new JSONException("Invalid event type");
}
/**
* Converts a collection of events to a JSON array.
*
* @param notifications The collection of events to convert.
* @return The JSON array representation of the events.
* @throws JSONException If an error occurs while converting the events to JSON.
*/
public static JSONArray notificationsToJson(Collection<? extends Notification> notifications) throws JSONException {
JSONArray jsonArray = new JSONArray();
for (Notification notification : notifications) {
jsonArray.put(notificationToJson(notification));
}
return jsonArray;
}
/**
* Converts a JSON object to a message.
*
* @param json The JSON object to convert.
* @return The message representation of the JSON object.
*/
public static Message messageFromJson(JSONObject json) {
try {
if (!json.has("from") || !json.has("to") || !json.has("content")) {
logger.severe("Invalid message received! (field missing)");
return null;
}
if (json.getString("from").equals("server")) {
return null;
}
User from = SystemStateManager.getUser(json.getString("from"));
if (from == null) {
logger.severe("Invalid message received! (User from)");
return null;
}
String to = json.getString("to");
String content = json.getString("content");
Message message = new StandardMessage(from, null, content);
if (to.equals("broadcast")) {
message.setReceiver(to);
} else if (to.matches(
"^(22[4-9]|23[0-9]|2[4-9][0-9]|[3-9][0-9]{2}|[12][0-9]{3})\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$")) {
message.setReceiver(to);
} else {
message.setReceiver(SystemStateManager.getUser(to));
}
if (message.getReceiver() == null) {
logger.severe("Invalid message received! (User to)");
return null;
}
return message;
} catch (JSONException ignored) {
logger.severe("Invalid message received! (JSONException)");
return null;
}
}
/**
* Converts a JSON object to a request.
*
* @param json The JSON object to convert.
* @return The request representation of the JSON object.
*/
public static Request requestFromJson(JSONObject json) {
try {
if (!json.has("from") || !json.has("to") || !json.has("content")) {
logger.severe("Invalid request received! (field missing)");
return null;
}
User from = SystemStateManager.getUser(json.getString("from"));
if (from == null) {
logger.severe("Invalid request received! (User from)");
return null;
}
String to = json.getString("to");
String content = json.getString("content");
Request request = new StandardRequest(from, null, content);
if (to.equals("broadcast")) {
request.setReceiver(to);
} else if (to.matches(
"^(22[4-9]|23[0-9]|2[4-9][0-9]|[3-9][0-9]{2}|[12][0-9]{3})\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$")) {
request.setReceiver(to);
} else {
request.setReceiver(SystemStateManager.getUser(to));
}
if (request.getReceiver() == null) {
logger.severe("Invalid request received! (User to)");
return null;
}
return request;
} catch (JSONException ignored) {
logger.severe("Invalid request received! (JSONException)");
return null;
}
}
/// ! Protocol methods
/**
* Receives a message and processes it based on the connection type and the message content.
*
* @param connType the type of connection (DIRECT or BROADCAST)
* @param json the JSON object containing the message data
* @return always returns null
*/
public static String receiveMessage(ConnType connType, JSONObject json) {
Message message = messageFromJson(json);
if (message != null) {
Object Receiver = message.getReceiver();
if (Receiver instanceof User) {
SystemStateManager.addUserNotification((User) message.getReceiver(), message);
} else if (Receiver instanceof String) {
String receiverString = (String) Receiver;
if (receiverString.equals("broadcast")) {
Collection<User> users = SystemStateManager.getUsers();
for (User user : users) {
SystemStateManager.addUserNotification(user, message);
}
} else if (receiverString.matches(
"^(22[4-9]|23[0-9]|2[4-9][0-9]|[3-9][0-9]{2}|[12][0-9]{3})\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$")) {
Collection<User> users = SystemStateManager.getUsersFromGroup(receiverString);
for (User user : users) {
SystemStateManager.addUserNotification(user, message);
}
} else {
User user = SystemStateManager.getUser(receiverString);
if (user != null) {
SystemStateManager.addUserNotification(user, message);
}
}
}
SystemStateManager.addUserNotification(message.getSender(), message);
if (connType == ConnType.UNICAST) {
SystemStateManager.addNotificationToDeliver(message);
}
}
return null;
}
/**
* Receives a request and processes it based on the connection type, JSON data, and socket packet.
*
* @param connType The type of connection (DIRECT or INDIRECT).
* @param json The JSON object containing the request data.
* @param socketPacket The socket packet associated with the request.
* @return The response string.
*/
public static String receiveRequest(ConnType connType, JSONObject json, Object socketPacket) {
Request request = requestFromJson(json);
if (request != null) {
Object Receiver = request.getReceiver();
if (Receiver instanceof User) {
SystemStateManager.addUserNotification(request.getReceiver(), request);
} else if (Receiver instanceof String) {
String receiverString = (String) Receiver;
if (receiverString.equals("broadcast")) {
Collection<User> users = SystemStateManager.getUsers();
for (User user : users) {
SystemStateManager.addUserNotification(user, request);
}
} else if (receiverString.matches(
"^(22[4-9]|23[0-9]|2[4-9][0-9]|[3-9][0-9]{2}|[12][0-9]{3})\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$")) {
Collection<User> users = SystemStateManager.getUsersFromGroup(receiverString);
for (User user : users) {
SystemStateManager.addUserNotification(user, request);
}
} else {
User user = SystemStateManager.getUser(receiverString);
if (user != null) {
SystemStateManager.addUserNotification(user, request);
}
}
}
SystemStateManager.addUserNotification(request.getSender(), request);
if (connType == ConnType.UNICAST) {
SystemStateManager.addNotificationToDeliver(request);
}
executorService.execute(new AcceptRequestHandler(connType, request));
}
return null;
}
}

View File

@@ -1,193 +0,0 @@
package server.utils;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.net.InetAddress;
import java.net.Socket;
import java.util.logging.Level;
import java.util.logging.Logger;
import org.json.JSONException;
import org.json.JSONObject;
import server.Server;
import server.handlers.MessageHistoryHandler;
import server.structs.SystemStateManager;
import server.structs.intfaces.User;
import server.structs.implementations.StandardUser; // New concrete implementation
import shared.enums.Hierarchy;
/**
* Handles user registration, authentication, and communication in the emergency system.
* Manages user sessions and group memberships.
*
* @author 0x1eo
* @since 2024-12-13
*/
public class UserHandler {
private static final Logger logger = Logger.getLogger(UserHandler.class.getName());
private static final String MULTICAST_GROUP_PATTERN =
"^(22[4-9]|23[0-9]|2[4-9][0-9]|[3-9][0-9]{2}|[12][0-9]{3})"
+ "\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)"
+ "\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)"
+ "\\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$";
// Prevent instantiation
private UserHandler() {}
/**
* Registers a new user in the system.
*
* @param json The registration details
* @param socketPacket The connection socket
* @return JSON response indicating success or failure
* @throws JSONException If registration data is malformed
*/
public static String register(JSONObject json, Object socketPacket) throws JSONException {
try {
String username = json.getString("username");
if (SystemStateManager.getUser(username) != null) {
logger.info("Registration failed: User already exists - " + username);
return createErrorResponse("User already exists!");
}
User user = createUser(json);
Socket socket = (Socket) socketPacket;
SystemStateManager.addUser(user);
SystemStateManager.addUserSocket(user, socket);
return createSuccessResponse();
} catch (IllegalArgumentException e) {
logger.log(Level.WARNING, "Registration failed: Invalid role", e);
return createErrorResponse("Invalid role!");
} catch (Exception e) {
logger.log(Level.SEVERE, "Registration failed: Unexpected error", e);
return e.getMessage();
}
}
/**
* Creates a new user instance from JSON data.
*/
private static User createUser(JSONObject json) throws JSONException {
return new StandardUser(
json.getString("username"),
json.getString("name"),
json.getString("password"),
Hierarchy.valueOf(json.getString("role").toUpperCase())
);
}
/**
* Authenticates a user and establishes their session.
*/
public static String login(JSONObject json, Object socketPacket) throws JSONException {
User user = SystemStateManager.getUser(json.getString("username"));
if (user == null) {
logger.info("Login failed: Invalid username");
return createErrorResponse("Invalid username!");
}
if (!user.getPassword().equals(json.getString("password"))) {
logger.info("Login failed: Invalid password for user " + user.getUsername());
return createErrorResponse("Invalid password!");
}
establishUserSession(user, (Socket) socketPacket);
return createSuccessResponse();
}
/**
* Sets up user session and starts message history handler.
*/
private static void establishUserSession(User user, Socket socket) {
SystemStateManager.addUserSocket(user, socket);
new Thread(new MessageHistoryHandler(user)).start();
}
/**
* Sends data to a user through their socket connection.
*/
public static void sendSomething(User user, String data) throws IOException {
try (Socket newSocket = createUserSocket(user);
PrintWriter out = new PrintWriter(newSocket.getOutputStream(), true)) {
out.println(data);
}
}
/**
* Sends data and waits for a response.
*/
public static String sendAndReceiveSomething(User user, String data) throws IOException {
try (Socket newSocket = createUserSocket(user);
PrintWriter out = new PrintWriter(newSocket.getOutputStream(), true);
BufferedReader in = new BufferedReader(new InputStreamReader(newSocket.getInputStream()))) {
out.println(data);
return in.readLine();
}
}
private static Socket createUserSocket(User user) throws IOException {
Socket userSocket = SystemStateManager.getUserSocket(user);
return new Socket(userSocket.getInetAddress(), Server.USER_PORT);
}
/**
* Adds a user to a multicast group.
*/
public static String joinGroup(JSONObject json) throws JSONException {
if (!isValidGroupRequest(json)) {
return null;
}
User user = SystemStateManager.getUser(json.getString("username"));
if (user == null) {
logger.info("Group join failed: Invalid username");
return null;
}
try {
String group = json.getString("group");
SystemStateManager.getMulticastSocket().joinGroup(InetAddress.getByName(group));
SystemStateManager.addUserToGroup(group, user);
} catch (IOException e) {
logger.log(Level.WARNING, "Failed to join multicast group", e);
}
return null;
}
private static boolean isValidGroupRequest(JSONObject json) {
if (!json.has("group") || !json.has("username")) {
logger.info("Group join failed: Missing required fields");
return false;
}
String group = json.getString("group");
if (!group.matches(MULTICAST_GROUP_PATTERN)) {
logger.info("Group join failed: Invalid group address - " + group);
return false;
}
return true;
}
private static String createSuccessResponse() {
return new JSONObject().put("response", "OK").toString();
}
private static String createErrorResponse(String message) {
return new JSONObject().put("response", message).toString();
}
public static String findUser(String username) {
User user = SystemStateManager.getUser(username);
if (user == null) {
return null;
}
return user.getUsername();
}
}

View File

@@ -1,72 +0,0 @@
package shared.enums;
import java.util.Arrays;
import java.util.Optional;
/**
* Represents different types of network connections used in the application.
*
* @author 0x1eo
* @since 2024-12-12
*/
public enum ConnType {
UNICAST("Unicast", "Point-to-point connection between two nodes"),
MULTICAST("Multicast", "One-to-many connection to a specific group of nodes"),
BROADCAST("Broadcast", "One-to-all connection reaching all nodes in the network");
private final String displayName;
private final String description;
ConnType(String displayName, String description) {
this.displayName = displayName;
this.description = description;
}
/**
* Gets the user-friendly display name of the connection type.
*
* @return the display name
*/
public String getDisplayName() {
return displayName;
}
/**
* Gets the description of the connection type.
*
* @return the description
*/
public String getDescription() {
return description;
}
/**
* Safely converts a string to a ConnType.
*
* @param value the string value to convert
* @return an Optional containing the ConnType if valid, empty Optional otherwise
*/
public static Optional<ConnType> fromString(String value) {
if (value == null || value.trim().isEmpty()) {
return Optional.empty();
}
return Arrays.stream(values())
.filter(connType -> connType.name().equalsIgnoreCase(value.trim()))
.findFirst();
}
/**
* Checks if the connection type is suitable for group communication.
*
* @return true if the connection type supports group communication
*/
public boolean isGroupCapable() {
return this == MULTICAST || this == BROADCAST;
}
@Override
public String toString() {
return String.format("%s (%s)", displayName, description);
}
}

View File

@@ -1,108 +0,0 @@
package shared.enums;
import java.util.Arrays;
import java.util.Optional;
/**
* Represents the priority levels in the system's hierarchy.
* Used for tasks and user permissions.
*
* @author 0x1eo
* @since 2024-12-12
*/
public enum Hierarchy {
LOW(0, "Low Priority"),
MEDIUM(1, "Medium Priority"),
HIGH(2, "High Priority");
private final int value;
private final String displayName;
Hierarchy(int value, String displayName) {
this.value = value;
this.displayName = displayName;
}
/**
* Gets the numeric value associated with this hierarchy level.
*
* @return the numeric value of the hierarchy level
*/
public int getValue() {
return value;
}
/**
* Gets the display name of this hierarchy level.
*
* @return the user-friendly name of the hierarchy level
*/
public String getDisplayName() {
return displayName;
}
/**
* Finds a Hierarchy enum by its numeric value.
*
* @param value the numeric value to look up
* @return an Optional containing the Hierarchy if found, empty Optional otherwise
*/
public static Optional<Hierarchy> fromValue(int value) {
return Arrays.stream(values())
.filter(h -> h.value == value)
.findFirst();
}
/**
* Finds a Hierarchy enum by its name (case-insensitive).
*
* @param name the name to look up
* @return an Optional containing the Hierarchy if found, empty Optional otherwise
*/
public static Optional<Hierarchy> fromString(String name) {
if (name == null || name.trim().isEmpty()) {
return Optional.empty();
}
return Arrays.stream(values())
.filter(h -> h.name().equalsIgnoreCase(name.trim()))
.findFirst();
}
/**
* Gets all hierarchy values as strings.
*
* @return array of hierarchy names
*/
public static String[] getAllNames() {
return Arrays.stream(values())
.map(Hierarchy::name)
.toArray(String[]::new);
}
/**
* Gets all hierarchy display names.
*
* @return array of user-friendly hierarchy names
*/
public static String[] getAllDisplayNames() {
return Arrays.stream(values())
.map(Hierarchy::getDisplayName)
.toArray(String[]::new);
}
/**
* Compares this hierarchy level with another.
*
* @param other the hierarchy level to compare with
* @return true if this level is higher than the other
*/
public boolean isHigherThan(Hierarchy other) {
return this.value > other.value;
}
@Override
public String toString() {
return displayName;
}
}

View File

@@ -1,90 +0,0 @@
package shared.enums;
import java.util.Arrays;
import java.util.Optional;
/**
* Represents different types of message receivers in the communication system.
*
* @author 0x1eo
* @since 2024-12-12
*/
public enum RecvType {
USER("Single User", "Direct message to a specific user"),
GROUP("Group", "Message to a defined group of users"),
BROADCAST("Broadcast", "Message to all users in the network");
private final String displayName;
private final String description;
RecvType(String displayName, String description) {
this.displayName = displayName;
this.description = description;
}
/**
* Gets the user-friendly display name of the receiver type.
*
* @return the display name
*/
public String getDisplayName() {
return displayName;
}
/**
* Gets the description of the receiver type.
*
* @return the description
*/
public String getDescription() {
return description;
}
/**
* Determines if this receiver type supports multiple recipients.
*
* @return true if the receiver type supports multiple recipients
*/
public boolean isMultiReceiver() {
return this == GROUP || this == BROADCAST;
}
/**
* Safely converts a string to a RecvType.
*
* @param value the string value to convert
* @return an Optional containing the RecvType if valid, empty Optional otherwise
*/
public static Optional<RecvType> fromString(String value) {
if (value == null || value.trim().isEmpty()) {
return Optional.empty();
}
return Arrays.stream(values())
.filter(type -> type.name().equalsIgnoreCase(value.trim()))
.findFirst();
}
/**
* Gets the appropriate receiver type for a given number of recipients.
*
* @param recipientCount the number of recipients
* @return the appropriate receiver type
*/
public static RecvType forRecipientCount(int recipientCount) {
if (recipientCount <= 0) {
throw new IllegalArgumentException("Recipient count must be positive");
}
return switch (recipientCount) {
case 1 -> USER;
case Integer.MAX_VALUE -> BROADCAST;
default -> GROUP;
};
}
@Override
public String toString() {
return String.format("%s (%s)", displayName, description);
}
}

View File

@@ -0,0 +1,113 @@
# =========================================================
# Traffic Simulation Configuration
# ---------------------------------------------------------
# All parameters controlling network layout, timing,
# and simulation behavior.
# =========================================================
# === NETWORK CONFIGURATION ===
# Intersections (each with its host and port)
intersection.Cr1.host=localhost
intersection.Cr1.port=8001
intersection.Cr2.host=localhost
intersection.Cr2.port=8002
intersection.Cr3.host=localhost
intersection.Cr3.port=8003
intersection.Cr4.host=localhost
intersection.Cr4.port=8004
intersection.Cr5.host=localhost
intersection.Cr5.port=8005
# Exit node
exit.host=localhost
exit.port=9001
# Dashboard server
dashboard.host=localhost
dashboard.port=9000
# === SIMULATION CONFIGURATION ===
# Total duration in seconds (3600 = 1 hour)
simulation.duration=60.0
# Vehicle arrival model: FIXED or POISSON
simulation.arrival.model=POISSON
# λ (lambda): average arrival rate (vehicles per second)
simulation.arrival.rate=0.5
# Fixed interval between arrivals (only used if model=FIXED)
simulation.arrival.fixed.interval=2.0
# === TRAFFIC LIGHT TIMINGS ===
# Format: trafficlight.<intersection>.<direction>.<state>=<seconds>
# Intersection 1
trafficlight.Cr1.North.green=30.0
trafficlight.Cr1.North.red=30.0
trafficlight.Cr1.South.green=30.0
trafficlight.Cr1.South.red=30.0
trafficlight.Cr1.East.green=30.0
trafficlight.Cr1.East.red=30.0
trafficlight.Cr1.West.green=30.0
trafficlight.Cr1.West.red=30.0
# Intersection 2
trafficlight.Cr2.North.green=25.0
trafficlight.Cr2.North.red=35.0
trafficlight.Cr2.South.green=25.0
trafficlight.Cr2.South.red=35.0
trafficlight.Cr2.East.green=35.0
trafficlight.Cr2.East.red=25.0
trafficlight.Cr2.West.green=35.0
trafficlight.Cr2.West.red=25.0
# Intersection 3
trafficlight.Cr3.North.green=30.0
trafficlight.Cr3.North.red=30.0
trafficlight.Cr3.South.green=30.0
trafficlight.Cr3.South.red=30.0
trafficlight.Cr3.East.green=30.0
trafficlight.Cr3.East.red=30.0
trafficlight.Cr3.West.green=30.0
trafficlight.Cr3.West.red=30.0
# Intersection 4
trafficlight.Cr4.North.green=30.0
trafficlight.Cr4.North.red=30.0
trafficlight.Cr4.South.green=30.0
trafficlight.Cr4.South.red=30.0
trafficlight.Cr4.East.green=30.0
trafficlight.Cr4.East.red=30.0
trafficlight.Cr4.West.green=30.0
trafficlight.Cr4.West.red=30.0
# Intersection 5
trafficlight.Cr5.North.green=30.0
trafficlight.Cr5.North.red=30.0
trafficlight.Cr5.South.green=30.0
trafficlight.Cr5.South.red=30.0
trafficlight.Cr5.East.green=30.0
trafficlight.Cr5.East.red=30.0
trafficlight.Cr5.West.green=30.0
trafficlight.Cr5.West.red=30.0
# === VEHICLE CONFIGURATION ===
# Probability distribution for vehicle types (must sum to 1.0)
vehicle.probability.bike=0.2
vehicle.probability.light=0.6
vehicle.probability.heavy=0.2
# Average crossing times (in seconds)
vehicle.crossing.time.bike=1.5
vehicle.crossing.time.light=2.0
vehicle.crossing.time.heavy=4.0
# === STATISTICS ===
# Interval between dashboard updates (seconds)
statistics.update.interval=10.0

View File

@@ -0,0 +1,125 @@
import java.io.IOException;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertNotNull;
import static org.junit.jupiter.api.Assertions.assertTrue;
import org.junit.jupiter.api.Test;
import sd.config.SimulationConfig;
import sd.engine.SimulationEngine;
import sd.model.Event;
import sd.model.EventType;
import sd.model.Intersection;
import sd.model.TrafficLight;
import sd.model.TrafficLightState;
import sd.model.Vehicle;
import sd.model.VehicleType;
import sd.util.StatisticsCollector;
import sd.util.VehicleGenerator;
/**
* Basic tests for the simulation components.
*/
class SimulationTest {
@Test
void testConfigurationLoading() throws IOException {
SimulationConfig config = new SimulationConfig("src/main/resources/simulation.properties");
assertEquals(60.0, config.getSimulationDuration());
assertEquals("POISSON", config.getArrivalModel());
assertEquals(0.5, config.getArrivalRate());
assertEquals(10.0, config.getStatisticsUpdateInterval());
}
@Test
void testVehicleGeneration() throws IOException {
SimulationConfig config = new SimulationConfig("src/main/resources/simulation.properties");
VehicleGenerator generator = new VehicleGenerator(config);
Vehicle vehicle = generator.generateVehicle("TEST1", 0.0);
assertNotNull(vehicle);
assertEquals("TEST1", vehicle.getId());
assertNotNull(vehicle.getType());
assertNotNull(vehicle.getRoute());
assertTrue(vehicle.getRoute().size() > 0);
}
@Test
void testEventOrdering() {
Event e1 = new Event(5.0, EventType.VEHICLE_ARRIVAL, null, "Cr1");
Event e2 = new Event(3.0, EventType.VEHICLE_ARRIVAL, null, "Cr2");
Event e3 = new Event(7.0, EventType.TRAFFIC_LIGHT_CHANGE, null, "Cr1");
assertTrue(e2.compareTo(e1) < 0); // e2 should come before e1
assertTrue(e1.compareTo(e3) < 0); // e1 should come before e3
}
@Test
void testIntersectionVehicleQueue() {
Intersection intersection = new Intersection("TestCr");
TrafficLight light = new TrafficLight("TestCr-N", "North", 30.0, 30.0);
intersection.addTrafficLight(light);
Vehicle v1 = new Vehicle("V1", VehicleType.LIGHT, 0.0,
java.util.Arrays.asList("TestCr", "S"));
intersection.configureRoute("S", "North");
// Advance route to next destination
v1.advanceRoute();
intersection.receiveVehicle(v1);
assertEquals(1, intersection.getTotalQueueSize());
assertEquals(1, intersection.getTotalVehiclesReceived());
}
@Test
void testTrafficLightStateChange() {
TrafficLight light = new TrafficLight("Test-Light", "North", 30.0, 30.0);
assertEquals(TrafficLightState.RED, light.getState());
light.changeState(TrafficLightState.GREEN);
assertEquals(TrafficLightState.GREEN, light.getState());
light.changeState(TrafficLightState.RED);
assertEquals(TrafficLightState.RED, light.getState());
}
@Test
void testSimulationEngineInitialization() throws IOException {
SimulationConfig config = new SimulationConfig("src/main/resources/simulation.properties");
SimulationEngine engine = new SimulationEngine(config);
engine.initialize();
assertNotNull(engine.getIntersections());
assertEquals(5, engine.getIntersections().size());
// Check that intersections have traffic lights
for (Intersection intersection : engine.getIntersections().values()) {
assertEquals(3, intersection.getTrafficLights().size()); // North, South, East, West
}
}
@Test
void testStatisticsCollector() throws IOException {
SimulationConfig config = new SimulationConfig("src/main/resources/simulation.properties");
StatisticsCollector collector = new StatisticsCollector(config);
Vehicle v1 = new Vehicle("V1", VehicleType.LIGHT, 0.0,
java.util.Arrays.asList("Cr1", "Cr2", "S"));
collector.recordVehicleGeneration(v1, 0.0);
assertEquals(1, collector.getTotalVehiclesGenerated());
collector.recordVehicleArrival(v1, "Cr1", 1.0);
collector.recordVehicleExit(v1, 10.0);
assertEquals(1, collector.getTotalVehiclesCompleted());
}
}

View File

@@ -0,0 +1,140 @@
package sd.serialization;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.DisplayName;
import sd.model.Message;
import sd.model.Vehicle;
import sd.model.VehicleType;
import java.util.Arrays;
import static org.junit.jupiter.api.Assertions.*;
/**
* Test suite for JSON serialization.
*
* Tests JSON serialization to ensure:
* - Correct serialization and deserialization
* - Data integrity during round-trip conversion
* - Proper error handling
*/
class SerializationTest {
private MessageSerializer jsonSerializer = new JsonMessageSerializer();
private Vehicle testVehicle = new Vehicle("V001", VehicleType.LIGHT, 10.5,
Arrays.asList("Cr1", "Cr2", "Cr5", "S"));
private Message testMessage = new Message(
sd.model.MessageType.VEHICLE_TRANSFER,
"Cr1",
"Cr2",
testVehicle
);
// ===== JSON Serialization Tests =====
@Test
@DisplayName("JSON: Should serialize and deserialize Vehicle correctly")
void testJsonVehicleRoundTrip() throws SerializationException {
// Serialize
byte[] data = jsonSerializer.serialize(testVehicle);
assertNotNull(data);
assertTrue(data.length > 0);
// Print JSON for inspection
System.out.println("JSON Vehicle:");
System.out.println(new String(data));
// Deserialize
Vehicle deserialized = jsonSerializer.deserialize(data, Vehicle.class);
// Verify
assertNotNull(deserialized);
assertEquals(testVehicle.getId(), deserialized.getId());
assertEquals(testVehicle.getType(), deserialized.getType());
assertEquals(testVehicle.getEntryTime(), deserialized.getEntryTime());
assertEquals(testVehicle.getRoute(), deserialized.getRoute());
assertEquals(testVehicle.getTotalWaitingTime(), deserialized.getTotalWaitingTime());
assertEquals(testVehicle.getTotalCrossingTime(), deserialized.getTotalCrossingTime());
}
@Test
@DisplayName("JSON: Should serialize and deserialize Message correctly")
void testJsonMessageRoundTrip() throws SerializationException {
// Serialize
byte[] data = jsonSerializer.serialize(testMessage);
assertNotNull(data);
// Print JSON for inspection
System.out.println("\nJSON Message:");
System.out.println(new String(data));
// Deserialize
Message deserialized = jsonSerializer.deserialize(data, Message.class);
// Verify
assertNotNull(deserialized);
assertEquals(testMessage.getType(), deserialized.getType());
assertEquals(testMessage.getSenderId(), deserialized.getSenderId());
assertEquals(testMessage.getDestinationId(), deserialized.getDestinationId());
}
@Test
@DisplayName("JSON: Should throw exception on null object")
void testJsonSerializeNull() {
assertThrows(IllegalArgumentException.class, () -> {
jsonSerializer.serialize(null);
});
}
@Test
@DisplayName("JSON: Should throw exception on null data")
void testJsonDeserializeNull() {
assertThrows(IllegalArgumentException.class, () -> {
jsonSerializer.deserialize(null, Vehicle.class);
});
}
@Test
@DisplayName("JSON: Should throw exception on invalid JSON")
void testJsonDeserializeInvalid() {
byte[] invalidData = "{ invalid json }".getBytes();
assertThrows(SerializationException.class, () -> {
jsonSerializer.deserialize(invalidData, Vehicle.class);
});
}
@Test
@DisplayName("JSON: Should preserve data integrity for complex objects")
void testDataIntegrity() throws SerializationException {
// Create a more complex vehicle
Vehicle vehicle = new Vehicle("V999", VehicleType.HEAVY, 100.5,
Arrays.asList("Cr1", "Cr2", "Cr3", "Cr4", "Cr5", "S"));
vehicle.addWaitingTime(10.5);
vehicle.addWaitingTime(5.3);
vehicle.addCrossingTime(2.1);
vehicle.advanceRoute();
vehicle.advanceRoute();
// Serialize and deserialize
byte[] jsonData = jsonSerializer.serialize(vehicle);
Vehicle deserialized = jsonSerializer.deserialize(jsonData, Vehicle.class);
// Verify all fields match
assertEquals(vehicle.getId(), deserialized.getId());
assertEquals(vehicle.getType(), deserialized.getType());
assertEquals(vehicle.getTotalWaitingTime(), deserialized.getTotalWaitingTime());
assertEquals(vehicle.getCurrentRouteIndex(), deserialized.getCurrentRouteIndex());
}
// ===== Factory Tests =====
@Test
@DisplayName("Factory: Should create JSON serializer by default")
void testFactoryDefault() {
MessageSerializer serializer = SerializerFactory.createDefault();
assertNotNull(serializer);
assertEquals("JSON (Gson)", serializer.getName());
}
}

Binary file not shown.

Binary file not shown.