78 Commits

Author SHA1 Message Date
ea33d61a9e removed tests 2025-12-05 02:42:31 +00:00
240563419b removed empty impl test files 2025-12-05 02:38:11 +00:00
90db380f61 Dash editor and DES impl 2025-12-05 02:29:33 +00:00
d28a77b6a4 small fixes + debug 2025-11-29 00:07:53 +00:00
173d9e54ce test: Reduce traffic light coordination test monitoring duration from 60s to 10s 2025-11-23 23:06:08 +00:00
5202032471 feat: Dynamically set simulation log file path using OS temporary directory and remove isSimulationRunning method. 2025-11-23 23:03:07 +00:00
46d148c9d5 Allow manual trigger for publish-release job 2025-11-23 22:23:13 +00:00
0d85d010bf Sync CI with main branch 2025-11-23 22:14:10 +00:00
906e958729 feat: Introduce Launcher class as the application entry point and update pom.xml to use it. 2025-11-23 21:53:52 +00:00
19709f0d7a feat: update main class to sd.dashboard.DashboardUI in pom.xml configurations. 2025-11-23 21:29:38 +00:00
13fa2f877d refactor: improve traffic light queue processing, add graceful intersection shutdown, and remove obsolete event and serialization classes. 2025-11-23 21:23:33 +00:00
96c5680f41 moved start to dashboard + fixed holding queue - looped sleep might be fine in this case + better customization via CSS file 2025-11-22 23:52:51 +00:00
d74517a27b starting the codebase cleanup for final delivery- single process prototype removal 2025-11-22 22:52:01 +00:00
ce7f642246 slight sim change and engine code fomat 2025-11-22 21:45:16 +00:00
8f97aab836 Merge pull request #34 from davidalves04/dev
testing
2025-11-22 21:43:33 +00:00
David Alves
86c0c4b5b3 Add configurable travel times by vehicle type
@0x1eo can u check this pls
2025-11-22 16:18:02 +00:00
6fdcf376b2 i might kms 2025-11-22 00:13:19 +00:00
David Alves
ecb70fa6a2 Merge pull request #33 from davidalves04/17-create-dashboardserver-process
Dashboard Server Implementation
2025-11-19 19:16:50 +00:00
06f079ce5b fix intersections starting independently with no coordination 2025-11-18 14:29:11 +00:00
72893f87ae added dashboard server and built an example implementation for the message protocol 2025-11-14 02:01:51 +00:00
6b94d727e2 shutdown and teardown fixes + incoming connection handler 2025-11-11 17:28:44 +00:00
84cba39597 bullshit fixes 2025-11-06 20:31:59 +00:00
5dc1b40c88 Merge pull request #32 from davidalves04/14-create-trafficlightthread-class
14 create trafficlightthread class
2025-11-06 13:53:12 +00:00
3117bdf332 Merge branch 'dev' into 14-create-trafficlightthread-class 2025-11-06 13:53:01 +00:00
1140c3ca48 Merge pull request #30 from davidalves04/13-create-exit-node-process
13 create exit node process
2025-11-06 13:49:21 +00:00
Gaa56
484cba1eee Update TrafficLightThread 2025-11-05 13:21:10 +00:00
Gaa56
0e5526c3f6 Merge pull request #31 from davidalves04/dev
Dev
2025-11-05 12:37:48 +00:00
David Alves
cf88db4297 Add traffic light coordination and tests
Sorry to add this on this branch ahah
2025-11-05 12:09:32 +00:00
David Alves
0960a7a141 Add ExitNodeProcess and unit tests 2025-11-05 11:54:34 +00:00
David Alves
3b4f968a59 Merge pull request #29 from davidalves04/12-implement-coordinatorgenerator-process
Coordinator Process Implementation
2025-11-03 00:02:56 +00:00
0c256ad6f5 Fix Intersection Destination - Doubled Advance 2025-11-02 23:56:54 +00:00
340e436063 Merge branch 'dev' into 12-implement-coordinatorgenerator-process 2025-11-02 23:21:36 +00:00
1684a6713e Implementation of the Coordinator Process 2025-11-02 23:17:15 +00:00
22a7081ade Merge pull request #28 from davidalves04/10-create-network-communication-classes
Fix Serialization
2025-11-02 22:39:38 +00:00
3b699556db Merge branch 'dev' into 10-create-network-communication-classes 2025-11-02 22:39:26 +00:00
Gaa56
d078808486 Update SocketConnection 2025-10-30 19:25:27 +00:00
Gaa56
98581b562d Merge pull request #27 from davidalves04/9-design-message-protocol-specification
#10 Req
2025-10-30 18:44:54 +00:00
Gaa56
4710c96450 Create TrafficLightThread Class 2025-10-30 18:06:02 +00:00
f9644bd18c Merge pull request #26 from davidalves04/dev
#12 Req.
2025-10-30 16:09:04 +00:00
David Alves
c6b710ac52 Merge pull request #25 from davidalves04/11-convert-intersection-to-standalone-process
11 convert intersection to standalone process
2025-10-30 16:00:05 +00:00
David Alves
dc4f567e1f Move vehicle route advancement to intersection arrival 2025-10-30 15:57:58 +00:00
David Alves
db5e01021a Refactor IntersectionProcess and add unit tests 2025-10-30 10:41:17 +00:00
David Alves
dab0651dbd Corrected directions 2025-10-29 22:36:58 +00:00
David Alves
4772add574 Merge pull request #24 from davidalves04/dev
Dev
2025-10-27 23:04:15 +00:00
David Alves
ae27115791 Merge pull request #23 from davidalves04/11-convert-intersection-to-standalone-process
Create IntersectionProcess main class
2025-10-27 22:58:55 +00:00
David Alves
684fb408ef Create IntersectionProcess main class 2025-10-27 22:53:37 +00:00
David Alves
d057adeab3 Revert "Enunciado uploaded"
This reverts commit be4e7f66d6.
2025-10-27 22:52:19 +00:00
David Alves
be4e7f66d6 Enunciado uploaded 2025-10-27 18:03:17 +00:00
fd26063f6e Merge pull request #22 from davidalves04/10-create-network-communication-classes
Create network communication classes
2025-10-27 12:29:22 +00:00
Gaa56
d8b59cc502 Deleted MessageSerializer 2025-10-27 09:18:33 +00:00
Gaa56
06c34a198a Removed MessageSerializer 2025-10-27 09:15:33 +00:00
Gaa56
1524188b29 Add connection retry logic 2025-10-26 17:00:34 +00:00
Gaa56
bc1a8da160 Create MessageSerializer utility 2025-10-25 18:00:58 +01:00
Gaa56
96903e4b7c SocketConnection 2025-10-25 17:43:25 +01:00
Gaa56
6c5eab0e72 Create SocketConnection wrapper class 2025-10-25 17:41:55 +01:00
23f7a74798 Add dependency build to CI job 2025-10-24 20:20:15 +01:00
d7dec0d73e Merge pull request #21 from davidalves04/9-design-message-protocol-specification
Mmessage protocol specification
2025-10-24 20:12:18 +01:00
David Alves
534a880e3e Remove unused supports method from MessageSerializer 2025-10-24 12:02:03 +01:00
David Alves
ba3233eae1 Java serialization removed 2025-10-23 22:44:25 +01:00
David Alves
d20040835c README 2025-10-23 20:28:43 +01:00
David Alves
2399b4b472 Delete main/docs directory 2025-10-23 20:22:53 +01:00
David Alves
974debf7db Design serialization format
JSON
2025-10-23 20:08:26 +01:00
8e95bc4c01 Testing job 2025-10-23 00:46:52 +01:00
33ed84b0c2 Enhance Maven workflow with release publishing
Added a publish-release job to create a GitHub release with the built JAR file when a tag is pushed.
2025-10-23 00:36:13 +01:00
9093b13c5d Rollback
Oops
2025-10-23 00:27:37 +01:00
12b7aabe87 Enhance CI workflow with security and dependency checks
Added security scan and dependency review jobs to the workflow.
2025-10-23 00:21:36 +01:00
c30aa25de0 Update Maven workflow to use JDK 17 and improve steps 2025-10-23 00:14:34 +01:00
3689f7a207 Set working directory for dependency graph update
Specify working directory for dependency graph update
2025-10-23 00:08:16 +01:00
bb18c1119e Update Maven build file path to main/pom.xml 2025-10-23 00:02:55 +01:00
f0dbdb551d Add GitHub Actions workflow for Java CI with Maven
This workflow builds a Java project using Maven, caches dependencies, and updates the dependency graph for improved Dependabot alerts.
2025-10-23 00:01:55 +01:00
f519c9aba7 Merge pull request #20 from davidalves04/8-single-process-prototype
Step 2: Single-Process Prototype
2025-10-22 23:51:19 +01:00
1216089e80 Step 2 - Finishing touches 2025-10-22 23:37:27 +01:00
211ea25ca5 Step 2 - Finishing touches 2025-10-22 23:36:41 +01:00
Gaa56
3fe467a2a3 Create MessageProtocol interface 2025-10-22 19:19:28 +01:00
David Alves
af9b091e76 Define message types 2025-10-22 18:43:49 +01:00
David Alves
fc46b9b83b Update SimulationConfig.java
Modification to open properties file.
2025-10-22 15:44:51 +01:00
Leandro Afonso
a7c17ca9b9 proto-doc 2025-10-21 23:00:40 +01:00
Leandro Afonso
1c033880e7 basic core function 2025-10-21 20:26:57 +01:00
56 changed files with 8839 additions and 428 deletions

104
.github/workflows/maven.yml vendored Normal file
View File

@@ -0,0 +1,104 @@
name: Java CI with Maven
on:
workflow_dispatch:
push:
branches: [ "dev", "cleanup" ]
tags:
- 'v*.*.*'
pull_request:
branches: [ "main" ]
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Set up JDK 17
uses: actions/setup-java@v4
with:
java-version: '17'
distribution: 'temurin'
cache: maven
- name: Build with Maven
run: mvn -B package
working-directory: main
- name: Upload built JAR
uses: actions/upload-artifact@v4
with:
name: package
path: main/target/*.jar
- name: Generate dependency graph
run: mvn -B -f main/pom.xml com.github.ferstl:depgraph-maven-plugin:4.0.1:graph
- name: Upload dependency graph artifact
uses: actions/upload-artifact@v4
with:
name: dependency-graph
path: main/target/**
build-windows:
runs-on: windows-latest
steps:
- uses: actions/checkout@v4
- name: Set up JDK 17
uses: actions/setup-java@v4
with:
java-version: '17'
distribution: 'temurin'
cache: maven
- name: Build with Maven (Skip Tests)
run: mvn -B package -DskipTests
working-directory: main
- name: Create JPackage App Image
shell: pwsh
run: |
New-Item -ItemType Directory -Force -Path "dist"
jpackage --name "DTSS" `
--input main/target `
--main-jar main-1.0-SNAPSHOT.jar `
--dest dist `
--type app-image `
--win-console
- name: Inject java.exe
shell: pwsh
run: |
$javaPath = (Get-Command java).Source
Copy-Item -Path $javaPath -Destination "dist/DTSS/runtime/bin/"
- name: Zip Windows Release
shell: pwsh
run: |
Compress-Archive -Path "dist/DTSS" -DestinationPath "dist/DTSS-Windows.zip"
- name: Upload Windows Artifact
uses: actions/upload-artifact@v4
with:
name: windows-package
path: dist/DTSS-Windows.zip
publish-release:
runs-on: ubuntu-latest
needs: [build, build-windows]
if: startsWith(github.ref, 'refs/tags/') || github.event_name == 'workflow_dispatch'
permissions:
contents: write
steps:
- name: Download Linux JAR
uses: actions/download-artifact@v4
with:
name: package
path: main/target/
- name: Download Windows Zip
uses: actions/download-artifact@v4
with:
name: windows-package
path: windows-dist/
- name: Create GitHub Release
uses: softprops/action-gh-release@v2
with:
tag_name: ${{ startsWith(github.ref, 'refs/tags/') && github.ref_name || 'snapshot-build' }}
name: ${{ startsWith(github.ref, 'refs/tags/') && github.ref_name || 'Manual Snapshot Build' }}
draft: false
prerelease: true
make_latest: false
files: |
main/target/*.jar
windows-dist/*.zip

6
.gitignore vendored
View File

@@ -3,6 +3,9 @@
# Log files
*.log
*.trace
logs
*.md
# BlueJ files
*.ctxt
@@ -48,3 +51,6 @@ build/
# Other
*.swp
*.pdf
# JAR built pom file
dependency-reduced-pom.xml

175
TODO.md
View File

@@ -1,175 +0,0 @@
### Compreender os Conceitos Fundamentais
Primeiro, as tecnologias e paradigmas chave necessários para este projeto devem ser totalmente compreendidos.
- **Processos vs. Threads:** O projeto especifica o uso de ambos.
- **Processos (para Cruzamentos)** são programas independentes, cada um com o seu próprio espaço de memória. Em Java, cada cruzamento será provavelmente executado como uma aplicação Java separada (uma instância distinta da JVM).
- **Threads (para Semáforos)** existem _dentro_ de um processo e partilham memória. Isto é adequado para os semáforos, pois eles precisam de ser coordenados e partilhar dados (como filas de veículos) dentro do mesmo cruzamento.
- **Comunicação Entre Processos (IPC - Inter-Process Communication):** Como os cruzamentos são processos separados, é necessário um método para que eles comuniquem. **Sockets** são o método especificado. Quando um veículo sai de um cruzamento (ex: `Cr1`) e vai para outro (ex: `Cr2`), o processo `Cr1` precisa de enviar uma mensagem contendo os dados do veículo para o processo `Cr2` através de uma conexão por socket.
- **Simulação de Eventos Discretos (DES - Discrete-Event Simulation):** Este é o paradigma de simulação que deve ser utilizado. Em vez de o tempo fluir continuamente, o relógio da simulação salta de um evento para o seguinte.
- Um **evento** é um objeto que representa algo que acontece num ponto específico no tempo (ex: "Veículo A chega ao Cr2 no tempo 15.7s").
- Uma **lista de eventos** central, frequentemente uma fila de prioridades, será necessária para armazenar eventos futuros, ordenados pelo seu timestamp. O ciclo principal da simulação retira o próximo evento da lista, processa-o e adiciona quaisquer novos eventos que resultem dele.
- **Processo de Poisson:** Para o modelo "mais realista" de chegadas de veículos, é especificado um processo de Poisson. A principal conclusão é que o tempo _entre_ chegadas consecutivas de veículos segue uma **distribuição exponencial**. Em Java, este intervalo pode ser gerado usando `Math.log(1 - Math.random()) / -lambda`, onde `lambda` (λi) é a taxa de chegada especificada.
---
### Uma Sugestão de Arquitetura de Alto Nível
Abaixo, é apresentada uma possível estrutura para a aplicação distribuída. Pode ser vista como um conjunto de programas independentes que comunicam através de uma rede.
1. **Processo Coordenador/Gerador (1 Processo):**
- **Propósito:** Iniciar a simulação, gerar veículos e gerir o relógio global da simulação ou os critérios de paragem.
- **Responsabilidades:**
- Lê a configuração da simulação (ex: carga de tráfego λi, tempos dos semáforos).
- Gera veículos de acordo com o modelo selecionado (intervalo fixo ou processo de Poisson).
- Atribui a cada novo veículo um percurso com base na distribuição uniforme especificada.
- Injeta o veículo no sistema enviando uma mensagem para o primeiro processo de cruzamento no seu percurso (ex: de um ponto de entrada E1 para Cr1).
2. **Processos de Cruzamento (5 Processos):**
- **Propósito:** Simular cada cruzamento (`Cr1` a `Cr5`) como um processo distinto.
- **Responsabilidades:**
- Escuta por veículos a chegar de outros processos.
- Gere as filas de veículos para os seus semáforos.
- Executa múltiplas **threads de Semáforo** internamente.
- Coordena estas threads para garantir que apenas uma direção de tráfego está aberta a cada momento.
- Quando um veículo atravessa, é encaminhado para o processo seguinte no seu percurso.
- Envia periodicamente as suas estatísticas (ex: comprimentos atuais das filas) para o Servidor do Dashboard.
3. **Processo de Nó de Saída (1 Processo):**
- **Propósito:** Representar o ponto de saída `S` e atuar como um coletor de dados para estatísticas globais.
- **Responsabilidades:**
- Recebe veículos que completaram o seu percurso.
- Calcula métricas globais como o tempo total de viagem (tempo de permanência) para cada veículo.
- Agrega e calcula as estatísticas finais (ex: tempo de viagem mínimo, máximo e médio por tipo de veículo).
- Envia estas estatísticas globais para o Servidor do Dashboard.
4. **Processo do Servidor do Dashboard (1 Processo):**
- **Propósito:** Agregar e exibir todos os dados da simulação em tempo real.
- **Responsabilidades:**
- Abre um socket de servidor e escuta por dados a chegar de todos os processos de Cruzamento e de Saída.
- Armazena e atualiza as estatísticas à medida que chegam.
- Apresenta os dados numa interface de utilizador, que deve exibir métricas e ser atualizada durante a simulação.
---
### Plano
Nem tudo deve ser construído de uma só vez. Os seguintes passos incrementais são recomendados.
#### **Passo 1: Modelação e Classes Principais (Não-distribuído)**
Antes de escrever qualquer lógica complexa, as estruturas de dados devem ser definidas. Devem ser criados Plain Old Java Objects (POJOs) para:
- `Veiculo`: Com atributos como um identificador único, tipo, tempo de entrada e o percurso realizado. Deve ser tornado `Serializable` para que possa ser enviado através de sockets.
- `Evento`: Com atributos como um timestamp e o tipo de evento (ex: `VEHICLE_ARRIVAL`), bem como dados associados.
- `Semaforo`: Para conter o seu estado (`VERDE`/`VERMELHO`) e a fila de veículos.
- `Cruzamento`: Para conter os seus semáforos e a lógica operacional.
#### **Passo 2: Construir um Protótipo de Processo Único**
Este é um passo crucial. Sockets e processos devem ser deixados de lado por agora para construir toda a simulação numa única aplicação Java.
- Deve ser criado um ciclo de simulação central baseado numa fila de prioridades para objetos `Evento`.
- Todos os objetos `Cruzamento` e `Semaforo` devem ser instanciados.
- A lógica principal deve ser tornada funcional: veículos a moverem-se entre filas, semáforos a mudar de estado e estatísticas básicas a serem recolhidas.
- **Objetivo:** Uma simulação totalmente funcional e não-distribuída. Isto torna a depuração significativamente mais fácil.
#### **Passo 3: Distribuir os Cruzamentos**
O protótipo pode agora ser convertido num sistema distribuído.
- A classe `Cruzamento` deve ser tornada executável como uma aplicação Java autónoma (com um método `main`). Serão lançadas cinco instâncias, uma para cada cruzamento.
- Devem ser configurados sockets TCP para comunicação. Cada processo de cruzamento precisa de saber o endereço/porta dos vizinhos para os quais pode enviar veículos.
- Um **protocolo de comunicação** claro deve ser definido. Por exemplo, quando `Cr1` envia um veículo para `Cr2`, o objeto `Veiculo` é serializado e escrito no socket conectado a `Cr2`. O processo `Cr2` terá uma thread dedicada para escutar estas conexões de entrada.
#### **Passo 4: Implementar as Threads dos Semáforos**
Dentro de cada processo `Cruzamento`, os semáforos devem ser implementados como threads.
- O principal desafio aqui é a **sincronização**. As threads dos semáforos num único cruzamento partilham as filas de veículos.
- As ferramentas de concorrência do Java (como `synchronized`, `ReentrantLock`, `Semaphore`) devem ser usadas para garantir que apenas um semáforo pode estar verde para um percurso conflituante e que o acesso às filas partilhadas é seguro (thread-safe).
#### **Passo 5: Implementar o Dashboard**
- O processo `DashboardServer` deve ser criado. Ele irá escutar numa porta específica por estatísticas a chegar.
- Nos processos `Cruzamento` e `Saida`, deve ser adicionado um mecanismo para enviar periodicamente um resumo das suas estatísticas atuais para o Servidor do Dashboard.
- A UI deve ser construída para exibir estes dados em tempo real.
#### **Passo 6: Testes e Análise**
Assim que o sistema completo estiver a funcionar, as experiências exigidas pela descrição do projeto podem ser realizadas.
- A simulação deve ser executada com diferentes taxas de chegada de veículos para simular cargas baixas, médias e altas.
- Diferentes políticas de temporização dos semáforos devem ser testadas para medir o seu impacto no congestionamento.
- Diferentes algoritmos de seleção de percurso e o seu impacto no desempenho do sistema devem ser avaliados.
- Para cada cenário, a simulação deve ser executada várias vezes para recolher estatísticas fiáveis (médias, desvios padrão, intervalos de confiança), conforme solicitado.
#### **Passo 7: Escrever o Relatório**
À medida que cada passo é concluído, deve ser documentado. Isto tornará a escrita do relatório final muito mais fácil. Todos os pontos mencionados nas secções "Entrega" e "Critérios de Avaliação" devem ser abordados.
---
### OBS:
- **Começar de Forma Simples:** O protótipo de processo único (Passo 2) evitará grandes dificuldades mais tarde.
- **Protocolo de Comunicação:** O protocolo de mensagens deve ser definido o mais cedo possível. A informação exata que um processo envia para outro deve ser clara//simples//consistente.
- **Debugging:** Debugging de sistemas distribuídos podem ser difíceis. Uma framework de logging (como Log4j 2 ou SLF4J) pode ser usada para registar eventos//alterações de estado nos diferentes processos.
- **Configuração:** Valores como endereços IP, números de porta ou parâmetros da simulação não devem ser "hardcoded". Um ficheiro de configuração (ex: um ficheiro `.properties` ou `.json`) torna a aplicação mais fácil de executar e testar.

View File

@@ -11,6 +11,79 @@
<properties>
<maven.compiler.source>17</maven.compiler.source>
<maven.compiler.target>17</maven.compiler.target>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<!-- JUnit 5 for testing -->
<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter</artifactId>
<version>5.10.0</version>
<scope>test</scope>
</dependency>
<!-- Gson for JSON serialization -->
<dependency>
<groupId>com.google.code.gson</groupId>
<artifactId>gson</artifactId>
<version>2.10.1</version>
</dependency>
<!-- JavaFX for UI -->
<dependency>
<groupId>org.openjfx</groupId>
<artifactId>javafx-controls</artifactId>
<version>17.0.2</version>
</dependency>
<dependency>
<groupId>org.openjfx</groupId>
<artifactId>javafx-fxml</artifactId>
<version>17.0.2</version>
</dependency>
</dependencies>
<build>
<plugins>
<!-- Maven Exec Plugin for running examples -->
<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>exec-maven-plugin</artifactId>
<version>3.1.0</version>
<configuration>
<mainClass>sd.dashboard.Launcher</mainClass>
</configuration>
</plugin>
<!-- JavaFX Maven Plugin -->
<plugin>
<groupId>org.openjfx</groupId>
<artifactId>javafx-maven-plugin</artifactId>
<version>0.0.8</version>
<configuration>
<mainClass>sd.dashboard.Launcher</mainClass>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>3.5.2</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass>sd.dashboard.Launcher</mainClass>
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>

View File

@@ -1,7 +0,0 @@
package sd;
public class Entry {
public static void main(String[] args) {
System.out.println("Hello, World!");
}
}

View File

@@ -0,0 +1,557 @@
package sd;
import java.io.IOException;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
import sd.config.SimulationConfig;
import sd.coordinator.SocketClient;
import sd.dashboard.StatsUpdatePayload;
import sd.des.DESEventType;
import sd.des.EventQueue;
import sd.des.SimulationClock;
import sd.des.SimulationEvent;
import sd.logging.EventLogger;
import sd.logging.EventType;
import sd.logging.VehicleTracer;
import sd.model.Message;
import sd.model.MessageType;
import sd.model.Vehicle;
import sd.model.VehicleType;
import sd.protocol.MessageProtocol;
import sd.protocol.SocketConnection;
/**
* Destino final de todos os veículos da simulação (nó de saída S).
*
* <p>Opera como sumidouro da rede:
* <ol>
* <li>Recebe veículos que completaram a viagem
* <li>Regista estatísticas finais (tempo total, espera, travessia)
* <li>Envia métricas ao dashboard em tempo real
* </ol>
*
* <p>Participa no DES rastreando eventos, mas opera principalmente
* de forma reativa, aguardando chegadas via socket.
*/
public class ExitNodeProcess {
private final SimulationConfig config;
private ServerSocket serverSocket;
private final ExecutorService connectionHandlerPool;
// DES components
private final SimulationClock clock;
private final EventQueue eventQueue;
private final EventLogger eventLogger;
private Thread eventProcessorThread;
/** Flag de controlo (volatile para visibilidade entre threads) */
private volatile boolean running;
/** Instante de início da simulação (milissegundos) */
private long simulationStartMillis;
/** Contador de veículos que completaram a rota */
private int totalVehiclesReceived;
/** Tempo acumulado no sistema de todos os veículos */
private double totalSystemTime;
/** Tempo acumulado em espera de todos os veículos */
private double totalWaitingTime;
/** Tempo acumulado em travessia de todos os veículos */
private double totalCrossingTime;
/** Contagem de veículos por tipo */
private final Map<VehicleType, Integer> vehicleTypeCount;
/** Tempo de espera acumulado por tipo de veículo */
private final Map<VehicleType, Double> vehicleTypeWaitTime;
/** Cliente socket para envio de estatísticas ao dashboard */
private SocketClient dashboardClient;
/**
* Ponto de entrada do processo.
*
* @param args args[0] (opcional) = caminho do ficheiro de configuração
*/
public static void main(String[] args) {
System.out.println("=".repeat(60));
System.out.println("EXIT NODE PROCESS");
System.out.println("=".repeat(60));
try {
EventLogger.getInstance().log(EventType.PROCESS_STARTED, "ExitNode", "Exit node process started");
String configFile = args.length > 0 ? args[0] : "src/main/resources/simulation.properties";
System.out.println("Loading configuration from: " + configFile);
SimulationConfig config = new SimulationConfig(configFile);
ExitNodeProcess exitNode = new ExitNodeProcess(config);
System.out.println("\n" + "=".repeat(60));
exitNode.initialize();
System.out.println("\n" + "=".repeat(60));
exitNode.start();
} catch (IOException e) {
System.err.println("Failed to start exit node: " + e.getMessage());
EventLogger.getInstance().logError("ExitNode", "Failed to start", e);
System.exit(1);
} catch (Exception e) {
System.err.println("Exit node error: " + e.getMessage());
EventLogger.getInstance().logError("ExitNode", "Exit node error", e);
System.exit(1);
} finally {
EventLogger.getInstance().log(EventType.PROCESS_STOPPED, "ExitNode", "Exit node process stopped");
}
}
/**
* Configura o Nó de Saída.
*
* Inicializamos os nossos contadores, preparamos a pool de threads para tratar
* das ligações de veículos recebidas,
* e configuramos os componentes DES para rastreio de eventos.
*
* @param config A configuração da simulação.
*/
public ExitNodeProcess(SimulationConfig config) {
this.config = config;
this.connectionHandlerPool = Executors.newCachedThreadPool();
this.running = false;
this.totalVehiclesReceived = 0;
this.totalSystemTime = 0.0;
this.totalWaitingTime = 0.0;
this.totalCrossingTime = 0.0;
this.vehicleTypeCount = new HashMap<>();
this.vehicleTypeWaitTime = new HashMap<>();
// Inicializa os counters para cada tipo de veículo
for (VehicleType type : VehicleType.values()) {
vehicleTypeCount.put(type, 0);
vehicleTypeWaitTime.put(type, 0.0);
}
// Initialize DES components
this.clock = new SimulationClock();
this.eventQueue = new EventQueue(true); // Track history
this.eventLogger = EventLogger.getInstance();
eventLogger.log(EventType.PROCESS_STARTED, "ExitNode",
"Exit node initialized with DES architecture");
System.out.println("Exit node initialized (DES Mode)");
System.out.println(" - Exit port: " + config.getExitPort());
System.out.println(" - Dashboard: " + config.getDashboardHost() + ":" + config.getDashboardPort());
}
/**
* Tenta estabelecer uma ligação ao dashboard.
* Se for bem-sucedido, poderemos enviar estatísticas em tempo real. Se não,
* apenas registamos localmente.
*/
public void initialize() {
System.out.println("Connecting to dashboard...");
try {
String host = config.getDashboardHost();
int port = config.getDashboardPort();
dashboardClient = new SocketClient("Dashboard", host, port);
dashboardClient.connect();
System.out.println("Successfully connected to dashboard");
} catch (IOException e) {
System.err.println("WARNING: Failed to connect to dashboard: " + e.getMessage());
System.err.println("Exit node will continue without dashboard connection");
}
}
/**
* Starts the DES event processing thread.
* Currently, ExitNode is primarily reactive (receives vehicles via network),
* but maintains event queue for potential scheduled events and history
* tracking.
*/
private void startEventProcessor() {
eventProcessorThread = new Thread(() -> {
eventLogger.log(EventType.SIMULATION_STARTED, "ExitNode",
"Event processor thread started");
// Keep running while process is active
while (running) {
SimulationEvent event = eventQueue.poll();
if (event == null) {
// No events currently, wait before checking again
try {
Thread.sleep(100);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
break;
}
continue;
}
// Advance clock to event time
clock.advanceTo(event.getTimestamp());
// Process the event
processEvent(event);
}
eventLogger.log(EventType.SIMULATION_STOPPED, "ExitNode",
String.format("Event processor thread terminated at time %.2f", clock.getCurrentTime()));
}, "EventProcessor-ExitNode");
eventProcessorThread.start();
}
/**
* Processes a discrete event based on its type.
* Currently supports VEHICLE_EXIT and SIMULATION_END events.
*/
private void processEvent(SimulationEvent event) {
try {
switch (event.getType()) {
case VEHICLE_EXIT:
// Vehicle exits are handled via network messages in real-time
// This event type can be used for scheduled vehicle processing
break;
case SIMULATION_END:
handleSimulationEndEvent(event);
break;
default:
System.err.println("[ExitNode] Unknown event type: " + event.getType());
}
} catch (Exception e) {
System.err.println("[ExitNode] Error processing event " + event.getType() +
" at time " + event.getTimestamp() + ": " + e.getMessage());
e.printStackTrace();
}
}
/**
* Handles simulation end event.
*/
private void handleSimulationEndEvent(SimulationEvent event) {
eventLogger.log(EventType.SIMULATION_STOPPED, "ExitNode",
String.format("Simulation ended at time %.2f", event.getTimestamp()));
running = false;
// Print final statistics
printFinalStatistics();
}
/**
* Exports the complete event history for the exit node.
* This satisfies the spec requirement: "Deve ser possível verificar a lista
* completa de eventos"
*/
public void exportEventHistory(String outputPath) {
String history = eventQueue.exportEventHistory();
try (java.io.PrintWriter writer = new java.io.PrintWriter(outputPath)) {
writer.println(history);
System.out.println("[ExitNode] Event history exported to: " + outputPath);
} catch (java.io.FileNotFoundException e) {
System.err.println("[ExitNode] Failed to export event history: " + e.getMessage());
}
}
/**
* Schedules a simulation end event at the specified time.
*
* @param endTime The simulation time when the simulation should end
*/
public void scheduleSimulationEnd(double endTime) {
SimulationEvent endEvent = new SimulationEvent(
endTime,
DESEventType.SIMULATION_END,
null);
eventQueue.schedule(endEvent);
System.out.println("[ExitNode] Simulation end scheduled at time " + endTime);
}
/**
* Abre o socket do servidor e começa a escutar por veículos.
*
* Este é o loop principal. Aceitamos ligações das interseções (de onde vêm os
* veículos)
* e passamo-las para a nossa pool de threads para processamento.
*
* @throws IOException Se não conseguirmos fazer bind à porta.
*/
public void start() throws IOException {
start(true); // Default to DES mode
}
/**
* Starts the exit node process.
*
* @param useDES If true, starts event processor for DES mode tracking
*/
public void start(boolean useDES) throws IOException {
int port = config.getExitPort();
serverSocket = new ServerSocket(port);
running = true;
simulationStartMillis = System.currentTimeMillis();
System.out.println("Exit node started on port " + port);
if (useDES) {
// Note: ExitNode is primarily reactive (network-driven), but maintains
// event queue for simulation end events and history tracking
System.out.println("Running in DES mode (event history tracking enabled)");
}
System.out.println("Waiting for vehicles...\\n");
while (running) {
try {
Socket clientSocket = serverSocket.accept();
connectionHandlerPool.submit(() -> handleIncomingConnection(clientSocket));
} catch (IOException e) {
if (running) {
System.err.println("Error accepting connection: " + e.getMessage());
}
}
}
}
/**
* Trata uma ligação de uma interseção.
*
* Mantemos a ligação aberta e escutamos por mensagens `VEHICLE_TRANSFER`.
* Cada mensagem contém um veículo que acabou de terminar a sua viagem.
*
* @param clientSocket O socket ligado à interseção.
*/
private void handleIncomingConnection(Socket clientSocket) {
String clientAddress = clientSocket.getInetAddress().getHostAddress();
System.out.println("New connection accepted from " + clientAddress);
try (SocketConnection connection = new SocketConnection(clientSocket)) {
while (running && connection.isConnected()) {
try {
System.out.println("[Exit] Waiting for message from " + clientAddress);
MessageProtocol message = connection.receiveMessage();
System.out.println("[Exit] Received message type: " + message.getType() +
" from " + message.getSourceNode());
if (message.getType() == MessageType.SIMULATION_START) {
// Coordinator sends start time - use it instead of our local start
simulationStartMillis = ((Number) message.getPayload()).longValue();
System.out.println("[Exit] Simulation start time synchronized");
} else if (message.getType() == MessageType.VEHICLE_TRANSFER) {
Object payload = message.getPayload();
System.out.println("[Exit] Payload type: " + payload.getClass().getName());
// Handle Gson LinkedHashMap
Vehicle vehicle;
if (payload instanceof com.google.gson.internal.LinkedTreeMap ||
payload instanceof java.util.LinkedHashMap) {
String json = new com.google.gson.Gson().toJson(payload);
vehicle = new com.google.gson.Gson().fromJson(json, Vehicle.class);
} else {
vehicle = (Vehicle) payload;
}
processExitingVehicle(vehicle);
}
} catch (ClassNotFoundException e) {
System.err.println("[Exit] Unknown message type: " + e.getMessage());
e.printStackTrace();
} catch (Exception e) {
System.err.println("[Exit] Error processing message: " + e.getMessage());
e.printStackTrace();
}
}
System.out.println("[Exit] Connection closed from " + clientAddress);
} catch (IOException e) {
if (running) {
System.err.println("[Exit] Connection error from " + clientAddress + ": " + e.getMessage());
e.printStackTrace();
}
}
}
/**
* Processa um veículo que acabou de sair do sistema.
*
* Calculamos quanto tempo demorou, atualizamos as nossas estatísticas globais e
* notificamos o dashboard.
* Este método é sincronizado porque múltiplos veículos podem chegar ao mesmo
* tempo.
*
* @param vehicle O veículo que completou a sua rota.
*/
private synchronized void processExitingVehicle(Vehicle vehicle) {
totalVehiclesReceived++;
// Use simulation time instead of wall-clock time
// System time = total time vehicle spent in system (wait + crossing times)
// This represents the actual simulation time elapsed, not real-time
double waitTime = vehicle.getTotalWaitingTime();
double crossingTime = vehicle.getTotalCrossingTime();
double systemTime = waitTime + crossingTime;
// Store times in seconds, will be converted to ms when sending to dashboard
totalSystemTime += systemTime;
totalWaitingTime += waitTime;
totalCrossingTime += crossingTime;
VehicleType type = vehicle.getType();
vehicleTypeCount.put(type, vehicleTypeCount.get(type) + 1);
vehicleTypeWaitTime.put(type, vehicleTypeWaitTime.get(type) + waitTime);
System.out.printf("[Exit] Vehicle %s completed (type=%s, system_time=%.2fs, wait=%.2fs, crossing=%.2fs)%n",
vehicle.getId(), vehicle.getType(), systemTime, waitTime, crossingTime);
// Log vehicle exit
EventLogger.getInstance().logVehicle(EventType.VEHICLE_EXITED, "ExitNode", vehicle.getId(),
String.format("Completed - System: %.2fs, Wait: %.2fs, Crossing: %.2fs", systemTime, waitTime,
crossingTime));
// Complete vehicle trace if tracking
VehicleTracer.getInstance().logExit(vehicle, systemTime);
// Send stats after every vehicle to ensure dashboard updates quickly
sendStatsToDashboard();
}
/**
* Envia as estatísticas mais recentes para o dashboard.
*
* Empacotamos as contagens totais e os tempos médios num `StatsUpdatePayload`
* e enviamo-lo.
*/
private void sendStatsToDashboard() {
if (dashboardClient == null || !dashboardClient.isConnected()) {
return;
}
try {
// Create stats payload
StatsUpdatePayload payload = new StatsUpdatePayload();
// Set global stats - convert seconds to milliseconds
payload.setTotalVehiclesCompleted(totalVehiclesReceived);
payload.setTotalSystemTime((long) (totalSystemTime * 1000.0)); // s -> ms
payload.setTotalWaitingTime((long) (totalWaitingTime * 1000.0)); // s -> ms
// Set intersection-like stats so it shows up correctly in the dashboard table
payload.setIntersectionArrivals(totalVehiclesReceived);
payload.setIntersectionDepartures(totalVehiclesReceived);
payload.setIntersectionQueueSize(0);
// Set vehicle type stats
Map<VehicleType, Integer> typeCounts = new HashMap<>();
Map<VehicleType, Long> typeWaitTimes = new HashMap<>();
for (VehicleType type : VehicleType.values()) {
typeCounts.put(type, vehicleTypeCount.get(type));
typeWaitTimes.put(type, (long) (vehicleTypeWaitTime.get(type) * 1000.0)); // s -> ms
}
payload.setVehicleTypeCounts(typeCounts);
payload.setVehicleTypeWaitTimes(typeWaitTimes);
// Send message
Message message = new Message(
MessageType.STATS_UPDATE,
"ExitNode",
"Dashboard",
payload);
dashboardClient.send(message);
double avgWait = totalVehiclesReceived > 0 ? totalWaitingTime / totalVehiclesReceived : 0.0;
System.out.printf("[Exit] Sent stats to dashboard (total=%d, avg_wait=%.2fs)%n",
totalVehiclesReceived, avgWait);
} catch (Exception e) {
System.err.println("[Exit] Failed to send stats to dashboard: " + e.getMessage());
}
}
/**
* Encerra graciosamente o processo.
*
* Imprimimos as estatísticas finais, fechamos ligações e limpamos threads.
*/
public void shutdown() {
System.out.println("\n[Exit] Shutting down...");
running = false;
printFinalStatistics();
sendStatsToDashboard();
try {
if (serverSocket != null && !serverSocket.isClosed()) {
serverSocket.close();
}
} catch (IOException e) {
System.err.println("Error closing server socket: " + e.getMessage());
}
connectionHandlerPool.shutdown();
try {
if (!connectionHandlerPool.awaitTermination(5, TimeUnit.SECONDS)) {
connectionHandlerPool.shutdownNow();
}
} catch (InterruptedException e) {
connectionHandlerPool.shutdownNow();
}
if (dashboardClient != null) {
dashboardClient.close();
}
System.out.println("[Exit] Shutdown complete.");
System.out.println("=".repeat(60));
}
/**
* Imprime um resumo dos resultados da simulação na consola.
* Isto dá-nos uma visão rápida de como a simulação correu (médias, contagens de
* veículos, etc.).
*/
private void printFinalStatistics() {
System.out.println("\n=== EXIT NODE STATISTICS ===");
System.out.printf("Total Vehicles Completed: %d%n", totalVehiclesReceived);
if (totalVehiclesReceived > 0) {
System.out.printf("%nAVERAGE METRICS:%n");
System.out.printf(" System Time: %.2f seconds%n", totalSystemTime / totalVehiclesReceived);
System.out.printf(" Waiting Time: %.2f seconds%n", totalWaitingTime / totalVehiclesReceived);
System.out.printf(" Crossing Time: %.2f seconds%n", totalCrossingTime / totalVehiclesReceived);
}
System.out.println("\nVEHICLE TYPE DISTRIBUTION:");
for (VehicleType type : VehicleType.values()) {
int count = vehicleTypeCount.get(type);
if (count > 0) {
double percentage = (count * 100.0) / totalVehiclesReceived;
double avgWait = vehicleTypeWaitTime.get(type) / count;
System.out.printf(" %s: %d (%.1f%%), Avg Wait: %.2fs%n",
type, count, percentage, avgWait);
}
}
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,223 @@
package sd.analysis;
import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;
import java.text.SimpleDateFormat;
import java.util.*;
import sd.model.VehicleType;
/**
* Executes multiple simulation runs and aggregates results.
* Calculates statistical measures including mean, standard deviation,
* and confidence intervals across all runs.
*/
public class MultiRunAnalyzer {
private final List<SimulationRunResult> results;
private final String configurationFile;
public MultiRunAnalyzer(String configurationFile) {
this.configurationFile = configurationFile;
this.results = new ArrayList<>();
}
/**
* Adds a completed simulation run result.
*/
public void addResult(SimulationRunResult result) {
results.add(result);
}
/**
* Gets the number of completed runs.
*/
public int getRunCount() {
return results.size();
}
/**
* Generates a comprehensive statistical report.
*/
public String generateReport() {
if (results.isEmpty()) {
return "No simulation results to analyze.";
}
StringBuilder report = new StringBuilder();
// Header
report.append("=".repeat(80)).append("\n");
report.append("MULTI-RUN STATISTICAL ANALYSIS\n");
report.append("=".repeat(80)).append("\n");
report.append("Configuration: ").append(configurationFile).append("\n");
report.append("Number of Runs: ").append(results.size()).append("\n");
report.append("Analysis Date: ").append(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date())).append("\n");
report.append("\n");
// Global metrics
report.append("-".repeat(80)).append("\n");
report.append("GLOBAL METRICS\n");
report.append("-".repeat(80)).append("\n\n");
report.append(analyzeMetric("Vehicles Generated",
extractValues(r -> (double) r.getTotalVehiclesGenerated())));
report.append("\n");
report.append(analyzeMetric("Vehicles Completed",
extractValues(r -> (double) r.getTotalVehiclesCompleted())));
report.append("\n");
report.append(analyzeMetric("Completion Rate (%)",
extractValues(r -> r.getTotalVehiclesGenerated() > 0
? 100.0 * r.getTotalVehiclesCompleted() / r.getTotalVehiclesGenerated()
: 0.0)));
report.append("\n");
report.append(analyzeMetric("Average System Time (seconds)",
extractValues(r -> r.getAverageSystemTime())));
report.append("\n");
report.append(analyzeMetric("Average Waiting Time (seconds)",
extractValues(r -> r.getAverageWaitingTime())));
report.append("\n");
// Per-vehicle-type analysis
report.append("\n");
report.append("-".repeat(80)).append("\n");
report.append("PER-VEHICLE-TYPE ANALYSIS\n");
report.append("-".repeat(80)).append("\n\n");
for (VehicleType type : VehicleType.values()) {
report.append("--- ").append(type).append(" ---\n");
report.append(analyzeMetric(" Vehicle Count",
extractValues(r -> (double) r.getVehicleCountByType().getOrDefault(type, 0))));
report.append("\n");
report.append(analyzeMetric(" Avg System Time (seconds)",
extractValues(r -> r.getAvgSystemTimeByType().getOrDefault(type, 0.0))));
report.append("\n");
report.append(analyzeMetric(" Avg Waiting Time (seconds)",
extractValues(r -> r.getAvgWaitTimeByType().getOrDefault(type, 0.0))));
report.append("\n\n");
}
// Per-intersection analysis
report.append("-".repeat(80)).append("\n");
report.append("PER-INTERSECTION ANALYSIS\n");
report.append("-".repeat(80)).append("\n\n");
Set<String> allIntersections = new TreeSet<>();
for (SimulationRunResult result : results) {
allIntersections.addAll(result.getMaxQueueSizeByIntersection().keySet());
}
for (String intersection : allIntersections) {
report.append("--- ").append(intersection).append(" ---\n");
report.append(analyzeMetric(" Max Queue Size",
extractValues(r -> (double) r.getMaxQueueSizeByIntersection().getOrDefault(intersection, 0))));
report.append("\n");
report.append(analyzeMetric(" Avg Queue Size",
extractValues(r -> r.getAvgQueueSizeByIntersection().getOrDefault(intersection, 0.0))));
report.append("\n");
report.append(analyzeMetric(" Vehicles Processed",
extractValues(r -> (double) r.getVehiclesProcessedByIntersection().getOrDefault(intersection, 0))));
report.append("\n\n");
}
// Individual run summaries
report.append("-".repeat(80)).append("\n");
report.append("INDIVIDUAL RUN SUMMARIES\n");
report.append("-".repeat(80)).append("\n\n");
for (SimulationRunResult result : results) {
report.append(result.toString()).append("\n\n");
}
report.append("=".repeat(80)).append("\n");
report.append("END OF REPORT\n");
report.append("=".repeat(80)).append("\n");
return report.toString();
}
/**
* Analyzes a single metric and returns formatted statistics.
*/
private String analyzeMetric(String metricName, List<Double> values) {
if (values.isEmpty() || values.stream().allMatch(v -> v == 0.0)) {
return metricName + ": No data\n";
}
double mean = StatisticalAnalysis.mean(values);
double stdDev = StatisticalAnalysis.standardDeviation(values);
double[] ci = StatisticalAnalysis.confidenceInterval95(values);
double min = StatisticalAnalysis.min(values);
double max = StatisticalAnalysis.max(values);
double median = StatisticalAnalysis.median(values);
return String.format(
"%s:\n" +
" Mean: %10.2f Std Dev: %10.2f\n" +
" Median: %10.2f 95%% CI: [%.2f, %.2f]\n" +
" Min: %10.2f Max: %10.2f\n",
metricName, mean, stdDev, median, ci[0], ci[1], min, max
);
}
/**
* Extracts values using a lambda function.
*/
private List<Double> extractValues(java.util.function.Function<SimulationRunResult, Double> extractor) {
List<Double> values = new ArrayList<>();
for (SimulationRunResult result : results) {
values.add(extractor.apply(result));
}
return values;
}
/**
* Saves the report to a file.
*/
public void saveReport(String filename) throws IOException {
try (PrintWriter writer = new PrintWriter(new BufferedWriter(new FileWriter(filename)))) {
writer.print(generateReport());
}
}
/**
* Generates a CSV summary for easy import into spreadsheet tools.
*/
public void saveCSVSummary(String filename) throws IOException {
try (PrintWriter writer = new PrintWriter(new BufferedWriter(new FileWriter(filename)))) {
// Header
writer.println("Run,VehiclesGenerated,VehiclesCompleted,CompletionRate," +
"AvgSystemTime,AvgWaitingTime,MinSystemTime,MaxSystemTime");
// Data rows
for (SimulationRunResult result : results) {
double completionRate = result.getTotalVehiclesGenerated() > 0
? 100.0 * result.getTotalVehiclesCompleted() / result.getTotalVehiclesGenerated()
: 0.0;
writer.printf("%d,%d,%d,%.2f,%.2f,%.2f,%.2f,%.2f\n",
result.getRunNumber(),
result.getTotalVehiclesGenerated(),
result.getTotalVehiclesCompleted(),
completionRate,
result.getAverageSystemTime(),
result.getAverageWaitingTime(),
result.getMinSystemTime(),
result.getMaxSystemTime()
);
}
}
}
}

View File

@@ -0,0 +1,172 @@
package sd.analysis;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.text.SimpleDateFormat;
import java.util.Date;
/**
* Orquestra múltiplas execuções de simulação para análise estatística.
*
* Em vez de correr uma única simulação manualmente, esta ferramenta permite
* correr um "lote"
* de N simulações consecutivas. Isto é essencial para recolher dados
* estatisticamente significativos
* (calcular intervalos de confiança, etc.) conforme exigido pelas
* especificações do projeto.
*
* Utilização:
* java sd.analysis.SimulationBatchRunner <ficheiro-config> <num-execucoes>
* <dir-saida>
*/
public class SimulationBatchRunner {
public static void main(String[] args) {
if (args.length < 3) {
System.err.println("Usage: SimulationBatchRunner <config-file> <num-runs> <output-dir>");
System.err.println("Example: SimulationBatchRunner simulation-medium.properties 10 results/medium");
System.exit(1);
}
String configFile = args[0];
int numRuns;
String outputDir = args[2];
try {
numRuns = Integer.parseInt(args[1]);
if (numRuns < 1 || numRuns > 100) {
throw new IllegalArgumentException("Number of runs must be between 1 and 100");
}
} catch (NumberFormatException e) {
System.err.println("Error: Invalid number of runs: " + args[1]);
System.exit(1);
return;
}
System.out.println("=".repeat(80));
System.out.println("SIMULATION BATCH RUNNER");
System.out.println("=".repeat(80));
System.out.println("Configuration: " + configFile);
System.out.println("Number of Runs: " + numRuns);
System.out.println("Output Directory: " + outputDir);
System.out.println("=".repeat(80));
System.out.println();
// Create output directory
try {
Files.createDirectories(Paths.get(outputDir));
} catch (IOException e) {
System.err.println("Failed to create output directory: " + e.getMessage());
System.exit(1);
}
MultiRunAnalyzer analyzer = new MultiRunAnalyzer(configFile);
// Execute runs
for (int i = 1; i <= numRuns; i++) {
System.out.println("\n" + "=".repeat(80));
System.out.println("STARTING RUN " + i + " OF " + numRuns);
System.out.println("=".repeat(80));
SimulationRunResult result = executeSimulationRun(i, configFile, outputDir);
if (result != null) {
analyzer.addResult(result);
System.out.println("\n" + result);
} else {
System.err.println("Run " + i + " failed!");
}
// Pause between runs
if (i < numRuns) {
System.out.println("\nWaiting 10 seconds before next run...");
try {
Thread.sleep(10000);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
break;
}
}
}
// Generate reports
System.out.println("\n\n" + "=".repeat(80));
System.out.println("ALL RUNS COMPLETE - GENERATING REPORTS");
System.out.println("=".repeat(80));
try {
String timestamp = new SimpleDateFormat("yyyyMMdd-HHmmss").format(new Date());
String reportFile = outputDir + "/analysis-report-" + timestamp + ".txt";
String csvFile = outputDir + "/summary-" + timestamp + ".csv";
analyzer.saveReport(reportFile);
analyzer.saveCSVSummary(csvFile);
System.out.println("\nReports generated:");
System.out.println(" - Analysis Report: " + reportFile);
System.out.println(" - CSV Summary: " + csvFile);
System.out.println();
// Print report to console
System.out.println(analyzer.generateReport());
} catch (IOException e) {
System.err.println("Failed to generate reports: " + e.getMessage());
e.printStackTrace();
}
}
/**
* Executa uma única instância da simulação.
*
* Idealmente, este método iniciaria todos os processos necessários
* (Interseções, Nó de Saída, Coordenador),
* esperaria que terminassem e depois recolheria os resultados.
*
* Atualmente, serve como um espaço reservado estrutural para demonstrar como
* funciona o pipeline de análise.
* Para correr uma simulação real, deve iniciar os componentes manualmente ou
* usar um script shell.
*/
private static SimulationRunResult executeSimulationRun(int runNumber, String configFile, String outputDir) {
SimulationRunResult result = new SimulationRunResult(runNumber, configFile);
try {
// TODO: Implement actual simulation execution
// This would involve:
// 1. Starting intersection processes
// 2. Starting exit node process
// 3. Starting dashboard process
// 4. Running coordinator
// 5. Collecting results from dashboard/exit node
// 6. Shutting down all processes
System.out.println("NOTE: Actual simulation execution not yet implemented.");
System.out.println("This batch runner demonstrates the framework structure.");
System.out.println("To run actual simulations, you need to:");
System.out.println(" 1. Start all intersection processes manually");
System.out.println(" 2. Start exit node process");
System.out.println(" 3. Start dashboard process");
System.out.println(" 4. Run coordinator with the configuration file");
System.out.println(" 5. Results will be collected automatically");
// Placeholder: simulate some results
// In real implementation, these would be collected from the actual simulation
result.setTotalVehiclesGenerated(100);
result.setTotalVehiclesCompleted(85);
result.setAverageSystemTime(120.5);
result.setMinSystemTime(45.2);
result.setMaxSystemTime(250.8);
result.setAverageWaitingTime(45.3);
return result;
} catch (Exception e) {
System.err.println("Error executing run " + runNumber + ": " + e.getMessage());
e.printStackTrace();
return null;
}
}
}

View File

@@ -0,0 +1,143 @@
package sd.analysis;
import java.util.HashMap;
import java.util.Map;
import sd.model.VehicleType;
/**
* Stores the results of a single simulation run.
* Contains all key metrics for post-simulation analysis.
*/
public class SimulationRunResult {
private final int runNumber;
private final String configurationFile;
private final long startTimeMillis;
private final long endTimeMillis;
// Global metrics
private int totalVehiclesGenerated;
private int totalVehiclesCompleted;
private double averageSystemTime; // seconds
private double minSystemTime; // seconds
private double maxSystemTime; // seconds
private double averageWaitingTime; // seconds
// Per-type metrics
private final Map<VehicleType, Integer> vehicleCountByType;
private final Map<VehicleType, Double> avgSystemTimeByType;
private final Map<VehicleType, Double> avgWaitTimeByType;
// Per-intersection metrics
private final Map<String, Integer> maxQueueSizeByIntersection;
private final Map<String, Double> avgQueueSizeByIntersection;
private final Map<String, Integer> vehiclesProcessedByIntersection;
public SimulationRunResult(int runNumber, String configurationFile) {
this.runNumber = runNumber;
this.configurationFile = configurationFile;
this.startTimeMillis = System.currentTimeMillis();
this.endTimeMillis = 0;
this.vehicleCountByType = new HashMap<>();
this.avgSystemTimeByType = new HashMap<>();
this.avgWaitTimeByType = new HashMap<>();
this.maxQueueSizeByIntersection = new HashMap<>();
this.avgQueueSizeByIntersection = new HashMap<>();
this.vehiclesProcessedByIntersection = new HashMap<>();
}
public void markCompleted() {
// This will be called when the run finishes
}
// Getters
public int getRunNumber() { return runNumber; }
public String getConfigurationFile() { return configurationFile; }
public long getStartTimeMillis() { return startTimeMillis; }
public long getEndTimeMillis() { return endTimeMillis; }
public long getDurationMillis() { return endTimeMillis - startTimeMillis; }
public int getTotalVehiclesGenerated() { return totalVehiclesGenerated; }
public int getTotalVehiclesCompleted() { return totalVehiclesCompleted; }
public double getAverageSystemTime() { return averageSystemTime; }
public double getMinSystemTime() { return minSystemTime; }
public double getMaxSystemTime() { return maxSystemTime; }
public double getAverageWaitingTime() { return averageWaitingTime; }
public Map<VehicleType, Integer> getVehicleCountByType() {
return new HashMap<>(vehicleCountByType);
}
public Map<VehicleType, Double> getAvgSystemTimeByType() {
return new HashMap<>(avgSystemTimeByType);
}
public Map<VehicleType, Double> getAvgWaitTimeByType() {
return new HashMap<>(avgWaitTimeByType);
}
public Map<String, Integer> getMaxQueueSizeByIntersection() {
return new HashMap<>(maxQueueSizeByIntersection);
}
public Map<String, Double> getAvgQueueSizeByIntersection() {
return new HashMap<>(avgQueueSizeByIntersection);
}
public Map<String, Integer> getVehiclesProcessedByIntersection() {
return new HashMap<>(vehiclesProcessedByIntersection);
}
// Setters
public void setTotalVehiclesGenerated(int count) {
this.totalVehiclesGenerated = count;
}
public void setTotalVehiclesCompleted(int count) {
this.totalVehiclesCompleted = count;
}
public void setAverageSystemTime(double time) {
this.averageSystemTime = time;
}
public void setMinSystemTime(double time) {
this.minSystemTime = time;
}
public void setMaxSystemTime(double time) {
this.maxSystemTime = time;
}
public void setAverageWaitingTime(double time) {
this.averageWaitingTime = time;
}
public void setVehicleCountByType(VehicleType type, int count) {
vehicleCountByType.put(type, count);
}
public void setAvgSystemTimeByType(VehicleType type, double time) {
avgSystemTimeByType.put(type, time);
}
public void setAvgWaitTimeByType(VehicleType type, double time) {
avgWaitTimeByType.put(type, time);
}
public void setMaxQueueSize(String intersection, int size) {
maxQueueSizeByIntersection.put(intersection, size);
}
public void setAvgQueueSize(String intersection, double size) {
avgQueueSizeByIntersection.put(intersection, size);
}
public void setVehiclesProcessed(String intersection, int count) {
vehiclesProcessedByIntersection.put(intersection, count);
}
@Override
public String toString() {
return String.format(
"Run #%d [%s]:\n" +
" Generated: %d, Completed: %d (%.1f%%)\n" +
" Avg System Time: %.2fs\n" +
" Avg Waiting Time: %.2fs",
runNumber,
configurationFile,
totalVehiclesGenerated,
totalVehiclesCompleted,
totalVehiclesGenerated > 0 ? 100.0 * totalVehiclesCompleted / totalVehiclesGenerated : 0.0,
averageSystemTime,
averageWaitingTime
);
}
}

View File

@@ -0,0 +1,160 @@
package sd.analysis;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
/**
* Statistical analysis utilities for simulation results.
* Calculates mean, standard deviation, and confidence intervals.
*/
public class StatisticalAnalysis {
/**
* Calculates the mean (average) of a list of values.
*/
public static double mean(List<Double> values) {
if (values == null || values.isEmpty()) {
return 0.0;
}
double sum = 0.0;
for (double value : values) {
sum += value;
}
return sum / values.size();
}
/**
* Calculates the sample standard deviation.
*/
public static double standardDeviation(List<Double> values) {
if (values == null || values.size() < 2) {
return 0.0;
}
double mean = mean(values);
double sumSquaredDiff = 0.0;
for (double value : values) {
double diff = value - mean;
sumSquaredDiff += diff * diff;
}
// Sample standard deviation (n-1 denominator)
return Math.sqrt(sumSquaredDiff / (values.size() - 1));
}
/**
* Calculates the 95% confidence interval for the mean.
* Uses t-distribution for small samples (n < 30).
*
* @return Array of [lowerBound, upperBound]
*/
public static double[] confidenceInterval95(List<Double> values) {
if (values == null || values.size() < 2) {
double m = mean(values);
return new double[]{m, m};
}
double mean = mean(values);
double stdDev = standardDeviation(values);
int n = values.size();
// Critical value from t-distribution (approximation for common sample sizes)
double tCritical = getTCriticalValue(n);
// Standard error of the mean
double standardError = stdDev / Math.sqrt(n);
// Margin of error
double marginOfError = tCritical * standardError;
return new double[]{
mean - marginOfError, // Lower bound
mean + marginOfError // Upper bound
};
}
/**
* Returns the t-critical value for 95% confidence interval.
* Approximations for common degrees of freedom (n-1).
*/
private static double getTCriticalValue(int sampleSize) {
int df = sampleSize - 1; // degrees of freedom
// t-critical values for 95% confidence (two-tailed)
if (df >= 30) return 1.96; // z-score for large samples
if (df >= 20) return 2.086;
if (df >= 15) return 2.131;
if (df >= 10) return 2.228;
if (df >= 5) return 2.571;
if (df >= 3) return 3.182;
if (df >= 2) return 4.303;
return 12.706; // df = 1
}
/**
* Calculates the minimum value.
*/
public static double min(List<Double> values) {
if (values == null || values.isEmpty()) {
return 0.0;
}
return Collections.min(values);
}
/**
* Calculates the maximum value.
*/
public static double max(List<Double> values) {
if (values == null || values.isEmpty()) {
return 0.0;
}
return Collections.max(values);
}
/**
* Calculates the median value.
*/
public static double median(List<Double> values) {
if (values == null || values.isEmpty()) {
return 0.0;
}
List<Double> sorted = new ArrayList<>(values);
Collections.sort(sorted);
int size = sorted.size();
if (size % 2 == 0) {
return (sorted.get(size / 2 - 1) + sorted.get(size / 2)) / 2.0;
} else {
return sorted.get(size / 2);
}
}
/**
* Formats a statistical summary as a string.
*/
public static String formatSummary(String metricName, List<Double> values) {
if (values == null || values.isEmpty()) {
return metricName + ": No data";
}
double mean = mean(values);
double stdDev = standardDeviation(values);
double[] ci = confidenceInterval95(values);
double min = min(values);
double max = max(values);
return String.format(
"%s:\n" +
" Mean: %.2f\n" +
" Std Dev: %.2f\n" +
" 95%% CI: [%.2f, %.2f]\n" +
" Min: %.2f\n" +
" Max: %.2f\n" +
" Samples: %d",
metricName, mean, stdDev, ci[0], ci[1], min, max, values.size()
);
}
}

View File

@@ -3,110 +3,414 @@ package sd.config;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.Reader;
import java.nio.charset.StandardCharsets;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import com.google.gson.Gson;
/**
* Class to load and manage simulation configurations.
* Configurations are read from a .properties file.
* Carrega e gere configurações da simulação.
*
* <p>Lê propriedades de um ficheiro .properties e fornece getters
* type-safe com valores padrão para robustez.
*/
public class SimulationConfig {
private final Properties properties;
/** Propriedades carregadas do ficheiro */
private final Properties properties;
private NetworkConfig networkConfig;
public static class NetworkConfig {
private List<IntersectionConfig> intersections;
public List<IntersectionConfig> getIntersections() {
return intersections;
}
}
public static class IntersectionConfig {
private String id;
private List<String> lights;
private Map<String, String> routes;
public String getId() {
return id;
}
public List<String> getLights() {
return lights;
}
public Map<String, String> getRoutes() {
return routes;
}
}
/**
* Carrega propriedades do ficheiro especificado.
*
* <p>Tenta múltiplas estratégias:
* <ol>
* <li>Caminho direto no sistema de ficheiros
* <li>Recurso no classpath (com normalização automática)
* <li>Recurso no classpath com barra inicial
* </ol>
*
* @param filePath caminho do ficheiro .properties
* @throws IOException se o ficheiro não for encontrado
*/
public SimulationConfig(String filePath) throws IOException {
properties = new Properties();
// List to track all attempted paths for better error reporting
List<String> attemptedPaths = new ArrayList<>();
IOException fileSystemException = null;
// Strategy 1: Try to load directly from file system
try (InputStream input = new FileInputStream(filePath)) {
properties.load(input);
loadNetworkConfig();
return; // Successfully loaded from file system
} catch (IOException e) {
fileSystemException = e;
attemptedPaths.add("File system: " + filePath);
}
// Strategy 2: Try to load from classpath with path normalization
String resourcePath = filePath;
// Remove common src/main/resources prefixes
resourcePath = resourcePath.replace("src/main/resources/", "").replace("src\\main\\resources\\", "");
// Remove classpath: prefix if provided
if (resourcePath.startsWith("classpath:")) {
resourcePath = resourcePath.substring("classpath:".length());
if (resourcePath.startsWith("/")) {
resourcePath = resourcePath.substring(1);
}
}
// Network configurations
// Try loading from classpath using thread context class loader
InputStream resourceStream = Thread.currentThread().getContextClassLoader().getResourceAsStream(resourcePath);
attemptedPaths.add("Classpath (context): " + resourcePath);
if (resourceStream == null) {
// Strategy 3: Try with leading slash
String slashPath = "/" + resourcePath;
resourceStream = SimulationConfig.class.getResourceAsStream(slashPath);
attemptedPaths.add("Classpath (class): " + slashPath);
}
if (resourceStream != null) {
try (InputStream input = resourceStream) {
properties.load(input);
loadNetworkConfig();
return; // Successfully loaded from classpath
} catch (IOException e) {
// Failed to read from classpath resource
throw new IOException(
String.format("Failed to read properties from classpath resource '%s': %s",
resourcePath, e.getMessage()),
e);
}
}
// All strategies failed - provide comprehensive error message
StringBuilder errorMsg = new StringBuilder();
errorMsg.append("Configuration file '").append(filePath).append("' could not be found.\n");
errorMsg.append("Attempted locations:\n");
for (String path : attemptedPaths) {
errorMsg.append(" - ").append(path).append("\n");
}
if (fileSystemException != null) {
errorMsg.append("\nOriginal error: ").append(fileSystemException.getMessage());
}
throw new IOException(errorMsg.toString(), fileSystemException);
}
private void loadNetworkConfig() {
try (InputStream is = getClass().getClassLoader().getResourceAsStream("network_config.json")) {
if (is == null) {
System.err.println("Warning: network_config.json not found in classpath. Using defaults/empty.");
return;
}
try (Reader reader = new InputStreamReader(is, StandardCharsets.UTF_8)) {
Gson gson = new Gson();
this.networkConfig = gson.fromJson(reader, NetworkConfig.class);
}
} catch (IOException e) {
System.err.println("Failed to load network_config.json: " + e.getMessage());
e.printStackTrace();
}
}
public NetworkConfig getNetworkConfig() {
return networkConfig;
}
// --- Network configurations ---
/**
* Gets the host address for a specific intersection.
*
* @param intersectionId The ID of the intersection (e.g., "Cr1").
* @return The host (e.g., "localhost").
*/
public String getIntersectionHost(String intersectionId) {
return properties.getProperty("intersection." + intersectionId + ".host", "localhost");
}
/**
* Gets the port number for a specific intersection.
*
* @param intersectionId The ID of the intersection (e.g., "Cr1").
* @return The port number.
*/
public int getIntersectionPort(String intersectionId) {
return Integer.parseInt(properties.getProperty("intersection." + intersectionId + ".port", "0"));
}
/**
* Gets the host address for the dashboard server.
*
* @return The dashboard host.
*/
public String getDashboardHost() {
return properties.getProperty("dashboard.host", "localhost");
}
/**
* Gets the port number for the dashboard server.
*
* @return The dashboard port.
*/
public int getDashboardPort() {
return Integer.parseInt(properties.getProperty("dashboard.port", "9000"));
}
/**
* Gets the host address for the exit node.
*
* @return The exit node host.
*/
public String getExitHost() {
return properties.getProperty("exit.host", "localhost");
}
/**
* Gets the port number for the exit node.
*
* @return The exit node port.
*/
public int getExitPort() {
return Integer.parseInt(properties.getProperty("exit.port", "9001"));
}
// Simulation configurations
// --- Simulation configurations ---
/**
* Gets the total duration of the simulation in virtual seconds.
*
* @return The simulation duration.
*/
public double getSimulationDuration() {
return Double.parseDouble(properties.getProperty("simulation.duration", "3600.0"));
return Double.parseDouble(properties.getProperty("simulation.duration", "3600"));
}
/**
* Get time scaling factor for visualization.
* 0 = instant (pure DES), 0.01 = 100x speed, 0.1 = 10x speed, 1.0 = real-time
*/
public double getTimeScale() {
return Double.parseDouble(properties.getProperty("simulation.time.scale", "0"));
}
/**
* Gets the drain time (in virtual seconds) to allow vehicles to exit after
* generation stops.
*
* @return The drain time.
*/
public double getDrainTime() {
return Double.parseDouble(properties.getProperty("simulation.drain.time", "60.0"));
}
/**
* Gets the vehicle arrival model ("POISSON" or "FIXED").
*
* @return The arrival model as a string.
*/
public String getArrivalModel() {
return properties.getProperty("simulation.arrival.model", "POISSON");
}
/**
* Gets the average arrival rate (lambda) for the POISSON model.
* This represents the average number of vehicles arriving per second.
*
* @return The arrival rate.
*/
public double getArrivalRate() {
return Double.parseDouble(properties.getProperty("simulation.arrival.rate", "0.5"));
}
/**
* Gets the fixed time interval between vehicle arrivals for the FIXED model.
*
* @return The fixed interval in seconds.
*/
public double getFixedArrivalInterval() {
return Double.parseDouble(properties.getProperty("simulation.arrival.fixed.interval", "2.0"));
}
// Traffic light configurations
// --- Traffic light configurations ---
/**
* Gets the duration of the GREEN light state for a specific traffic light.
*
* @param intersectionId The ID of the intersection (e.g., "Cr1").
* @param direction The direction of the light (e.g., "North").
* @return The green light time in seconds.
*/
public double getTrafficLightGreenTime(String intersectionId, String direction) {
String key = "trafficlight." + intersectionId + "." + direction + ".green";
return Double.parseDouble(properties.getProperty(key, "30.0"));
}
/**
* Gets the duration of the RED light state for a specific traffic light.
*
* @param intersectionId The ID of the intersection (e.g., "Cr1").
* @param direction The direction of the light (e.g., "North").
* @return The red light time in seconds.
*/
public double getTrafficLightRedTime(String intersectionId, String direction) {
String key = "trafficlight." + intersectionId + "." + direction + ".red";
return Double.parseDouble(properties.getProperty(key, "30.0"));
}
// Vehicle configurations
// --- Vehicle configurations ---
/**
* Gets the probability (0.0 to 1.0) that a generated vehicle is of type LIGHT.
*
* @return The probability for LIGHT vehicles.
*/
public double getLightVehicleProbability() {
return Double.parseDouble(properties.getProperty("vehicle.probability.light", "0.7"));
}
/**
* Gets the average time it takes a LIGHT vehicle to cross an intersection.
*
* @return The crossing time in seconds.
*/
public double getLightVehicleCrossingTime() {
return Double.parseDouble(properties.getProperty("vehicle.crossing.time.light", "2.0"));
}
/**
* Gets the probability (0.0 to 1.0) that a generated vehicle is of type BIKE.
*
* @return The probability for BIKE vehicles.
*/
public double getBikeVehicleProbability() {
return Double.parseDouble(properties.getProperty("vehicle.probability.bike", "0.0"));
}
/**
* Gets the average time it takes a BIKE vehicle to cross an intersection.
*
* @return The crossing time in seconds.
*/
public double getBikeVehicleCrossingTime() {
return Double.parseDouble(properties.getProperty("vehicle.crossing.time.bike", "1.5"));
}
/**
* Gets the probability (0.0 to 1.0) that a generated vehicle is of type HEAVY.
*
* @return The probability for HEAVY vehicles.
*/
public double getHeavyVehicleProbability() {
return Double.parseDouble(properties.getProperty("vehicle.probability.heavy", "0.0"));
}
/**
* Gets the average time it takes a HEAVY vehicle to cross an intersection.
*
* @return The crossing time in seconds.
*/
public double getHeavyVehicleCrossingTime() {
return Double.parseDouble(properties.getProperty("vehicle.crossing.time.heavy", "4.0"));
}
// Statistics
public double getStatisticsUpdateInterval() {
return Double.parseDouble(properties.getProperty("statistics.update.interval", "10.0"));
/**
* Gets the base travel time between intersections for light vehicles.
*
* @return The base travel time in seconds.
*/
public double getBaseTravelTime() {
return Double.parseDouble(properties.getProperty("vehicle.travel.time.base", "8.0"));
}
// Generic method to get any property
/**
* Gets the travel time multiplier for bike vehicles.
* Bike travel time = base time × this multiplier.
*
* @return The multiplier for bike travel time.
*/
public double getBikeTravelTimeMultiplier() {
return Double.parseDouble(properties.getProperty("vehicle.travel.time.bike.multiplier", "0.5"));
}
/**
* Gets the travel time multiplier for heavy vehicles.
* Heavy vehicle travel time = base time × this multiplier.
*
* @return The multiplier for heavy vehicle travel time.
*/
public double getHeavyTravelTimeMultiplier() {
return Double.parseDouble(properties.getProperty("vehicle.travel.time.heavy.multiplier", "4.0"));
}
// --- Statistics ---
/**
* Gets the interval (in virtual seconds) between periodic statistics updates.
*
* @return The statistics update interval.
*/
public double getStatisticsUpdateInterval() {
return Double.parseDouble(properties.getProperty("statistics.update.interval", "1.0"));
}
// --- Generic getters ---
/**
* Generic method to get any property as a string, with a default value.
*
* @param key The property key.
* @param defaultValue The value to return if the key is not found.
* @return The property value or the default.
*/
public String getProperty(String key, String defaultValue) {
return properties.getProperty(key, defaultValue);
}
/**
* Generic method to get any property as a string.
*
* @param key The property key.
* @return The property value, or null if not found.
*/
public String getProperty(String key) {
return properties.getProperty(key);
}

View File

@@ -0,0 +1,416 @@
package sd.coordinator;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import sd.config.SimulationConfig;
import sd.dashboard.StatsUpdatePayload;
import sd.des.DESEventType;
import sd.des.EventQueue;
import sd.des.SimulationClock;
import sd.des.SimulationEvent;
import sd.logging.EventLogger;
import sd.model.Message;
import sd.model.MessageType;
import sd.model.Vehicle;
import sd.serialization.SerializationException;
import sd.util.VehicleGenerator;
/**
* Coordenador central da simulação distribuída.
*
* <p>Responsabilidades:
* <ol>
* <li>Gerar veículos segundo modelo configurado (Poisson/Fixed)
* <li>Injetar veículos nas interseções de entrada
* <li>Gerir relógio global e sincronizar componentes
* </ol>
*
* <p>Usa motor DES para agendar eventos de geração com precisão.
* Mantém fila de prioridade e processa eventos em ordem cronológica.
*/
public class CoordinatorProcess {
private final SimulationConfig config;
private final VehicleGenerator vehicleGenerator;
private final Map<String, SocketClient> intersectionClients;
private SocketClient dashboardClient;
private final SimulationClock clock;
private final EventQueue eventQueue;
private final EventLogger eventLogger;
private int vehicleCounter;
private boolean running;
private double timeScale;
public static void main(String[] args) {
System.out.println("=".repeat(60));
System.out.println("COORDINATOR PROCESS - DISTRIBUTED TRAFFIC SIMULATION");
System.out.println("=".repeat(60));
try {
// 1. Load configuration
String configFile = args.length > 0 ? args[0] : "src/main/resources/simulation.properties";
System.out.println("Loading configuration from: " + configFile);
SimulationConfig config = new SimulationConfig(configFile);
CoordinatorProcess coordinator = new CoordinatorProcess(config);
// 2. Connect to intersection processes
System.out.println("\n" + "=".repeat(60));
coordinator.initialize();
// 3. Run the sim
System.out.println("\n" + "=".repeat(60));
coordinator.run();
} catch (IOException e) {
System.err.println("Failed to load configuration: " + e.getMessage());
System.exit(1);
} catch (Exception e) {
System.err.println("Coordinator error: " + e.getMessage());
System.exit(1);
}
}
public CoordinatorProcess(SimulationConfig config) {
this.config = config;
this.vehicleGenerator = new VehicleGenerator(config);
this.intersectionClients = new HashMap<>();
this.vehicleCounter = 0;
this.running = false;
this.timeScale = config.getTimeScale();
this.clock = new SimulationClock();
this.eventQueue = new EventQueue(true);
this.eventLogger = EventLogger.getInstance();
eventLogger.log(sd.logging.EventType.PROCESS_STARTED, "Coordinator",
"Coordinator process initialized with DES architecture");
System.out.println("Coordinator initialized with configuration:");
System.out.println(" - Simulation duration: " + config.getSimulationDuration() + "s");
System.out.println(" - Arrival model: " + config.getArrivalModel());
System.out.println(" - Arrival rate: " + config.getArrivalRate() + " vehicles/s");
System.out.println(" - DES Mode: ENABLED (Event-driven, no time-stepping)");
}
public void initialize() {
// Connect to dashboard first
connectToDashboard();
System.out.println("Connecting to intersection processes...");
String[] intersectionIds = { "Cr1", "Cr2", "Cr3", "Cr4", "Cr5" };
for (String intersectionId : intersectionIds) {
try {
String host = config.getIntersectionHost(intersectionId);
int port = config.getIntersectionPort(intersectionId);
SocketClient client = new SocketClient(intersectionId, host, port);
client.connect();
intersectionClients.put(intersectionId, client);
} catch (IOException e) {
System.err.println("Failed to connect to " + intersectionId + ": " + e.getMessage());
}
}
System.out.println("Successfully connected to " + intersectionClients.size() + " intersection(s)");
if (intersectionClients.isEmpty()) {
System.err.println("WARNING: No intersections connected. Simulation cannot proceed.");
}
}
public void run() {
double duration = config.getSimulationDuration();
double drainTime = config.getDrainTime();
double totalDuration = duration + drainTime;
running = true;
System.out.println("Starting DES-based vehicle generation simulation...");
System.out.println("Duration: " + duration + "s (+ " + drainTime + "s drain)");
System.out.println();
// Log simulation start
eventLogger.log(sd.logging.EventType.SIMULATION_STARTED, "Coordinator",
String.format("Starting simulation - Duration: %.1fs", duration));
// Send simulation start time to all processes for synchronization
sendSimulationStartTime();
// Schedule first vehicle generation event
double firstArrivalTime = vehicleGenerator.getNextArrivalTime(clock.getCurrentTime());
eventQueue.schedule(new SimulationEvent(
firstArrivalTime,
DESEventType.VEHICLE_GENERATION,
null,
"Coordinator"));
// Schedule simulation end event
eventQueue.schedule(new SimulationEvent(
totalDuration,
DESEventType.SIMULATION_END,
null,
"Coordinator"));
System.out.printf("Initial event scheduled at t=%.3fs\n", firstArrivalTime);
System.out.println("Entering DES event loop...\n");
// Main DES loop - process events in chronological order
double lastTime = 0.0;
while (running && !eventQueue.isEmpty()) {
SimulationEvent event = eventQueue.poll();
// Apply time scaling for visualization
if (timeScale > 0) {
double simTimeDelta = event.getTimestamp() - lastTime;
long realDelayMs = (long) (simTimeDelta * timeScale * 1000);
if (realDelayMs > 0) {
try {
Thread.sleep(realDelayMs);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
break;
}
}
lastTime = event.getTimestamp();
}
// Advance simulation time to event time
clock.advanceTo(event.getTimestamp());
// Process the event
processEvent(event, duration);
}
System.out.println();
System.out.printf("Simulation complete at t=%.2fs\n", clock.getCurrentTime());
System.out.println("Total vehicles generated: " + vehicleCounter);
System.out.println("Total events processed: " + eventQueue.getProcessedCount());
// Log simulation end
eventLogger.log(sd.logging.EventType.SIMULATION_STOPPED, "Coordinator",
String.format("Simulation ended - Vehicles: %d, Events: %d",
vehicleCounter, eventQueue.getProcessedCount()));
// Export event history (spec requirement: view complete event list)
exportEventHistory();
shutdown();
}
/**
* Trata um único evento de simulação.
*
* É aqui que a magia acontece. Dependendo do tipo de evento (como
* VEHICLE_GENERATION),
* atualizamos o estado do mundo. Para a geração de veículos, criamos um novo
* veículo,
* enviamo-lo para uma interseção e depois agendamos o *próximo* evento de
* geração.
*/
private void processEvent(SimulationEvent event, double generationDuration) {
double currentTime = clock.getCurrentTime();
switch (event.getType()) {
case VEHICLE_GENERATION:
// Only generate if we're still in the generation phase
if (currentTime < generationDuration) {
generateAndSendVehicle();
// Schedule next vehicle generation
double nextArrivalTime = vehicleGenerator.getNextArrivalTime(currentTime);
eventQueue.schedule(new SimulationEvent(
nextArrivalTime,
DESEventType.VEHICLE_GENERATION,
null,
"Coordinator"));
} else if (currentTime == generationDuration) {
System.out.printf("\n[t=%.2f] Generation phase complete. Entering DRAIN MODE...\n",
currentTime);
}
break;
case SIMULATION_END:
System.out.printf("[t=%.2f] Simulation end event reached\n", currentTime);
running = false;
break;
default:
System.err.println("WARNING: Unknown event type: " + event.getType());
}
}
/**
* Guarda o histórico completo de eventos de simulação num ficheiro de texto.
* Isto permite-nos auditar exatamente o que aconteceu e quando, o que é crucial
* para depuração e verificação.
*/
private void exportEventHistory() {
try (java.io.PrintWriter writer = new java.io.PrintWriter(
new java.io.FileWriter("logs/coordinator-event-history.txt"))) {
String history = eventQueue.exportEventHistory();
writer.println(history);
System.out.println("\nEvent history exported to: logs/coordinator-event-history.txt");
} catch (IOException e) {
System.err.println("Failed to export event history: " + e.getMessage());
}
}
private void generateAndSendVehicle() {
double currentTime = clock.getCurrentTime();
Vehicle vehicle = vehicleGenerator.generateVehicle("V" + (++vehicleCounter), currentTime);
System.out.printf("[t=%.2f] Vehicle %s generated (type=%s, route=%s)%n",
currentTime, vehicle.getId(), vehicle.getType(), vehicle.getRoute());
// Log to event logger
eventLogger.log(sd.logging.EventType.VEHICLE_GENERATED, "Coordinator",
String.format("[%s] Type: %s, Route: %s", vehicle.getId(), vehicle.getType(), vehicle.getRoute()));
// Send generation count to dashboard
sendGenerationStatsToDashboard();
if (vehicle.getRoute().isEmpty()) {
System.err.println("ERROR: Vehicle " + vehicle.getId() + " has empty route!");
return;
}
String entryIntersection = vehicle.getRoute().get(0);
sendVehicleToIntersection(vehicle, entryIntersection);
}
private void sendVehicleToIntersection(Vehicle vehicle, String intersectionId) {
SocketClient client = intersectionClients.get(intersectionId);
if (client == null || !client.isConnected()) {
System.err.println("ERROR: No connection to " + intersectionId + " for vehicle " + vehicle.getId());
return;
}
try {
Message message = new Message(
MessageType.VEHICLE_SPAWN,
"COORDINATOR",
intersectionId,
vehicle);
client.send(message);
System.out.printf("->Sent to %s%n", intersectionId);
} catch (SerializationException | IOException e) {
System.err.println("ERROR: Failed to send vehicle " + vehicle.getId() + " to " + intersectionId);
System.err.println("Reason: " + e.getMessage());
}
}
public void shutdown() {
System.out.println();
System.out.println("=".repeat(60));
System.out.println("Shutting down coordinator...");
for (Map.Entry<String, SocketClient> entry : intersectionClients.entrySet()) {
String intersectionId = entry.getKey();
SocketClient client = entry.getValue();
try {
if (client.isConnected()) {
Message personalizedShutdown = new Message(
MessageType.SHUTDOWN,
"COORDINATOR",
intersectionId,
"Simulation complete");
client.send(personalizedShutdown);
System.out.println("Sent shutdown message to " + intersectionId);
}
} catch (SerializationException | IOException e) {
System.err.println("Error sending shutdown to " + intersectionId + ": " + e.getMessage());
} finally {
client.close();
}
}
System.out.println("Coordinator shutdown complete");
System.out.println("=".repeat(60));
}
public void stop() {
System.out.println("\nStop signal received...");
running = false;
}
private void connectToDashboard() {
try {
String host = config.getDashboardHost();
int port = config.getDashboardPort();
System.out.println("Connecting to dashboard at " + host + ":" + port);
dashboardClient = new SocketClient("Dashboard", host, port);
dashboardClient.connect();
System.out.println("Successfully connected to dashboard\n");
} catch (IOException e) {
System.err.println("WARNING: Failed to connect to dashboard: " + e.getMessage());
System.err.println("Coordinator will continue without dashboard connection\n");
}
}
private void sendGenerationStatsToDashboard() {
if (dashboardClient == null || !dashboardClient.isConnected()) {
return;
}
try {
// Create stats payload with vehicle generation count
StatsUpdatePayload payload = new StatsUpdatePayload();
payload.setTotalVehiclesGenerated(vehicleCounter);
Message message = new Message(
MessageType.STATS_UPDATE,
"COORDINATOR",
"Dashboard",
payload);
dashboardClient.send(message);
} catch (Exception e) { // This is fine - can add IOException if need be
// Don't crash if dashboard update fails
System.err.println("Failed to send stats to dashboard: " + e.getMessage());
}
}
private void sendSimulationStartTime() {
long startTimeMillis = System.currentTimeMillis();
// Send to all intersections
for (Map.Entry<String, SocketClient> entry : intersectionClients.entrySet()) {
try {
Message message = new Message(
MessageType.SIMULATION_START,
"COORDINATOR",
entry.getKey(),
startTimeMillis);
entry.getValue().send(message);
} catch (Exception e) { // Same thing here
System.err.println("Failed to send start time to " + entry.getKey() + ": " + e.getMessage());
}
}
// Send to dashboard
if (dashboardClient != null && dashboardClient.isConnected()) {
try {
Message message = new Message(
MessageType.SIMULATION_START,
"COORDINATOR",
"Dashboard",
startTimeMillis);
dashboardClient.send(message);
} catch (Exception e) { // And here
// Don't crash
}
}
}
}

View File

@@ -0,0 +1,122 @@
package sd.coordinator;
import java.io.IOException;
import java.io.OutputStream;
import java.net.Socket;
import sd.model.Message;
import sd.serialization.MessageSerializer;
import sd.serialization.SerializationException;
import sd.serialization.SerializerFactory;
/**
* Cliente socket para comunicação com um processo de interseção.
*
* <p>Gere uma ligação TCP persistente para uma interseção,
* fornecendo uma forma simples de enviar mensagens serializadas.</p>
*/
public class SocketClient {
private final String intersectionId;
private final String host;
private final int port;
private Socket socket;
private OutputStream outputStream;
private MessageSerializer serializer;
/**
* Cria um novo cliente socket para uma interseção.
*
* @param intersectionId ID da interseção (ex: "Cr1")
* @param host endereço do host (ex: "localhost")
* @param port número da porta
*/
public SocketClient(String intersectionId, String host, int port) {
this.intersectionId = intersectionId;
this.host = host;
this.port = port;
this.serializer = SerializerFactory.createDefault();
}
/**
* Liga-se ao processo da interseção via TCP.
*
* @throws IOException se a ligação não puder ser estabelecida
*/
public void connect() throws IOException {
try {
socket = new Socket(host, port);
outputStream = socket.getOutputStream();
System.out.println("Connected to " + intersectionId + " at " + host + ":" + port);
} catch (IOException e) {
System.err.println("Failed to connect to " + intersectionId + " at " + host + ":" + port);
throw e;
}
}
/**
* Envia uma mensagem para a interseção ligada.
* A mensagem é serializada e enviada pelo socket.
*
* @param message mensagem a enviar
* @throws SerializationException se a serialização falhar
* @throws IOException se a escrita no socket falhar
*/
public void send(Message message) throws SerializationException, IOException {
if (socket == null || socket.isClosed()) {
throw new IOException("Socket is not connected to " + intersectionId);
}
try {
byte[] data = serializer.serialize(message);
int length = data.length;
outputStream.write((length >> 24) & 0xFF);
outputStream.write((length >> 16) & 0xFF);
outputStream.write((length >> 8) & 0xFF);
outputStream.write(length & 0xFF);
outputStream.write(data);
outputStream.flush();
} catch (SerializationException | IOException e) {
System.err.println("Error sending message to " + intersectionId + ": " + e.getMessage());
throw e;
}
}
/**
* Closes the socket connection safely.
* Calling it multiple times wont cause issues.
*/
public void close() {
try {
if (outputStream != null) {
outputStream.close();
}
if (socket != null && !socket.isClosed()) {
socket.close();
System.out.println("Closed connection to " + intersectionId);
}
} catch (IOException e) {
System.err.println("Error closing connection to " + intersectionId + ": " + e.getMessage());
}
}
/**
* @return true if connected and socket is open, false otherwise
*/
public boolean isConnected() {
return socket != null && socket.isConnected() && !socket.isClosed();
}
public String getIntersectionId() {
return intersectionId;
}
@Override
public String toString() {
return String.format("SocketClient[intersection=%s, host=%s, port=%d, connected=%s]",
intersectionId, host, port, isConnected());
}
}

View File

@@ -0,0 +1,167 @@
package sd.dashboard;
import javafx.geometry.Insets;
import javafx.scene.control.ButtonType;
import javafx.scene.control.ComboBox;
import javafx.scene.control.Dialog;
import javafx.scene.control.Label;
import javafx.scene.control.Separator;
import javafx.scene.control.Spinner;
import javafx.scene.layout.GridPane;
import javafx.scene.layout.VBox;
import javafx.stage.Modality;
import javafx.stage.Stage;
/**
* Diálogo para configuração avançada de parâmetros da simulação.
* Permite ajustar parâmetros em runtime antes de iniciar a simulação.
*/
public class ConfigurationDialog {
/**
* Mostra um diálogo com opções avançadas de configuração.
*
* @param owner janela pai
* @return true se o utilizador confirmar, false se cancelar
*/
public static boolean showAdvancedConfig(Stage owner) {
Dialog<ButtonType> dialog = new Dialog<>();
dialog.initOwner(owner);
dialog.initModality(Modality.APPLICATION_MODAL);
dialog.setTitle("Configuração Avançada da Simulação");
dialog.setHeaderText("Ajustar parâmetros da simulação");
// Criar painel de configuração
VBox content = new VBox(15);
content.setPadding(new Insets(20));
// Seção 1: Parâmetros de Chegada
Label arrivalHeader = new Label("Parâmetros de Chegada de Veículos");
arrivalHeader.setStyle("-fx-font-weight: bold; -fx-font-size: 14px;");
GridPane arrivalGrid = new GridPane();
arrivalGrid.setHgap(10);
arrivalGrid.setVgap(10);
arrivalGrid.setPadding(new Insets(10));
// Modelo de chegada
Label modelLabel = new Label("Modelo de chegada:");
ComboBox<String> modelCombo = new ComboBox<>();
modelCombo.getItems().addAll("POISSON", "FIXED");
modelCombo.setValue("POISSON");
arrivalGrid.add(modelLabel, 0, 0);
arrivalGrid.add(modelCombo, 1, 0);
// Taxa de chegada (λ)
Label rateLabel = new Label("Taxa de chegada (λ) [veículos/s]:");
Spinner<Double> rateSpinner = new Spinner<>(0.1, 2.0, 0.5, 0.1);
rateSpinner.setEditable(true);
rateSpinner.setPrefWidth(100);
arrivalGrid.add(rateLabel, 0, 1);
arrivalGrid.add(rateSpinner, 1, 1);
// Intervalo fixo (se aplicável)
Label intervalLabel = new Label("Intervalo fixo [s]:");
Spinner<Double> intervalSpinner = new Spinner<>(0.5, 10.0, 2.0, 0.5);
intervalSpinner.setEditable(true);
intervalSpinner.setPrefWidth(100);
intervalSpinner.setDisable(true);
arrivalGrid.add(intervalLabel, 0, 2);
arrivalGrid.add(intervalSpinner, 1, 2);
// Habilitar/desabilitar intervalo baseado no modelo
modelCombo.setOnAction(e -> {
boolean isFixed = "FIXED".equals(modelCombo.getValue());
intervalSpinner.setDisable(!isFixed);
rateSpinner.setDisable(isFixed);
});
// Seção 2: Parâmetros de Tempo
Label timeHeader = new Label("Parâmetros de Tempo");
timeHeader.setStyle("-fx-font-weight: bold; -fx-font-size: 14px;");
GridPane timeGrid = new GridPane();
timeGrid.setHgap(10);
timeGrid.setVgap(10);
timeGrid.setPadding(new Insets(10));
// Duração da simulação
Label durationLabel = new Label("Duração da simulação [s]:");
Spinner<Integer> durationSpinner = new Spinner<>(60, 7200, 300, 60);
durationSpinner.setEditable(true);
durationSpinner.setPrefWidth(100);
timeGrid.add(durationLabel, 0, 0);
timeGrid.add(durationSpinner, 1, 0);
// Escala temporal (para visualização)
Label scaleLabel = new Label("Escala temporal (0=instantâneo, 1=tempo real):");
Spinner<Double> scaleSpinner = new Spinner<>(0.0, 1.0, 0.01, 0.01);
scaleSpinner.setEditable(true);
scaleSpinner.setPrefWidth(100);
timeGrid.add(scaleLabel, 0, 1);
timeGrid.add(scaleSpinner, 1, 1);
// Tempo de drenagem
Label drainLabel = new Label("Tempo de drenagem [s]:");
Spinner<Integer> drainSpinner = new Spinner<>(0, 300, 60, 10);
drainSpinner.setEditable(true);
drainSpinner.setPrefWidth(100);
timeGrid.add(drainLabel, 0, 2);
timeGrid.add(drainSpinner, 1, 2);
// Seção 3: Distribuição de Tipos de Veículos
Label vehicleHeader = new Label("Distribuição de Tipos de Veículos");
vehicleHeader.setStyle("-fx-font-weight: bold; -fx-font-size: 14px;");
GridPane vehicleGrid = new GridPane();
vehicleGrid.setHgap(10);
vehicleGrid.setVgap(10);
vehicleGrid.setPadding(new Insets(10));
Label bikeLabel = new Label("Bicicletas/Motos [%]:");
Spinner<Integer> bikeSpinner = new Spinner<>(0, 100, 10, 5);
bikeSpinner.setEditable(true);
bikeSpinner.setPrefWidth(100);
vehicleGrid.add(bikeLabel, 0, 0);
vehicleGrid.add(bikeSpinner, 1, 0);
Label lightLabel = new Label("Veículos Ligeiros [%]:");
Spinner<Integer> lightSpinner = new Spinner<>(0, 100, 70, 5);
lightSpinner.setEditable(true);
lightSpinner.setPrefWidth(100);
vehicleGrid.add(lightLabel, 0, 1);
vehicleGrid.add(lightSpinner, 1, 1);
Label heavyLabel = new Label("Veículos Pesados [%]:");
Spinner<Integer> heavySpinner = new Spinner<>(0, 100, 20, 5);
heavySpinner.setEditable(true);
heavySpinner.setPrefWidth(100);
vehicleGrid.add(heavyLabel, 0, 2);
vehicleGrid.add(heavySpinner, 1, 2);
// Nota informativa
Label noteLabel = new Label("Nota: Estes parâmetros sobrepõem os valores do ficheiro .properties selecionado.\n" +
"Para usar os valores padrão do ficheiro, deixe em branco ou cancele.");
noteLabel.setWrapText(true);
noteLabel.setStyle("-fx-font-size: 11px; -fx-text-fill: #666666;");
// Adicionar tudo ao conteúdo
content.getChildren().addAll(
arrivalHeader, arrivalGrid,
new Separator(),
timeHeader, timeGrid,
new Separator(),
vehicleHeader, vehicleGrid,
new Separator(),
noteLabel
);
dialog.getDialogPane().setContent(content);
dialog.getDialogPane().getButtonTypes().addAll(ButtonType.OK, ButtonType.CANCEL);
// Mostrar diálogo e processar resultado
return dialog.showAndWait()
.map(buttonType -> buttonType == ButtonType.OK)
.orElse(false);
}
}

View File

@@ -0,0 +1,137 @@
package sd.dashboard;
import java.io.IOException;
import java.net.Socket;
import java.util.Map;
import sd.model.MessageType;
import sd.protocol.MessageProtocol;
import sd.protocol.SocketConnection;
/**
* Processes statistics messages from a single client connection.
* Runs in a separate thread per client.
*/
public class DashboardClientHandler implements Runnable {
private final Socket clientSocket;
private final DashboardStatistics statistics;
public DashboardClientHandler(Socket clientSocket, DashboardStatistics statistics) {
this.clientSocket = clientSocket;
this.statistics = statistics;
}
@Override
public void run() {
String clientInfo = clientSocket.getInetAddress().getHostAddress() + ":" + clientSocket.getPort();
try (SocketConnection connection = new SocketConnection(clientSocket)) {
System.out.println("[Handler] Started handling client: " + clientInfo);
while (!Thread.currentThread().isInterrupted()) {
try {
MessageProtocol message = connection.receiveMessage();
if (message == null) {
System.out.println("[Handler] Client disconnected: " + clientInfo);
break;
}
processMessage(message);
} catch (ClassNotFoundException e) {
System.err.println("[Handler] Unknown message class from " + clientInfo + ": " + e.getMessage());
} catch (IOException e) {
System.out.println("[Handler] Connection error with " + clientInfo + ": " + e.getMessage());
break;
}
}
} catch (IOException e) {
System.err.println("[Handler] Error initializing connection with " + clientInfo + ": " + e.getMessage());
} finally {
try {
if (!clientSocket.isClosed()) {
clientSocket.close();
}
} catch (IOException e) {
System.err.println("[Handler] Error closing socket for " + clientInfo + ": " + e.getMessage());
}
}
}
private void processMessage(MessageProtocol message) {
if (message.getType() != MessageType.STATS_UPDATE) {
System.out.println("[Handler] Ignoring non-statistics message type: " + message.getType());
return;
}
String senderId = message.getSourceNode();
Object payload = message.getPayload();
System.out.println("[Handler] Received STATS_UPDATE from: " + senderId);
// Handle both direct StatsUpdatePayload and Gson-deserialized Map
StatsUpdatePayload stats;
if (payload instanceof StatsUpdatePayload) {
stats = (StatsUpdatePayload) payload;
} else if (payload instanceof java.util.Map) {
// Gson deserialized as LinkedHashMap - re-serialize and deserialize properly
com.google.gson.Gson gson = new com.google.gson.Gson();
String json = gson.toJson(payload);
stats = gson.fromJson(json, StatsUpdatePayload.class);
} else {
System.err.println("[Handler] Unknown payload type: " +
(payload != null ? payload.getClass().getName() : "null"));
return;
}
updateStatistics(senderId, stats);
}
private void updateStatistics(String senderId, StatsUpdatePayload stats) {
if (stats.getTotalVehiclesGenerated() >= 0) {
statistics.updateVehiclesGenerated(stats.getTotalVehiclesGenerated());
}
if (stats.getTotalVehiclesCompleted() >= 0) {
statistics.updateVehiclesCompleted(stats.getTotalVehiclesCompleted());
}
// Exit Node sends cumulative totals, so we SET rather than ADD
if (stats.getTotalSystemTime() >= 0) {
statistics.setTotalSystemTime(stats.getTotalSystemTime());
}
if (stats.getTotalWaitingTime() >= 0) {
statistics.setTotalWaitingTime(stats.getTotalWaitingTime());
}
// Process vehicle type statistics (from Exit Node)
if (stats.getVehicleTypeCounts() != null && !stats.getVehicleTypeCounts().isEmpty()) {
Map<sd.model.VehicleType, Integer> counts = stats.getVehicleTypeCounts();
Map<sd.model.VehicleType, Long> waitTimes = stats.getVehicleTypeWaitTimes();
for (var entry : counts.entrySet()) {
sd.model.VehicleType type = entry.getKey();
int count = entry.getValue();
long waitTime = (waitTimes != null && waitTimes.containsKey(type))
? waitTimes.get(type) : 0L;
statistics.updateVehicleTypeStats(type, count, waitTime);
}
}
// Process intersection statistics (from Intersection processes)
if (senderId.startsWith("Cr") || senderId.startsWith("E")) {
statistics.updateIntersectionStats(
senderId,
stats.getIntersectionArrivals(),
stats.getIntersectionDepartures(),
stats.getIntersectionQueueSize()
);
}
System.out.println("[Handler] Successfully updated statistics from: " + senderId);
}
}

View File

@@ -0,0 +1,165 @@
package sd.dashboard;
import java.io.IOException;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.atomic.AtomicBoolean;
import sd.config.SimulationConfig;
/**
* Agrega e apresenta estatísticas em tempo real de todos os processos da simulação.
* Usa um thread pool para gerir ligações concorrentes de clientes.
*/
public class DashboardServer {
private final int port;
private final DashboardStatistics statistics;
private final ExecutorService clientHandlerPool;
private final AtomicBoolean running;
private ServerSocket serverSocket;
public static void main(String[] args) {
// Check if GUI mode is requested
boolean useGUI = false;
String configFile = "src/main/resources/simulation.properties";
for (int i = 0; i < args.length; i++) {
if (args[i].equals("--gui") || args[i].equals("-g")) {
useGUI = true;
} else {
configFile = args[i];
}
}
if (useGUI) {
// Launch JavaFX UI
System.out.println("Launching Dashboard with JavaFX GUI...");
DashboardUI.main(args);
} else {
// Traditional terminal mode
System.out.println("=".repeat(60));
System.out.println("DASHBOARD SERVER - DISTRIBUTED TRAFFIC SIMULATION");
System.out.println("=".repeat(60));
try {
System.out.println("Loading configuration from: " + configFile);
SimulationConfig config = new SimulationConfig(configFile);
DashboardServer server = new DashboardServer(config);
// Start the server
System.out.println("\n" + "=".repeat(60));
server.start();
// Keep running until interrupted
Runtime.getRuntime().addShutdownHook(new Thread(() -> {
System.out.println("\n\nShutdown signal received...");
server.stop();
}));
// Display statistics periodically
server.displayLoop();
} catch (IOException e) {
System.err.println("Failed to start Dashboard Server: " + e.getMessage());
System.exit(1);
}
}
}
public DashboardServer(SimulationConfig config) {
this.port = config.getDashboardPort();
this.statistics = new DashboardStatistics();
this.clientHandlerPool = Executors.newFixedThreadPool(10);
this.running = new AtomicBoolean(false);
}
public void start() throws IOException {
if (running.get()) {
System.out.println("Dashboard Server is already running.");
return;
}
serverSocket = new ServerSocket(port);
running.set(true);
System.out.println("Dashboard Server started on port " + port);
System.out.println("Waiting for statistics updates from simulation processes...");
System.out.println("=".repeat(60));
Thread acceptThread = new Thread(this::acceptConnections, "DashboardServer-Accept");
acceptThread.setDaemon(false);
acceptThread.start();
}
private void acceptConnections() {
while (running.get()) {
try {
Socket clientSocket = serverSocket.accept();
System.out.println("[Connection] New client connected: " +
clientSocket.getInetAddress().getHostAddress() + ":" + clientSocket.getPort());
clientHandlerPool.execute(new DashboardClientHandler(clientSocket, statistics));
} catch (IOException e) {
if (running.get()) {
System.err.println("[Error] Failed to accept client connection: " + e.getMessage());
}
}
}
}
@SuppressWarnings("BusyWait")
private void displayLoop() {
final long DISPLAY_INTERVAL_MS = 5000;
while (running.get()) {
try {
Thread.sleep(DISPLAY_INTERVAL_MS);
displayStatistics();
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
break;
}
}
}
public void displayStatistics() {
System.out.println("\n" + "=".repeat(60));
System.out.println("REAL-TIME SIMULATION STATISTICS");
System.out.println("=".repeat(60));
statistics.display();
System.out.println("=".repeat(60));
}
public void stop() {
if (!running.get()) {
return;
}
System.out.println("\nStopping Dashboard Server...");
running.set(false);
try {
if (serverSocket != null && !serverSocket.isClosed()) {
serverSocket.close();
}
} catch (IOException e) {
System.err.println("Error closing server socket: " + e.getMessage());
}
clientHandlerPool.shutdownNow();
System.out.println("Dashboard Server stopped.");
}
public DashboardStatistics getStatistics() {
return statistics;
}
public boolean isRunning() {
return running.get();
}
}

View File

@@ -0,0 +1,224 @@
package sd.dashboard;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;
import sd.model.VehicleType;
/**
* Armazenamento thread-safe de estatísticas agregadas da simulação.
* Usa tipos atómicos e coleções concorrentes para atualizações sem locks.
*/
public class DashboardStatistics {
private final AtomicInteger totalVehiclesGenerated;
private final AtomicInteger totalVehiclesCompleted;
private final AtomicLong totalSystemTime;
private final AtomicLong totalWaitingTime;
private final Map<String, IntersectionStats> intersectionStats;
private final Map<VehicleType, AtomicInteger> vehicleTypeCount;
private final Map<VehicleType, AtomicLong> vehicleTypeWaitTime;
private volatile long lastUpdateTime;
public DashboardStatistics() {
this.totalVehiclesGenerated = new AtomicInteger(0);
this.totalVehiclesCompleted = new AtomicInteger(0);
this.totalSystemTime = new AtomicLong(0);
this.totalWaitingTime = new AtomicLong(0);
this.intersectionStats = new ConcurrentHashMap<>();
this.vehicleTypeCount = new ConcurrentHashMap<>();
this.vehicleTypeWaitTime = new ConcurrentHashMap<>();
for (VehicleType type : VehicleType.values()) {
vehicleTypeCount.put(type, new AtomicInteger(0));
vehicleTypeWaitTime.put(type, new AtomicLong(0));
}
this.lastUpdateTime = System.currentTimeMillis();
}
public void updateVehiclesGenerated(int count) {
totalVehiclesGenerated.set(count);
updateTimestamp();
}
public void incrementVehiclesGenerated() {
totalVehiclesGenerated.incrementAndGet();
updateTimestamp();
}
public void updateVehiclesCompleted(int count) {
totalVehiclesCompleted.set(count);
updateTimestamp();
}
public void incrementVehiclesCompleted() {
totalVehiclesCompleted.incrementAndGet();
updateTimestamp();
}
public void addSystemTime(long timeMs) {
totalSystemTime.addAndGet(timeMs);
updateTimestamp();
}
public void setTotalSystemTime(long timeMs) {
totalSystemTime.set(timeMs);
updateTimestamp();
}
public void addWaitingTime(long timeMs) {
totalWaitingTime.addAndGet(timeMs);
updateTimestamp();
}
public void setTotalWaitingTime(long timeMs) {
totalWaitingTime.set(timeMs);
updateTimestamp();
}
public void updateVehicleTypeStats(VehicleType type, int count, long waitTimeMs) {
vehicleTypeCount.get(type).set(count);
vehicleTypeWaitTime.get(type).set(waitTimeMs);
updateTimestamp();
}
public void incrementVehicleType(VehicleType type) {
vehicleTypeCount.get(type).incrementAndGet();
updateTimestamp();
}
public void updateIntersectionStats(String intersectionId, int arrivals,
int departures, int currentQueueSize) {
intersectionStats.compute(intersectionId, (id, stats) -> {
if (stats == null) {
stats = new IntersectionStats(intersectionId);
}
stats.updateStats(arrivals, departures, currentQueueSize);
return stats;
});
updateTimestamp();
}
private void updateTimestamp() {
lastUpdateTime = System.currentTimeMillis();
}
public int getTotalVehiclesGenerated() {
return totalVehiclesGenerated.get();
}
public int getTotalVehiclesCompleted() {
return totalVehiclesCompleted.get();
}
public double getAverageSystemTime() {
int completed = totalVehiclesCompleted.get();
if (completed == 0) return 0.0;
return (double) totalSystemTime.get() / completed;
}
public double getAverageWaitingTime() {
int completed = totalVehiclesCompleted.get();
if (completed == 0) return 0.0;
return (double) totalWaitingTime.get() / completed;
}
public int getVehicleTypeCount(VehicleType type) {
return vehicleTypeCount.get(type).get();
}
public double getAverageWaitingTimeByType(VehicleType type) {
int count = vehicleTypeCount.get(type).get();
if (count == 0) return 0.0;
return (double) vehicleTypeWaitTime.get(type).get() / count;
}
public IntersectionStats getIntersectionStats(String intersectionId) {
return intersectionStats.get(intersectionId);
}
public Map<String, IntersectionStats> getAllIntersectionStats() {
return new HashMap<>(intersectionStats);
}
public long getLastUpdateTime() {
return lastUpdateTime;
}
public void display() {
System.out.println("\n--- GLOBAL STATISTICS ---");
System.out.printf("Total Vehicles Generated: %d%n", getTotalVehiclesGenerated());
System.out.printf("Total Vehicles Completed: %d%n", getTotalVehiclesCompleted());
System.out.printf("Vehicles In Transit: %d%n",
getTotalVehiclesGenerated() - getTotalVehiclesCompleted());
System.out.printf("Average System Time: %.2f ms%n", getAverageSystemTime());
System.out.printf("Average Waiting Time: %.2f ms%n", getAverageWaitingTime());
System.out.println("\n--- VEHICLE TYPE STATISTICS ---");
for (VehicleType type : VehicleType.values()) {
int count = getVehicleTypeCount(type);
double avgWait = getAverageWaitingTimeByType(type);
System.out.printf("%s: %d vehicles, avg wait: %.2f ms%n",
type, count, avgWait);
}
System.out.println("\n--- INTERSECTION STATISTICS ---");
if (intersectionStats.isEmpty()) {
System.out.println("(No data received yet)");
} else {
for (IntersectionStats stats : intersectionStats.values()) {
stats.display();
}
}
System.out.printf("%nLast Update: %tT%n", lastUpdateTime);
}
public static class IntersectionStats {
private final String intersectionId;
private final AtomicInteger totalArrivals;
private final AtomicInteger totalDepartures;
private final AtomicInteger currentQueueSize;
public IntersectionStats(String intersectionId) {
this.intersectionId = intersectionId;
this.totalArrivals = new AtomicInteger(0);
this.totalDepartures = new AtomicInteger(0);
this.currentQueueSize = new AtomicInteger(0);
}
public void updateStats(int arrivals, int departures, int queueSize) {
this.totalArrivals.set(arrivals);
this.totalDepartures.set(departures);
this.currentQueueSize.set(queueSize);
}
public String getIntersectionId() {
return intersectionId;
}
public int getTotalArrivals() {
return totalArrivals.get();
}
public int getTotalDepartures() {
return totalDepartures.get();
}
public int getCurrentQueueSize() {
return currentQueueSize.get();
}
public void display() {
System.out.printf("%s: Arrivals=%d, Departures=%d, Queue=%d%n",
intersectionId, getTotalArrivals(), getTotalDepartures(), getCurrentQueueSize());
}
}
}

View File

@@ -0,0 +1,543 @@
package sd.dashboard;
import java.io.IOException;
import java.util.Map;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;
import javafx.application.Application;
import javafx.application.Platform;
import javafx.geometry.Insets;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Alert;
import javafx.scene.control.Button;
import javafx.scene.control.ComboBox;
import javafx.scene.control.Label;
import javafx.scene.control.TableColumn;
import javafx.scene.control.TableView;
import javafx.scene.control.cell.PropertyValueFactory;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.GridPane;
import javafx.scene.layout.HBox;
import javafx.scene.layout.Priority;
import javafx.scene.layout.Region;
import javafx.scene.layout.VBox;
import javafx.scene.shape.Circle;
import javafx.stage.Stage;
import sd.config.SimulationConfig;
import sd.model.VehicleType;
/**
* JavaFX-based Dashboard UI for displaying real-time simulation statistics.
* Provides a graphical interface with auto-updating statistics panels.
*/
public class DashboardUI extends Application {
private DashboardServer server;
private DashboardStatistics statistics;
// Global Statistics Labels
private Label lblVehiclesGenerated;
private Label lblVehiclesCompleted;
private Label lblVehiclesInTransit;
private Label lblAvgSystemTime;
private Label lblAvgWaitingTime;
private Label lblLastUpdate;
// Vehicle Type Table
private TableView<VehicleTypeRow> vehicleTypeTable;
// Intersection Table
private TableView<IntersectionRow> intersectionTable;
// Update scheduler
private ScheduledExecutorService updateScheduler;
// Configuration controls
private ComboBox<String> configFileSelector;
private String selectedConfigFile = "simulation.properties";
private Label configInfoLabel;
@Override
public void start(Stage primaryStage) {
try {
// Initialize server
String configFile = getParameters().getRaw().isEmpty()
? "src/main/resources/simulation.properties"
: getParameters().getRaw().get(0);
SimulationConfig config = new SimulationConfig(configFile);
server = new DashboardServer(config);
statistics = server.getStatistics();
// Start the dashboard server
server.start();
// Build UI
BorderPane root = new BorderPane();
root.getStyleClass().add("root");
// Header
VBox header = createHeader();
root.setTop(header);
// Main content
VBox mainContent = createMainContent();
root.setCenter(mainContent);
// Footer
HBox footer = createFooter();
root.setBottom(footer);
// Create scene
Scene scene = new Scene(root, 1200, 850);
// Load CSS
String cssUrl = getClass().getResource("/dashboard.css").toExternalForm();
scene.getStylesheets().add(cssUrl);
primaryStage.setTitle("Traffic Simulation Dashboard - Real-time Statistics");
primaryStage.setScene(scene);
primaryStage.show();
// Start periodic updates
startPeriodicUpdates();
// Handle window close
primaryStage.setOnCloseRequest(event -> {
shutdown();
});
} catch (Exception e) {
showErrorAlert("Failed to start Dashboard Server", e.getMessage());
e.printStackTrace();
Platform.exit();
}
}
private VBox createHeader() {
VBox header = new VBox(10);
header.getStyleClass().add("header");
header.setAlignment(Pos.CENTER);
Label title = new Label("DISTRIBUTED TRAFFIC SIMULATION DASHBOARD");
title.getStyleClass().add("header-title");
Label subtitle = new Label("Real-time Statistics and Monitoring");
subtitle.getStyleClass().add("header-subtitle");
// Configuration Panel
VBox configPanel = createConfigurationPanel();
// Control Buttons
HBox controls = new HBox(15);
controls.setAlignment(Pos.CENTER);
Button btnStart = new Button("START SIMULATION");
btnStart.getStyleClass().add("button-start");
Button btnStop = new Button("STOP SIMULATION");
btnStop.getStyleClass().add("button-stop");
btnStop.setDisable(true);
SimulationProcessManager processManager = new SimulationProcessManager();
btnStart.setOnAction(e -> {
try {
// Passar o ficheiro de configuração selecionado
processManager.setConfigFile(selectedConfigFile);
processManager.startSimulation();
btnStart.setDisable(true);
btnStop.setDisable(false);
configFileSelector.setDisable(true); // Bloquear mudanças durante simulação
} catch (IOException ex) {
showErrorAlert("Start Failed", "Could not start simulation processes: " + ex.getMessage());
}
});
btnStop.setOnAction(e -> {
processManager.stopSimulation();
btnStart.setDisable(false);
btnStop.setDisable(true);
configFileSelector.setDisable(false); // Desbloquear para nova simulação
});
controls.getChildren().addAll(btnStart, btnStop);
header.getChildren().addAll(title, subtitle, configPanel, controls);
return header;
}
/**
* Cria o painel de configuração com seleção de cenário e parâmetros.
*/
private VBox createConfigurationPanel() {
VBox configBox = new VBox(10);
configBox.setAlignment(Pos.CENTER);
configBox.setPadding(new Insets(10));
configBox.setStyle("-fx-background-color: rgba(255, 255, 255, 0.05); -fx-background-radius: 5;");
Label configLabel = new Label("Configuração da Simulação");
configLabel.setStyle("-fx-font-size: 14px; -fx-font-weight: bold;");
HBox configControls = new HBox(20);
configControls.setAlignment(Pos.CENTER);
// Scenario selector
VBox scenarioBox = new VBox(5);
scenarioBox.setAlignment(Pos.CENTER);
Label scenarioLabel = new Label("Cenário:");
scenarioLabel.setStyle("-fx-font-size: 12px;");
configFileSelector = new ComboBox<>();
configFileSelector.getItems().addAll(
"simulation.properties",
"simulation-low.properties",
"simulation-medium.properties",
"simulation-high.properties"
);
configFileSelector.setValue("simulation.properties");
configFileSelector.setOnAction(e -> {
selectedConfigFile = configFileSelector.getValue();
updateConfigInfo();
System.out.println("Configuração selecionada: " + selectedConfigFile);
});
scenarioBox.getChildren().addAll(scenarioLabel, configFileSelector);
configControls.getChildren().add(scenarioBox);
// Advanced configuration button
Button btnAdvancedConfig = new Button("Configuração Avançada...");
btnAdvancedConfig.setStyle("-fx-font-size: 11px;");
btnAdvancedConfig.setOnAction(e -> {
ConfigurationDialog.showAdvancedConfig((Stage) configBox.getScene().getWindow());
});
configControls.getChildren().add(btnAdvancedConfig);
// Configuration info display
configInfoLabel = new Label();
configInfoLabel.setStyle("-fx-font-size: 11px; -fx-text-fill: #aaaaaa;");
configInfoLabel.setWrapText(true);
configInfoLabel.setMaxWidth(800);
configInfoLabel.setAlignment(Pos.CENTER);
updateConfigInfo();
configBox.getChildren().addAll(configLabel, configControls, configInfoLabel);
return configBox;
}
private VBox createMainContent() {
VBox mainContent = new VBox(20);
mainContent.setPadding(new Insets(20));
// Global Statistics Panel
VBox globalStatsCard = createGlobalStatisticsPanel();
// Tables Container
HBox tablesContainer = new HBox(20);
tablesContainer.setAlignment(Pos.TOP_CENTER);
// Vehicle Type Statistics Panel
VBox vehicleTypeCard = createVehicleTypePanel();
HBox.setHgrow(vehicleTypeCard, Priority.ALWAYS);
// Intersection Statistics Panel
VBox intersectionCard = createIntersectionPanel();
HBox.setHgrow(intersectionCard, Priority.ALWAYS);
tablesContainer.getChildren().addAll(vehicleTypeCard, intersectionCard);
mainContent.getChildren().addAll(globalStatsCard, tablesContainer);
return mainContent;
}
private VBox createGlobalStatisticsPanel() {
VBox card = new VBox();
card.getStyleClass().add("card");
// Card Header
HBox cardHeader = new HBox();
cardHeader.getStyleClass().add("card-header");
Label cardTitle = new Label("Global Statistics");
cardTitle.getStyleClass().add("card-title");
cardHeader.getChildren().add(cardTitle);
// Card Content
GridPane grid = new GridPane();
grid.getStyleClass().add("card-content");
grid.setHgap(40);
grid.setVgap(15);
grid.setAlignment(Pos.CENTER);
// Initialize labels
lblVehiclesGenerated = createStatValueLabel("0");
lblVehiclesCompleted = createStatValueLabel("0");
lblVehiclesInTransit = createStatValueLabel("0");
lblAvgSystemTime = createStatValueLabel("0.00 s");
lblAvgWaitingTime = createStatValueLabel("0.00 s");
// Add labels with descriptions
addStatRow(grid, 0, 0, "Total Vehicles Generated", lblVehiclesGenerated);
addStatRow(grid, 1, 0, "Total Vehicles Completed", lblVehiclesCompleted);
addStatRow(grid, 2, 0, "Vehicles In Transit", lblVehiclesInTransit);
addStatRow(grid, 0, 1, "Average System Time", lblAvgSystemTime);
addStatRow(grid, 1, 1, "Average Waiting Time", lblAvgWaitingTime);
card.getChildren().addAll(cardHeader, grid);
return card;
}
private VBox createVehicleTypePanel() {
VBox card = new VBox();
card.getStyleClass().add("card");
// Card Header
HBox cardHeader = new HBox();
cardHeader.getStyleClass().add("card-header");
Label cardTitle = new Label("Vehicle Type Statistics");
cardTitle.getStyleClass().add("card-title");
cardHeader.getChildren().add(cardTitle);
// Table
vehicleTypeTable = new TableView<>();
vehicleTypeTable.setColumnResizePolicy(TableView.CONSTRAINED_RESIZE_POLICY);
vehicleTypeTable.setPrefHeight(300);
TableColumn<VehicleTypeRow, String> typeCol = new TableColumn<>("Vehicle Type");
typeCol.setCellValueFactory(new PropertyValueFactory<>("vehicleType"));
TableColumn<VehicleTypeRow, Integer> countCol = new TableColumn<>("Count");
countCol.setCellValueFactory(new PropertyValueFactory<>("count"));
TableColumn<VehicleTypeRow, String> avgWaitCol = new TableColumn<>("Avg Wait Time");
avgWaitCol.setCellValueFactory(new PropertyValueFactory<>("avgWaitTime"));
vehicleTypeTable.getColumns().addAll(typeCol, countCol, avgWaitCol);
card.getChildren().addAll(cardHeader, vehicleTypeTable);
return card;
}
private VBox createIntersectionPanel() {
VBox card = new VBox();
card.getStyleClass().add("card");
// Card Header
HBox cardHeader = new HBox();
cardHeader.getStyleClass().add("card-header");
Label cardTitle = new Label("Intersection Statistics");
cardTitle.getStyleClass().add("card-title");
cardHeader.getChildren().add(cardTitle);
// Table
intersectionTable = new TableView<>();
intersectionTable.setColumnResizePolicy(TableView.CONSTRAINED_RESIZE_POLICY);
intersectionTable.setPrefHeight(300);
TableColumn<IntersectionRow, String> idCol = new TableColumn<>("Intersection ID");
idCol.setCellValueFactory(new PropertyValueFactory<>("intersectionId"));
TableColumn<IntersectionRow, Integer> arrivalsCol = new TableColumn<>("Total Arrivals");
arrivalsCol.setCellValueFactory(new PropertyValueFactory<>("arrivals"));
TableColumn<IntersectionRow, Integer> departuresCol = new TableColumn<>("Total Departures");
departuresCol.setCellValueFactory(new PropertyValueFactory<>("departures"));
TableColumn<IntersectionRow, Integer> queueCol = new TableColumn<>("Current Queue");
queueCol.setCellValueFactory(new PropertyValueFactory<>("queueSize"));
intersectionTable.getColumns().addAll(idCol, arrivalsCol, departuresCol, queueCol);
card.getChildren().addAll(cardHeader, intersectionTable);
return card;
}
private HBox createFooter() {
HBox footer = new HBox(10);
footer.getStyleClass().add("footer");
footer.setAlignment(Pos.CENTER_LEFT);
Label statusLabel = new Label("Status:");
statusLabel.getStyleClass().add("footer-text");
statusLabel.setStyle("-fx-font-weight: bold;");
Circle statusIndicator = new Circle(6);
statusIndicator.setFill(javafx.scene.paint.Color.LIME);
Label statusText = new Label("Connected and Receiving Data");
statusText.getStyleClass().add("footer-text");
lblLastUpdate = new Label("Last Update: --:--:--");
lblLastUpdate.getStyleClass().add("footer-text");
Region spacer = new Region();
HBox.setHgrow(spacer, Priority.ALWAYS);
footer.getChildren().addAll(statusLabel, statusIndicator, statusText, spacer, lblLastUpdate);
return footer;
}
private Label createStatValueLabel(String initialValue) {
Label label = new Label(initialValue);
label.getStyleClass().add("stat-value");
return label;
}
private void addStatRow(GridPane grid, int row, int colGroup, String description, Label valueLabel) {
VBox container = new VBox(5);
container.setAlignment(Pos.CENTER_LEFT);
Label descLabel = new Label(description);
descLabel.getStyleClass().add("stat-label");
container.getChildren().addAll(descLabel, valueLabel);
grid.add(container, colGroup, row);
}
private void startPeriodicUpdates() {
updateScheduler = Executors.newSingleThreadScheduledExecutor();
updateScheduler.scheduleAtFixedRate(() -> {
Platform.runLater(this::updateUI);
}, 0, 100, TimeUnit.MILLISECONDS);
}
private void updateUI() {
// Update global statistics
lblVehiclesGenerated.setText(String.valueOf(statistics.getTotalVehiclesGenerated()));
lblVehiclesCompleted.setText(String.valueOf(statistics.getTotalVehiclesCompleted()));
lblVehiclesInTransit.setText(String.valueOf(
statistics.getTotalVehiclesGenerated() - statistics.getTotalVehiclesCompleted()));
lblAvgSystemTime.setText(String.format("%.2f s", statistics.getAverageSystemTime() / 1000.0));
lblAvgWaitingTime.setText(String.format("%.2f s", statistics.getAverageWaitingTime() / 1000.0));
lblLastUpdate.setText(String.format("Last Update: %tT", statistics.getLastUpdateTime()));
// Update vehicle type table
vehicleTypeTable.getItems().clear();
for (VehicleType type : VehicleType.values()) {
int count = statistics.getVehicleTypeCount(type);
double avgWait = statistics.getAverageWaitingTimeByType(type);
vehicleTypeTable.getItems().add(new VehicleTypeRow(
type.toString(), count, String.format("%.2f s", avgWait / 1000.0)));
}
// Update intersection table
intersectionTable.getItems().clear();
Map<String, DashboardStatistics.IntersectionStats> intersectionStats = statistics.getAllIntersectionStats();
for (DashboardStatistics.IntersectionStats stats : intersectionStats.values()) {
intersectionTable.getItems().add(new IntersectionRow(
stats.getIntersectionId(),
stats.getTotalArrivals(),
stats.getTotalDepartures(),
stats.getCurrentQueueSize()));
}
}
/**
* Atualiza a informação exibida sobre a configuração selecionada.
*/
private void updateConfigInfo() {
String info = "";
switch (selectedConfigFile) {
case "simulation-low.properties":
info = "🟢 CARGA BAIXA: 0.2 veículos/s (~720/hora) | Sem congestionamento esperado";
break;
case "simulation-medium.properties":
info = "🟡 CARGA MÉDIA: 0.5 veículos/s (~1800/hora) | Algum congestionamento esperado";
break;
case "simulation-high.properties":
info = "🔴 CARGA ALTA: 1.0 veículo/s (~3600/hora) | Congestionamento significativo esperado";
break;
default:
info = "⚙️ CONFIGURAÇÃO PADRÃO: Verificar ficheiro para parâmetros";
break;
}
configInfoLabel.setText(info);
}
private void shutdown() {
System.out.println("Shutting down Dashboard UI...");
if (updateScheduler != null && !updateScheduler.isShutdown()) {
updateScheduler.shutdownNow();
}
if (server != null) {
server.stop();
}
Platform.exit();
}
private void showErrorAlert(String title, String message) {
Alert alert = new Alert(Alert.AlertType.ERROR);
alert.setTitle(title);
alert.setHeaderText(null);
alert.setContentText(message);
alert.showAndWait();
}
public static void main(String[] args) {
launch(args);
}
// Inner classes for TableView data models
public static class VehicleTypeRow {
private final String vehicleType;
private final int count;
private final String avgWaitTime;
public VehicleTypeRow(String vehicleType, int count, String avgWaitTime) {
this.vehicleType = vehicleType;
this.count = count;
this.avgWaitTime = avgWaitTime;
}
public String getVehicleType() {
return vehicleType;
}
public int getCount() {
return count;
}
public String getAvgWaitTime() {
return avgWaitTime;
}
}
public static class IntersectionRow {
private final String intersectionId;
private final int arrivals;
private final int departures;
private final int queueSize;
public IntersectionRow(String intersectionId, int arrivals, int departures, int queueSize) {
this.intersectionId = intersectionId;
this.arrivals = arrivals;
this.departures = departures;
this.queueSize = queueSize;
}
public String getIntersectionId() {
return intersectionId;
}
public int getArrivals() {
return arrivals;
}
public int getDepartures() {
return departures;
}
public int getQueueSize() {
return queueSize;
}
}
}

View File

@@ -0,0 +1,7 @@
package sd.dashboard;
public class Launcher {
public static void main(String[] args) {
DashboardUI.main(args);
}
}

View File

@@ -0,0 +1,129 @@
package sd.dashboard;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
/**
* Gere o ciclo de vida dos processos de simulação (Intersections, Exit Node,
* Coordinator).
* Permite iniciar e parar a simulação distribuída dentro da aplicação Java.
*/
public class SimulationProcessManager {
private final List<Process> runningProcesses;
private final String classpath;
private String configFile;
public SimulationProcessManager() {
this.runningProcesses = new ArrayList<>();
this.classpath = System.getProperty("java.class.path");
this.configFile = "src/main/resources/simulation.properties";
}
/**
* Define o ficheiro de configuração a usar.
*
* @param configFile nome do ficheiro (ex: "simulation-low.properties")
*/
public void setConfigFile(String configFile) {
this.configFile = "src/main/resources/" + configFile;
System.out.println("Configuration file set to: " + this.configFile);
}
/**
* Inicia a simulação completa: 5 Intersections, 1 Exit Node, e 1 Coordinator.
*
* @throws IOException se um processo falhar ao iniciar
*/
public void startSimulation() throws IOException {
if (!runningProcesses.isEmpty()) {
stopSimulation();
}
System.out.println("Starting simulation processes...");
// 1. Start Intersections (Cr1 - Cr5)
String[] intersectionIds = { "Cr1", "Cr2", "Cr3", "Cr4", "Cr5" };
for (String id : intersectionIds) {
startProcess("sd.IntersectionProcess", id);
}
// 2. Start Exit Node
startProcess("sd.ExitNodeProcess", null);
// 3. Start Coordinator (Wait a bit for others to initialize)
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
startProcess("sd.coordinator.CoordinatorProcess", null);
System.out.println("All simulation processes started.");
}
/**
* Stops all running simulation processes.
*/
public void stopSimulation() {
System.out.println("Stopping simulation processes...");
for (Process process : runningProcesses) {
if (process.isAlive()) {
process.destroy(); // Try graceful termination first
}
}
// Wait a bit and force kill if necessary
try {
Thread.sleep(500);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
for (Process process : runningProcesses) {
if (process.isAlive()) {
process.destroyForcibly();
}
}
runningProcesses.clear();
System.out.println("All simulation processes stopped.");
}
/**
* Helper para iniciar um único processo Java.
*/
private void startProcess(String className, String arg) throws IOException {
String javaBin = System.getProperty("java.home") + File.separator + "bin" + File.separator + "java";
ProcessBuilder builder;
if (arg != null) {
builder = new ProcessBuilder(javaBin, "-cp", classpath, className, arg, configFile);
} else {
builder = new ProcessBuilder(javaBin, "-cp", classpath, className, configFile);
}
// get the OS temp folder
// Linux: /tmp/
// Windows: %AppData%\Local\Temp\
String tempDir = System.getProperty("java.io.tmpdir");
String logName = className.substring(className.lastIndexOf('.') + 1) + (arg != null ? "-" + arg : "") + ".log";
// use the (File parent, String child) constructor to handle slash/backslash
// automatically
File logFile = new File(tempDir, logName);
builder.redirectOutput(logFile);
builder.redirectError(logFile);
Process process = builder.start();
runningProcesses.add(process);
System.out.println("Started " + className + (arg != null ? " " + arg : ""));
// print where the logs are actually going
System.out.println("Logs redirected to: " + logFile.getAbsolutePath());
}
}

View File

@@ -0,0 +1,48 @@
package sd.dashboard;
import sd.model.MessageType;
import sd.protocol.MessageProtocol;
/**
* Message wrapper for sending statistics to the dashboard.
*/
public class StatsMessage implements MessageProtocol {
private static final long serialVersionUID = 1L;
private final String sourceNode;
private final String destinationNode;
private final StatsUpdatePayload payload;
public StatsMessage(String sourceNode, StatsUpdatePayload payload) {
this.sourceNode = sourceNode;
this.destinationNode = "DashboardServer";
this.payload = payload;
}
@Override
public MessageType getType() {
return MessageType.STATS_UPDATE;
}
@Override
public Object getPayload() {
return payload;
}
@Override
public String getSourceNode() {
return sourceNode;
}
@Override
public String getDestinationNode() {
return destinationNode;
}
@Override
public String toString() {
return String.format("StatsMessage[from=%s, to=%s, payload=%s]",
sourceNode, destinationNode, payload);
}
}

View File

@@ -0,0 +1,121 @@
package sd.dashboard;
import java.io.Serializable;
import java.util.HashMap;
import java.util.Map;
import sd.model.VehicleType;
/**
* DTO para atualizações de estatísticas ao dashboard.
* Campos com valor -1 não são atualizados nesta mensagem.
*/
public class StatsUpdatePayload implements Serializable {
private static final long serialVersionUID = 1L;
private int totalVehiclesGenerated = -1;
private int totalVehiclesCompleted = -1;
private long totalSystemTime = -1;
private long totalWaitingTime = -1;
private int intersectionArrivals = 0;
private int intersectionDepartures = 0;
private int intersectionQueueSize = 0;
private Map<VehicleType, Integer> vehicleTypeCounts;
private Map<VehicleType, Long> vehicleTypeWaitTimes;
public StatsUpdatePayload() {
this.vehicleTypeCounts = new HashMap<>();
this.vehicleTypeWaitTimes = new HashMap<>();
}
public int getTotalVehiclesGenerated() {
return totalVehiclesGenerated;
}
public int getTotalVehiclesCompleted() {
return totalVehiclesCompleted;
}
public long getTotalSystemTime() {
return totalSystemTime;
}
public long getTotalWaitingTime() {
return totalWaitingTime;
}
public int getIntersectionArrivals() {
return intersectionArrivals;
}
public int getIntersectionDepartures() {
return intersectionDepartures;
}
public int getIntersectionQueueSize() {
return intersectionQueueSize;
}
public Map<VehicleType, Integer> getVehicleTypeCounts() {
return vehicleTypeCounts;
}
public Map<VehicleType, Long> getVehicleTypeWaitTimes() {
return vehicleTypeWaitTimes;
}
public StatsUpdatePayload setTotalVehiclesGenerated(int totalVehiclesGenerated) {
this.totalVehiclesGenerated = totalVehiclesGenerated;
return this;
}
public StatsUpdatePayload setTotalVehiclesCompleted(int totalVehiclesCompleted) {
this.totalVehiclesCompleted = totalVehiclesCompleted;
return this;
}
public StatsUpdatePayload setTotalSystemTime(long totalSystemTime) {
this.totalSystemTime = totalSystemTime;
return this;
}
public StatsUpdatePayload setTotalWaitingTime(long totalWaitingTime) {
this.totalWaitingTime = totalWaitingTime;
return this;
}
public StatsUpdatePayload setIntersectionArrivals(int intersectionArrivals) {
this.intersectionArrivals = intersectionArrivals;
return this;
}
public StatsUpdatePayload setIntersectionDepartures(int intersectionDepartures) {
this.intersectionDepartures = intersectionDepartures;
return this;
}
public StatsUpdatePayload setIntersectionQueueSize(int intersectionQueueSize) {
this.intersectionQueueSize = intersectionQueueSize;
return this;
}
public StatsUpdatePayload setVehicleTypeCounts(Map<VehicleType, Integer> vehicleTypeCounts) {
this.vehicleTypeCounts = vehicleTypeCounts;
return this;
}
public StatsUpdatePayload setVehicleTypeWaitTimes(Map<VehicleType, Long> vehicleTypeWaitTimes) {
this.vehicleTypeWaitTimes = vehicleTypeWaitTimes;
return this;
}
@Override
public String toString() {
return String.format("StatsUpdatePayload[generated=%d, completed=%d, arrivals=%d, departures=%d, queueSize=%d]",
totalVehiclesGenerated, totalVehiclesCompleted, intersectionArrivals,
intersectionDepartures, intersectionQueueSize);
}
}

View File

@@ -0,0 +1,39 @@
package sd.des;
/**
* Tipos de eventos discretos da simulação.
*
* <p>Representa os eventos DES que avançam o estado da simulação,
* não categorias de logging (EventType está noutro package).
*/
public enum DESEventType {
/** Gerar novo veículo num ponto de entrada */
VEHICLE_GENERATION,
/** Veículo chega a uma interseção */
VEHICLE_ARRIVAL,
/** Veículo começa a atravessar o semáforo */
VEHICLE_CROSSING_START,
/** Veículo termina a travessia */
VEHICLE_CROSSING_END,
/** Veículo parte para o próximo destino */
VEHICLE_DEPARTURE,
/** Veículo sai do sistema no nó de saída */
VEHICLE_EXIT,
/** Semáforo muda de estado (VERMELHO para VERDE ou vice-versa) */
TRAFFIC_LIGHT_CHANGE,
/** Processar veículos que esperam num semáforo recém-verde */
PROCESS_GREEN_LIGHT,
/** Atualização periódica de estatísticas */
STATISTICS_UPDATE,
/** Terminação da simulação */
SIMULATION_END
}

View File

@@ -0,0 +1,137 @@
package sd.des;
import java.util.ArrayList;
import java.util.List;
import java.util.PriorityQueue;
/**
* Gere a Lista de Eventos Futuros (FEL) para Simulação de Eventos Discretos.
*
* <p>A FEL é uma fila de prioridade que mantém todos os eventos futuros agendados,
* ordenados por timestamp. Este é o coração do paradigma DES - a simulação avança
* processando eventos em ordem cronológica.</p>
*/
public class EventQueue {
private final PriorityQueue<SimulationEvent> queue;
private final List<SimulationEvent> processedEvents; // For logging and analysis
private final boolean trackHistory;
public EventQueue() {
this(true);
}
public EventQueue(boolean trackHistory) {
this.queue = new PriorityQueue<>();
this.processedEvents = trackHistory ? new ArrayList<>() : null;
this.trackHistory = trackHistory;
}
/**
* Agenda um novo evento.
*
* @param event evento a agendar
*/
public void schedule(SimulationEvent event) {
queue.offer(event);
}
/**
* Agenda um evento com um atraso relativo ao tempo atual.
*
* @param currentTime tempo atual da simulação
* @param delay atraso em segundos
* @param type tipo de evento
* @param payload dados do evento
* @param location localização do evento
*/
public void scheduleIn(double currentTime, double delay, DESEventType type,
Object payload, String location) {
double eventTime = currentTime + delay;
schedule(new SimulationEvent(eventTime, type, payload, location));
}
/** Obtém o próximo evento sem o remover */
public SimulationEvent peek() {
return queue.peek();
}
/**
* Obtém e remove o próximo evento.
* Se o rastreamento de histórico estiver ativo, adiciona-o aos eventos processados.
*/
public SimulationEvent poll() {
SimulationEvent event = queue.poll();
if (event != null && trackHistory) {
processedEvents.add(event);
}
return event;
}
/** Verifica se existem eventos pendentes */
public boolean isEmpty() {
return queue.isEmpty();
}
/** @return número de eventos pendentes */
public int size() {
return queue.size();
}
/** Limpa todos os eventos pendentes */
public void clear() {
queue.clear();
}
/**
* Obtém todos os eventos processados (se o rastreamento estiver ativo).
* Retorna uma cópia para evitar modificações.
*/
public List<SimulationEvent> getProcessedEvents() {
if (!trackHistory) {
throw new UnsupportedOperationException("History tracking is disabled");
}
return new ArrayList<>(processedEvents);
}
/** @return número de eventos processados */
public int getProcessedCount() {
return trackHistory ? processedEvents.size() : 0;
}
/**
* Exporta o histórico de eventos para uma string formatada.
* Útil para debugging e visualização da lista completa de eventos.
*/
public String exportEventHistory() {
if (!trackHistory) {
return "Event history tracking is disabled";
}
StringBuilder sb = new StringBuilder();
sb.append("=".repeat(80)).append("\n");
sb.append("SIMULATION EVENT HISTORY\n");
sb.append("Total Events Processed: ").append(processedEvents.size()).append("\n");
sb.append("=".repeat(80)).append("\n");
sb.append(String.format("%-10s | %-25s | %-20s | %s\n",
"Time", "Event Type", "Location", "Details"));
sb.append("-".repeat(80)).append("\n");
for (SimulationEvent event : processedEvents) {
String details = event.getPayload() != null ?
event.getPayload().getClass().getSimpleName() : "null";
sb.append(String.format("%-10.3f | %-25s | %-20s | %s\n",
event.getTimestamp(),
event.getType(),
event.getLocation() != null ? event.getLocation() : "N/A",
details));
}
return sb.toString();
}
@Override
public String toString() {
return String.format("EventQueue[pending=%d, processed=%d]",
queue.size(), getProcessedCount());
}
}

View File

@@ -0,0 +1,67 @@
package sd.des;
/**
* Gere o tempo de simulação para Simulação de Eventos Discretos.
*
* <p>No DES, o tempo avança em saltos discretos de evento para evento,
* não de forma contínua como o tempo real.</p>
*
* <p>Esta classe garante que todos os processos no sistema distribuído
* mantêm uma visão sincronizada do tempo de simulação.</p>
*/
public class SimulationClock {
private double currentTime;
private final double startTime;
private final long wallClockStart;
public SimulationClock() {
this(0.0);
}
public SimulationClock(double startTime) {
this.currentTime = startTime;
this.startTime = startTime;
this.wallClockStart = System.currentTimeMillis();
}
/**
* Avança o tempo de simulação para o timestamp dado.
* O tempo só pode avançar, nunca recuar.
*
* @param newTime novo tempo de simulação
* @throws IllegalArgumentException se newTime for anterior ao tempo atual
*/
public void advanceTo(double newTime) {
if (newTime < currentTime) {
throw new IllegalArgumentException(
String.format("Cannot move time backwards: %.3f -> %.3f", currentTime, newTime));
}
this.currentTime = newTime;
}
/** @return tempo atual da simulação */
public double getCurrentTime() {
return currentTime;
}
/** @return tempo de simulação decorrido desde o início */
public double getElapsedTime() {
return currentTime - startTime;
}
/** @return tempo real decorrido em milissegundos */
public long getWallClockElapsed() {
return System.currentTimeMillis() - wallClockStart;
}
/** Reinicia o relógio para o tempo inicial */
public void reset() {
this.currentTime = startTime;
}
@Override
public String toString() {
return String.format("SimulationClock[time=%.3fs, elapsed=%.3fs]",
currentTime, getElapsedTime());
}
}

View File

@@ -0,0 +1,98 @@
package sd.des;
import java.io.Serializable;
/**
* Evento discreto da simulação.
*
* <p>Unidade fundamental de execução num sistema DES:
* <ul>
* <li>timestamp - quando ocorre
* <li>type - o que acontece
* <li>payload - dados associados
* <li>location - qual processo o trata
* </ul>
*/
public class SimulationEvent implements Comparable<SimulationEvent>, Serializable {
private static final long serialVersionUID = 1L;
private final double timestamp;
private final DESEventType type;
private final Object payload;
private final String location; // Process ID (e.g., "Cr1", "Coordinator", "Exit")
/**
* Cria um novo evento de simulação.
*
* @param timestamp instante do evento (tempo de simulação em segundos)
* @param type tipo de evento
* @param payload dados associados (ex: objeto Vehicle)
* @param location processo que trata o evento
*/
public SimulationEvent(double timestamp, DESEventType type, Object payload, String location) {
this.timestamp = timestamp;
this.type = type;
this.payload = payload;
this.location = location;
}
/** Cria evento sem localização (para eventos locais) */
public SimulationEvent(double timestamp, DESEventType type, Object payload) {
this(timestamp, type, payload, null);
}
public double getTimestamp() {
return timestamp;
}
public DESEventType getType() {
return type;
}
public Object getPayload() {
return payload;
}
public String getLocation() {
return location;
}
/**
* Ordena eventos por timestamp (mais cedo primeiro).
* Em caso de empate, ordena por tipo para determinismo.
*/
@Override
public int compareTo(SimulationEvent other) {
int timeComparison = Double.compare(this.timestamp, other.timestamp);
if (timeComparison != 0) {
return timeComparison;
}
// Tie-breaker: order by event type name
return this.type.name().compareTo(other.type.name());
}
@Override
public String toString() {
return String.format("Event[t=%.3f, type=%s, location=%s]",
timestamp, type, location);
}
@Override
public boolean equals(Object obj) {
if (this == obj) return true;
if (!(obj instanceof SimulationEvent)) return false;
SimulationEvent other = (SimulationEvent) obj;
return Double.compare(timestamp, other.timestamp) == 0 &&
type == other.type &&
(location == null ? other.location == null : location.equals(other.location));
}
@Override
public int hashCode() {
int result = 17;
result = 31 * result + Double.hashCode(timestamp);
result = 31 * result + type.hashCode();
result = 31 * result + (location != null ? location.hashCode() : 0);
return result;
}
}

View File

@@ -0,0 +1,36 @@
package sd.des;
import sd.model.TrafficLight;
/**
* Payload for traffic light change events.
* Contains the traffic light and its direction.
*/
public class TrafficLightEvent {
private final TrafficLight light;
private final String direction;
private final String intersectionId;
public TrafficLightEvent(TrafficLight light, String direction, String intersectionId) {
this.light = light;
this.direction = direction;
this.intersectionId = intersectionId;
}
public TrafficLight getLight() {
return light;
}
public String getDirection() {
return direction;
}
public String getIntersectionId() {
return intersectionId;
}
@Override
public String toString() {
return String.format("TrafficLightEvent[%s-%s]", intersectionId, direction);
}
}

View File

@@ -0,0 +1,213 @@
package sd.logging;
import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.atomic.AtomicBoolean;
/**
* Sistema de registo centralizado de eventos para a simulação distribuída.
*
* <p>Regista todos os eventos da simulação num ficheiro com timestamps e categorização.
* Thread-safe e não-bloqueante para impacto mínimo na performance.</p>
*/
public class EventLogger {
private static EventLogger instance;
private static final Object instanceLock = new Object();
private final PrintWriter writer;
private final BlockingQueue<LogEntry> logQueue;
private final Thread writerThread;
private final AtomicBoolean running;
private final SimpleDateFormat timestampFormat;
private final long simulationStartMillis;
/** Construtor privado para padrão singleton */
private EventLogger(String logFilePath) throws IOException {
this.writer = new PrintWriter(new BufferedWriter(new FileWriter(logFilePath, false)), true);
this.logQueue = new LinkedBlockingQueue<>(10000);
this.running = new AtomicBoolean(true);
this.timestampFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
this.simulationStartMillis = System.currentTimeMillis();
writer.println("=".repeat(80));
writer.println("SIMULATION EVENT LOG");
writer.println("Started: " + timestampFormat.format(new Date()));
writer.println("=".repeat(80));
writer.println();
writer.printf("%-23s | %-8s | %-20s | %-15s | %s\n",
"TIMESTAMP", "REL_TIME", "EVENT_TYPE", "COMPONENT", "DESCRIPTION");
writer.println("-".repeat(80));
writer.flush();
this.writerThread = new Thread(this::processLogQueue, "EventLogger-Writer");
this.writerThread.setDaemon(true);
this.writerThread.start();
}
/** Obtém ou cria a instância singleton */
public static EventLogger getInstance() {
if (instance == null) {
synchronized (instanceLock) {
if (instance == null) {
try {
String logFile = "logs/simulation-events.log";
java.nio.file.Files.createDirectories(
java.nio.file.Paths.get("logs"));
instance = new EventLogger(logFile);
} catch (IOException e) {
System.err.println("Failed to initialize EventLogger: " + e.getMessage());
e.printStackTrace();
}
}
}
}
return instance;
}
/**
* Initialize with custom log file path.
*/
public static void initialize(String logFilePath) throws IOException {
synchronized (instanceLock) {
if (instance != null) {
instance.shutdown();
}
instance = new EventLogger(logFilePath);
}
}
/**
* Logs an event (non-blocking).
*/
public void log(EventType eventType, String component, String description) {
if (!running.get()) return;
LogEntry entry = new LogEntry(
System.currentTimeMillis(),
eventType,
component,
description
);
// Non-blocking offer - if queue is full, drop oldest
if (!logQueue.offer(entry)) {
// Queue full - this shouldn't happen with 10k buffer, but handle gracefully
System.err.println("EventLogger queue full - dropping event: " + eventType);
}
}
/**
* Logs an event with vehicle context.
*/
public void logVehicle(EventType eventType, String component, String vehicleId, String description) {
log(eventType, component, "[" + vehicleId + "] " + description);
}
/**
* Logs an error event.
*/
public void logError(String component, String description, Exception e) {
String fullDescription = description + (e != null ? ": " + e.getMessage() : "");
log(EventType.ERROR, component, fullDescription);
}
/**
* Background thread that writes log entries to file.
*/
private void processLogQueue() {
while (running.get() || !logQueue.isEmpty()) {
try {
LogEntry entry = logQueue.poll(100, java.util.concurrent.TimeUnit.MILLISECONDS);
if (entry != null) {
writeEntry(entry);
}
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
break;
}
}
// Flush remaining entries
while (!logQueue.isEmpty()) {
LogEntry entry = logQueue.poll();
if (entry != null) {
writeEntry(entry);
}
}
}
/**
* Writes a single log entry to file.
*/
private void writeEntry(LogEntry entry) {
String timestamp = timestampFormat.format(new Date(entry.timestampMillis));
double relativeTime = (entry.timestampMillis - simulationStartMillis) / 1000.0;
writer.printf("%-23s | %8.3fs | %-20s | %-15s | %s\n",
timestamp,
relativeTime,
entry.eventType.toString(),
truncate(entry.component, 15),
entry.description
);
// Flush periodically for real-time viewing
if (logQueue.size() < 10) {
writer.flush();
}
}
private String truncate(String str, int maxLength) {
if (str == null) return "";
return str.length() <= maxLength ? str : str.substring(0, maxLength);
}
/**
* Shuts down the logger and flushes all pending entries.
*/
public void shutdown() {
if (!running.compareAndSet(true, false)) {
return; // Already shut down
}
try {
// Wait for writer thread to finish
writerThread.join(5000); // Wait up to 5 seconds
// Write footer
writer.println();
writer.println("-".repeat(80));
writer.println("SIMULATION ENDED");
writer.println("Ended: " + timestampFormat.format(new Date()));
writer.println("=".repeat(80));
writer.close();
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
/**
* Internal class to represent a log entry.
*/
private static class LogEntry {
final long timestampMillis;
final EventType eventType;
final String component;
final String description;
LogEntry(long timestampMillis, EventType eventType, String component, String description) {
this.timestampMillis = timestampMillis;
this.eventType = eventType;
this.component = component;
this.description = description;
}
}
}

View File

@@ -0,0 +1,47 @@
package sd.logging;
/**
* Tipos de eventos que podem ocorrer na simulação.
* Usados para categorizar e filtrar logs.
*/
public enum EventType {
VEHICLE_GENERATED("Vehicle Generated"),
VEHICLE_ARRIVED("Vehicle Arrived"),
VEHICLE_QUEUED("Vehicle Queued"),
VEHICLE_DEPARTED("Vehicle Departed"),
VEHICLE_EXITED("Vehicle Exited"),
LIGHT_CHANGED_GREEN("Light Changed to Green"),
LIGHT_CHANGED_RED("Light Changed to Red"),
LIGHT_REQUEST_GREEN("Light Requested Green"),
LIGHT_RELEASE_GREEN("Light Released Green"),
SIMULATION_STARTED("Simulation Started"),
SIMULATION_STOPPED("Simulation Stopped"),
PROCESS_STARTED("Process Started"),
PROCESS_STOPPED("Process Stopped"),
STATS_UPDATE("Statistics Update"),
CONNECTION_ESTABLISHED("Connection Established"),
CONNECTION_LOST("Connection Lost"),
MESSAGE_SENT("Message Sent"),
MESSAGE_RECEIVED("Message Received"),
ERROR("Error");
private final String displayName;
EventType(String displayName) {
this.displayName = displayName;
}
public String getDisplayName() {
return displayName;
}
@Override
public String toString() {
return displayName;
}
}

View File

@@ -0,0 +1,331 @@
package sd.logging;
import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import sd.model.Vehicle;
/**
* Rastreia e regista a viagem completa de veículos individuais.
*
* <p>Cria ficheiros de trace detalhados com:
* <ul>
* <li>Timestamps de todos os eventos
* <li>Localizações (interseções)
* <li>Tempos de espera em cada semáforo
* <li>Tempos de travessia
* <li>Tempo total no sistema
* </ul>
*/
public class VehicleTracer {
private static VehicleTracer instance;
private static final Object instanceLock = new Object();
private final Map<String, VehicleTrace> trackedVehicles;
private final SimpleDateFormat timestampFormat;
private final long simulationStartMillis;
private final String traceDirectory;
/** Construtor privado (singleton) */
private VehicleTracer(String traceDirectory) {
this.trackedVehicles = new ConcurrentHashMap<>();
this.timestampFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
this.simulationStartMillis = System.currentTimeMillis();
this.traceDirectory = traceDirectory;
try {
java.nio.file.Files.createDirectories(java.nio.file.Paths.get(traceDirectory));
} catch (IOException e) {
System.err.println("Failed to create trace directory: " + e.getMessage());
}
}
/** Obtém ou cria a instância singleton */
public static VehicleTracer getInstance() {
if (instance == null) {
synchronized (instanceLock) {
if (instance == null) {
instance = new VehicleTracer("logs/traces");
}
}
}
return instance;
}
/** Inicializa com diretório de trace customizado */
public static void initialize(String traceDirectory) {
synchronized (instanceLock) {
if (instance != null) {
instance.shutdown();
}
instance = new VehicleTracer(traceDirectory);
}
}
/**
* Começa a rastrear um veículo específico.
* Cria ficheiro de trace para este veículo.
*/
public void startTracking(String vehicleId) {
if (trackedVehicles.containsKey(vehicleId)) {
return; // Already tracking
}
VehicleTrace trace = new VehicleTrace(vehicleId, traceDirectory);
trackedVehicles.put(vehicleId, trace);
trace.logEvent("TRACKING_STARTED", "", "Started tracking vehicle " + vehicleId);
}
/**
* Stops tracking a vehicle and closes its trace file.
*/
public void stopTracking(String vehicleId) {
VehicleTrace trace = trackedVehicles.remove(vehicleId);
if (trace != null) {
trace.logEvent("TRACKING_STOPPED", "", "Stopped tracking vehicle " + vehicleId);
trace.close();
}
}
/**
* Checks if a vehicle is being tracked.
*/
public boolean isTracking(String vehicleId) {
return trackedVehicles.containsKey(vehicleId);
}
/**
* Logs when a vehicle is generated.
*/
public void logGenerated(Vehicle vehicle) {
if (!isTracking(vehicle.getId())) return;
VehicleTrace trace = trackedVehicles.get(vehicle.getId());
if (trace != null) {
trace.logEvent("GENERATED", "Coordinator",
String.format("Type: %s, Entry Time: %.2fs, Route: %s",
vehicle.getType(), vehicle.getEntryTime(), vehicle.getRoute()));
}
}
/**
* Logs when a vehicle arrives at an intersection.
*/
public void logArrival(String vehicleId, String intersection, double simulationTime) {
if (!isTracking(vehicleId)) return;
VehicleTrace trace = trackedVehicles.get(vehicleId);
if (trace != null) {
trace.logEvent("ARRIVED", intersection,
String.format("Arrived at %s (sim time: %.2fs)", intersection, simulationTime));
}
}
/**
* Logs when a vehicle is queued at a traffic light.
*/
public void logQueued(String vehicleId, String intersection, String direction, int queuePosition) {
if (!isTracking(vehicleId)) return;
VehicleTrace trace = trackedVehicles.get(vehicleId);
if (trace != null) {
trace.logEvent("QUEUED", intersection,
String.format("Queued at %s-%s (position: %d)", intersection, direction, queuePosition));
}
}
/**
* Logs when a vehicle starts waiting at a red light.
*/
public void logWaitingStart(String vehicleId, String intersection, String direction) {
if (!isTracking(vehicleId)) return;
VehicleTrace trace = trackedVehicles.get(vehicleId);
if (trace != null) {
trace.logEvent("WAITING_START", intersection,
String.format("Started waiting at %s-%s (light is RED)", intersection, direction));
}
}
/**
* Logs when a vehicle finishes waiting (light turns green).
*/
public void logWaitingEnd(String vehicleId, String intersection, String direction, double waitTime) {
if (!isTracking(vehicleId)) return;
VehicleTrace trace = trackedVehicles.get(vehicleId);
if (trace != null) {
trace.logEvent("WAITING_END", intersection,
String.format("Finished waiting at %s-%s (waited %.2fs)", intersection, direction, waitTime));
}
}
/**
* Logs when a vehicle starts crossing an intersection.
*/
public void logCrossingStart(String vehicleId, String intersection, String direction) {
if (!isTracking(vehicleId)) return;
VehicleTrace trace = trackedVehicles.get(vehicleId);
if (trace != null) {
trace.logEvent("CROSSING_START", intersection,
String.format("Started crossing %s-%s (light is GREEN)", intersection, direction));
}
}
/**
* Logs when a vehicle finishes crossing an intersection.
*/
public void logCrossingEnd(String vehicleId, String intersection, double crossingTime) {
if (!isTracking(vehicleId)) return;
VehicleTrace trace = trackedVehicles.get(vehicleId);
if (trace != null) {
trace.logEvent("CROSSING_END", intersection,
String.format("Finished crossing %s (took %.2fs)", intersection, crossingTime));
}
}
/**
* Logs when a vehicle departs from an intersection.
*/
public void logDeparture(String vehicleId, String intersection, String nextDestination) {
if (!isTracking(vehicleId)) return;
VehicleTrace trace = trackedVehicles.get(vehicleId);
if (trace != null) {
trace.logEvent("DEPARTED", intersection,
String.format("Departed from %s toward %s", intersection, nextDestination));
}
}
/**
* Logs when a vehicle exits the system.
*/
public void logExit(Vehicle vehicle, double systemTime) {
if (!isTracking(vehicle.getId())) return;
VehicleTrace trace = trackedVehicles.get(vehicle.getId());
if (trace != null) {
trace.logEvent("EXITED", "Exit Node",
String.format("Exited system - Total time: %.2fs, Waiting: %.2fs, Crossing: %.2fs",
systemTime, vehicle.getTotalWaitingTime(), vehicle.getTotalCrossingTime()));
// Write summary
trace.writeSummary(vehicle, systemTime);
// Stop tracking and close file
stopTracking(vehicle.getId());
}
}
/**
* Shuts down the tracer and closes all trace files.
*/
public void shutdown() {
for (VehicleTrace trace : trackedVehicles.values()) {
trace.close();
}
trackedVehicles.clear();
}
/**
* Internal class to handle tracing for a single vehicle.
*/
private class VehicleTrace {
private final String vehicleId;
private final PrintWriter writer;
private final long traceStartMillis;
VehicleTrace(String vehicleId, String directory) {
this.vehicleId = vehicleId;
this.traceStartMillis = System.currentTimeMillis();
PrintWriter w = null;
try {
String filename = String.format("%s/vehicle-%s.trace", directory, vehicleId);
w = new PrintWriter(new BufferedWriter(new FileWriter(filename, false)), true);
// Write header
w.println("=".repeat(80));
w.println("VEHICLE TRACE: " + vehicleId);
w.println("Trace Started: " + timestampFormat.format(new Date()));
w.println("=".repeat(80));
w.println();
w.printf("%-23s | %-8s | %-15s | %-15s | %s\n",
"TIMESTAMP", "REL_TIME", "EVENT", "LOCATION", "DESCRIPTION");
w.println("-".repeat(80));
} catch (IOException e) {
System.err.println("Failed to create trace file for " + vehicleId + ": " + e.getMessage());
}
this.writer = w;
}
void logEvent(String eventType, String location, String description) {
if (writer == null) return;
long now = System.currentTimeMillis();
String timestamp = timestampFormat.format(new Date(now));
double relativeTime = (now - traceStartMillis) / 1000.0;
writer.printf("%-23s | %8.3fs | %-15s | %-15s | %s\n",
timestamp,
relativeTime,
truncate(eventType, 15),
truncate(location, 15),
description
);
writer.flush();
}
void writeSummary(Vehicle vehicle, double systemTime) {
if (writer == null) return;
writer.println();
writer.println("=".repeat(80));
writer.println("JOURNEY SUMMARY");
writer.println("=".repeat(80));
writer.println("Vehicle ID: " + vehicle.getId());
writer.println("Vehicle Type: " + vehicle.getType());
writer.println("Route: " + vehicle.getRoute());
writer.println();
writer.printf("Entry Time: %.2f seconds\n", vehicle.getEntryTime());
writer.printf("Total System Time: %.2f seconds\n", systemTime);
writer.printf("Total Waiting Time: %.2f seconds (%.1f%%)\n",
vehicle.getTotalWaitingTime(),
100.0 * vehicle.getTotalWaitingTime() / systemTime);
writer.printf("Total Crossing Time: %.2f seconds (%.1f%%)\n",
vehicle.getTotalCrossingTime(),
100.0 * vehicle.getTotalCrossingTime() / systemTime);
writer.printf("Travel Time: %.2f seconds (%.1f%%)\n",
systemTime - vehicle.getTotalWaitingTime() - vehicle.getTotalCrossingTime(),
100.0 * (systemTime - vehicle.getTotalWaitingTime() - vehicle.getTotalCrossingTime()) / systemTime);
writer.println("=".repeat(80));
}
void close() {
if (writer != null) {
writer.println();
writer.println("-".repeat(80));
writer.println("END OF TRACE");
writer.println("=".repeat(80));
writer.close();
}
}
private String truncate(String str, int maxLength) {
if (str == null) return "";
return str.length() <= maxLength ? str : str.substring(0, maxLength);
}
}
}

View File

@@ -1,61 +0,0 @@
package sd.model;
import java.io.Serializable;
/**
* Represents an event in the discrete event simulation.
* Events are ordered by timestamp for sequential processing.
*/
public class Event implements Comparable<Event>, Serializable {
private static final long serialVersionUID = 1L;
private final double timestamp; // Time when the event occurs
private final EventType type;
private final Object data; // Data associated with the event (e.g., Vehicle, traffic light id, etc.)
private final String location; // Intersection or location where the event occurs
public Event(double timestamp, EventType type, Object data, String location) {
this.timestamp = timestamp;
this.type = type;
this.data = data;
this.location = location;
}
public Event(double timestamp, EventType type, Object data) {
this(timestamp, type, data, null);
}
@Override
public int compareTo(Event other) {
// Sort by timestamp (earlier events have priority)
int cmp = Double.compare(this.timestamp, other.timestamp);
if (cmp == 0) {
// If timestamps are equal, sort by event type
return this.type.compareTo(other.type);
}
return cmp;
}
// Getters
public double getTimestamp() {
return timestamp;
}
public EventType getType() {
return type;
}
public Object getData() {
return data;
}
public String getLocation() {
return location;
}
@Override
public String toString() {
return String.format("Event{t=%.2f, type=%s, loc=%s}",
timestamp, type, location);
}
}

View File

@@ -1,13 +0,0 @@
package sd.model;
/**
* Enumeration representing event types in the simulation.
*/
public enum EventType {
VEHICLE_ARRIVAL, // Vehicle arrives at an intersection
TRAFFIC_LIGHT_CHANGE, // Traffic light changes state (green/red)
CROSSING_START, // Vehicle starts crossing the intersection
CROSSING_END, // Vehicle finishes crossing
VEHICLE_GENERATION, // New vehicle is generated in the system
STATISTICS_UPDATE // Time to send statistics to dashboard
}

View File

@@ -6,23 +6,52 @@ import java.util.List;
import java.util.Map;
/**
* Represents an intersection in the traffic simulation.
* Representa uma interseção na simulação de tráfego.
*
* Each intersection coordinates multiple traffic lights - one for each direction -
* and handles routing vehicles based on their next destination.
* <p>Uma interseção funciona como um nó central da rede. Não controla lógica diretamente,
* mas gere um conjunto de semáforos ({@link TrafficLight}).</p>
*
* <p>Responsabilidades principais:</p>
* <ul>
* <li>Manter um {@link TrafficLight} para cada direção (Norte, Este, etc.)</li>
* <li>Gerir uma tabela de encaminhamento que mapeia destinos para direções</li>
* <li>Receber veículos e colocá-los na fila do semáforo correto</li>
* <li>Acompanhar estatísticas agregadas do tráfego</li>
* </ul>
*/
public class Intersection {
// Identity and configuration
private final String id; // ex. "Cr1", "Cr2"
private final Map<String, TrafficLight> trafficLights; // direction -> light
private final Map<String, String> routing; // destination -> direction
/** Identificador único da interseção (ex: "Cr1", "Cr2") */
private final String id;
// Stats
/**
* Mapa com todos os semáforos desta interseção.
* Chave: Direção (String, ex: "Norte", "Este")
* Valor: Objeto {@link TrafficLight} correspondente
*/
private final Map<String, TrafficLight> trafficLights;
/**
* Tabela de encaminhamento da interseção.
* Chave: Próximo destino (String, ex: "Cr3", "S" para saída)
* Valor: Direção que o veículo deve tomar nesta interseção
*/
private final Map<String, String> routing;
/** Número total de veículos recebidos por esta interseção */
private int totalVehiclesReceived;
/** Número total de veículos que partiram desta interseção */
private int totalVehiclesSent;
/** Média acumulada do tempo de espera dos veículos nesta interseção */
private double averageWaitingTime;
/**
* Cria uma nova interseção.
* Inicializa mapas vazios para semáforos e encaminhamento.
*
* @param id identificador único da interseção (ex: "Cr1")
*/
public Intersection(String id) {
this.id = id;
this.trafficLights = new HashMap<>();
@@ -33,91 +62,166 @@ public class Intersection {
}
/**
* Registers a traffic light under this intersection.
* The light is identified by its direction (ex., "North", "East").
* Regista um novo semáforo nesta interseção.
* O semáforo é mapeado pela sua direção.
*
* @param trafficLight o semáforo a adicionar
*/
public void addTrafficLight(TrafficLight trafficLight) {
trafficLights.put(trafficLight.getDirection(), trafficLight);
}
/**
* Defines how vehicles should be routed through this intersection.
* Define uma regra de encaminhamento para esta interseção.
*
* @param nextDestination The next intersection or exit on the vehicle's route
* @param direction The direction (traffic light) vehicles should take
* <p>Por exemplo, {@code configureRoute("Cr3", "Este")} significa:
* "Qualquer veículo que chegue aqui com destino 'Cr3' deve ser enviado
* para a fila do semáforo da direção Este."</p>
*
* @param nextDestination ID da próxima interseção ou saída (ex: "Cr3", "S")
* @param direction direção (e respetivo semáforo) a usar nesta interseção
*/
public void configureRoute(String nextDestination, String direction) {
routing.put(nextDestination, direction);
}
/**
* Accepts an incoming vehicle and places it in the correct queue.
* If the route or traffic light can't be found, logs an error.
* Recebe um veículo e coloca-o na fila correta.
*
* <p>Passos executados:</p>
* <ol>
* <li>Incrementa o contador de veículos recebidos</li>
* <li>Obtém o próximo destino do veículo</li>
* <li>Consulta a tabela de encaminhamento para encontrar a direção</li>
* <li>Adiciona o veículo à fila do semáforo apropriado</li>
* </ol>
*
* @param vehicle o veículo que chega à interseção
*/
public void receiveVehicle(Vehicle vehicle) {
totalVehiclesReceived++;
// Note: Route advancement is handled by SimulationEngine.handleVehicleArrival()
// before calling this method, so we don't advance here.
String nextDestination = vehicle.getCurrentDestination();
// Check if vehicle reached final destination
if (nextDestination == null) {
System.out.printf("[%s] Vehicle %s reached final destination%n",
this.id, vehicle.getId());
return;
}
String direction = routing.get(nextDestination);
if (direction != null && trafficLights.containsKey(direction)) {
// Found a valid route and light, add vehicle to the queue
trafficLights.get(direction).addVehicle(vehicle);
} else {
// Routing error: No rule for this destination or no light for that direction
System.err.printf(
"Routing error: could not place vehicle %s (destination: %s)%n",
vehicle.getId(), nextDestination
"Routing error at %s: could not place vehicle %s (destination: %s, found direction: %s)%n",
this.id, vehicle.getId(), nextDestination, direction
);
}
}
/** Returns the traffic light controlling the given direction, if any. */
/**
* Retorna a direção que um veículo deve tomar para alcançar um destino.
*
* @param destination o próximo destino (ex: "Cr3", "S")
* @return a direção (ex: "Este"), ou null se não houver rota configurada
*/
public String getDirectionForDestination(String destination) {
return routing.get(destination);
}
/**
* Retorna o semáforo que controla uma determinada direção.
*
* @param direction a direção (ex: "Norte")
* @return o objeto {@link TrafficLight}, ou null se não existir
*/
public TrafficLight getTrafficLight(String direction) {
return trafficLights.get(direction);
}
/** Returns all traffic lights belonging to this intersection. */
/**
* Retorna uma lista com todos os semáforos desta interseção.
*
* @return uma nova {@link List} com todos os semáforos
*/
public List<TrafficLight> getTrafficLights() {
return new ArrayList<>(trafficLights.values());
}
/** Returns the total number of vehicles currently queued across all directions. */
/**
* Retorna o número total de veículos em fila em todos os semáforos.
* Usa Java Stream API para somar os tamanhos de todas as filas.
*
* @return a soma dos tamanhos de todas as filas
*/
public int getTotalQueueSize() {
return trafficLights.values().stream()
.mapToInt(TrafficLight::getQueueSize)
.sum();
}
// --- Stats and getters ---
/**
* @return o identificador único desta interseção
*/
public String getId() {
return id;
}
/**
* @return o número total de veículos que chegaram a esta interseção
*/
public int getTotalVehiclesReceived() {
return totalVehiclesReceived;
}
/**
* @return o número total de veículos que partiram desta interseção
*/
public int getTotalVehiclesSent() {
return totalVehiclesSent;
}
/**
* Incrementa o contador de veículos que partiram com sucesso.
* Tipicamente chamado após um veículo completar a travessia.
*/
public void incrementVehiclesSent() {
totalVehiclesSent++;
}
/**
* @return a média do tempo de espera dos veículos nesta interseção
*/
public double getAverageWaitingTime() {
return averageWaitingTime;
}
/**
* Updates the running average waiting time with a new sample.
* Atualiza a média do tempo de espera com uma nova amostra.
* Usa a fórmula: Nova Média = (Média Antiga * (N-1) + Novo Valor) / N
*
* @param newTime tempo de espera (em segundos) do veículo que acabou de partir
*/
public void updateAverageWaitingTime(double newTime) {
// Weighted incremental average (avoids recalculating from scratch)
if (totalVehiclesSent > 0) {
averageWaitingTime = (averageWaitingTime * (totalVehiclesSent - 1) + newTime)
/ totalVehiclesSent;
} else if (totalVehiclesSent == 1) {
averageWaitingTime = newTime;
}
}
/**
* @return representação textual do estado atual da interseção
*/
@Override
public String toString() {
return String.format(

View File

@@ -0,0 +1,143 @@
package sd.model;
import java.util.UUID;
import sd.protocol.MessageProtocol;
/**
* Representa uma mensagem trocada entre processos na simulação distribuída.
*
* <p>Cada mensagem tem um ID único, tipo, remetente, destino e payload.
* Implementa {@link MessageProtocol} que estende Serializable para transmissão pela rede.</p>
*/
public class Message implements MessageProtocol {
private static final long serialVersionUID = 1L;
/** Identificador único desta mensagem */
private final String messageId;
/** Tipo desta mensagem (ex: VEHICLE_TRANSFER, STATS_UPDATE) */
private final MessageType type;
/** Identificador do processo que enviou esta mensagem */
private final String senderId;
/** Identificador do processo de destino (pode ser null para broadcast) */
private final String destinationId;
/** Dados a serem transmitidos (o tipo depende do tipo de mensagem) */
private final Object payload;
/** Timestamp de criação da mensagem (tempo de simulação ou real) */
private final long timestamp;
/**
* Cria uma nova mensagem com todos os parâmetros.
*
* @param type tipo da mensagem
* @param senderId ID do processo remetente
* @param destinationId ID do processo de destino (null para broadcast)
* @param payload conteúdo da mensagem
* @param timestamp timestamp de criação da mensagem
*/
public Message(MessageType type, String senderId, String destinationId,
Object payload, long timestamp) {
this.messageId = UUID.randomUUID().toString();
this.type = type;
this.senderId = senderId;
this.destinationId = destinationId;
this.payload = payload;
this.timestamp = timestamp;
}
/**
* Cria uma nova mensagem usando o tempo atual do sistema como timestamp.
*
* @param type tipo da mensagem
* @param senderId ID do processo remetente
* @param destinationId ID do processo de destino
* @param payload conteúdo da mensagem
*/
public Message(MessageType type, String senderId, String destinationId, Object payload) {
this(type, senderId, destinationId, payload, System.currentTimeMillis());
}
/**
* Cria uma mensagem de broadcast (sem destino específico).
*
* @param type tipo da mensagem
* @param senderId ID do processo remetente
* @param payload conteúdo da mensagem
*/
public Message(MessageType type, String senderId, Object payload) {
this(type, senderId, null, payload, System.currentTimeMillis());
}
//Getters
public String getMessageId() {
return messageId;
}
public MessageType getType() {
return type;
}
public String getSenderId() {
return senderId;
}
public String getDestinationId() {
return destinationId;
}
public Object getPayload() {
return payload;
}
public long getTimestamp() {
return timestamp;
}
/**
* Checks if this is a broadcast message (no specific destination).
*
* @return true if destinationId is null, false otherwise
*/
public boolean isBroadcast() {
return destinationId == null;
}
/**
* Gets the payload cast to a specific type.
* Use with caution and ensure type safety.
*
* @param <T> The expected payload type
* @return The payload cast to type T
* @throws ClassCastException if the payload is not of type T
*/
@SuppressWarnings("unchecked")
public <T> T getPayloadAs(Class<T> clazz) {
return (T) payload;
}
// Impl MessageProtocol interface
@Override
public String getSourceNode() {
return senderId;
}
@Override
public String getDestinationNode() {
return destinationId;
}
@Override
public String toString() {
return String.format("Message[id=%s, type=%s, from=%s, to=%s, timestamp=%d]",
messageId, type, senderId,
destinationId != null ? destinationId : "BROADCAST",
timestamp);
}
}

View File

@@ -0,0 +1,43 @@
package sd.model;
/**
* Enumeração que representa todos os tipos de mensagens possíveis para
* comunicação distribuída.
* Estes tipos são usados para a comunicação entre processos dos diferentes
* componentes
* do sistema de simulação de tráfego distribuído.
*/
public enum MessageType {
/**
* Mensagem para transferir um veículo entre interseções ou processos.
* Payload: Objeto Vehicle com o estado atual
*/
VEHICLE_TRANSFER,
/**
* Mensagem para atualizar estatísticas em todo o sistema distribuído.
* Payload: Dados estatísticos (tempos de espera, tamanhos de fila, etc.)
*/
STATS_UPDATE,
/**
* Mensagem para sincronizar a hora de início da simulação em todos os
* processos.
* Payload: Timestamp de início (long milissegundos)
*/
SIMULATION_START,
/**
* Mensagem para notificar sobre a geração de um novo veículo.
* Payload: Parâmetros de geração do veículo
*/
VEHICLE_SPAWN,
/**
* Mensagem para sinalizar o encerramento de um processo.
* Payload: ID do processo e motivo
*/
SHUTDOWN,
}

View File

@@ -1,40 +1,71 @@
package sd.model;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.Map;
import java.util.Queue;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
/**
* Represents a single traffic light controlling one direction at an intersection.
* Representa um semáforo numa interseção.
*
* Each light maintains its own queue of vehicles and alternates between
* green and red states. It's designed to be thread-safe (maybe...), so multiple
* threads (like vehicles or controllers) can safely interact with it.
* <p>Cada semáforo controla uma direção específica e mantém uma fila de veículos à espera.
* Alterna entre os estados VERDE e VERMELHO de acordo com a temporização configurada.</p>
*
* <p><strong>Thread-safety:</strong> Usa locks para permitir acesso concorrente seguro entre
* a thread de processamento de eventos e as threads de I/O de rede.</p>
*/
public class TrafficLight {
// Identity and configuration
private final String id; // ex. "Cr1-N"
private final String direction; // ex. "North", "South", etc.
/** Identificador único do semáforo (ex: "Cr1-N") */
private final String id;
/** Direção que este semáforo controla (ex: "Norte", "Sul") */
private final String direction;
/** Estado atual do semáforo (VERDE ou VERMELHO) */
private TrafficLightState state;
// Vehicle management
/** Fila de veículos à espera neste semáforo */
private final Queue<Vehicle> queue;
// Synchronization primitives
/**
* Lock para proteger o estado mutável ({@link #queue} e {@link #state})
* de acesso concorrente.
*/
private final Lock lock;
/** Variável de condição para sinalizar adição de veículos (uso futuro) */
private final Condition vehicleAdded;
/** Variável de condição para sinalizar que o semáforo ficou verde (uso futuro) */
private final Condition lightGreen;
// Timing configuration (seconds)
/** Duração (segundos) que o semáforo permanece VERDE */
private double greenTime;
/** Duração (segundos) que o semáforo permanece VERMELHO */
private double redTime;
// Basic stats
/** Número total de veículos processados por este semáforo */
private int totalVehiclesProcessed;
/**
* Regista quando os veículos chegam ao semáforo para cálculo do tempo de espera.
* Mapeia ID do veículo para timestamp de chegada (milissegundos).
*/
private final Map<String, Long> vehicleArrivalTimes;
/**
* Cria um novo semáforo.
*
* @param id identificador único (ex: "Cr1-N")
* @param direction direção controlada (ex: "Norte")
* @param greenTime duração do estado VERDE em segundos
* @param redTime duração do estado VERMELHO em segundos
*/
public TrafficLight(String id, String direction, double greenTime, double redTime) {
this.id = id;
this.direction = direction;
@@ -47,17 +78,23 @@ public class TrafficLight {
this.greenTime = greenTime;
this.redTime = redTime;
this.vehicleArrivalTimes = new HashMap<>();
this.totalVehiclesProcessed = 0;
}
/**
* Adds a vehicle to the waiting queue.
* Signals any waiting threads that a new vehicle has arrived.
* Coloca um veículo na fila deste semáforo.
*
* Registamos a hora de chegada para podermos calcular mais tarde quanto tempo o
* veículo esperou.
*
* @param vehicle O veículo que chega ao semáforo.
*/
public void addVehicle(Vehicle vehicle) {
lock.lock();
try {
queue.offer(vehicle);
vehicleArrivalTimes.put(vehicle.getId(), System.currentTimeMillis());
vehicleAdded.signalAll();
} finally {
lock.unlock();
@@ -65,15 +102,32 @@ public class TrafficLight {
}
/**
* Attempts to let one vehicle pass through.
* Only works if the light is green; otherwise returns null.
* Remove um veículo da fila para travessia.
*
* <p>Só remove se:</p>
* <ul>
* <li>O semáforo estiver VERDE</li>
* <li>Existir pelo menos um veículo na fila</li>
* </ul>
*
* <p>Atualiza automaticamente as estatísticas de tempo de espera do veículo.</p>
*
* @return o veículo que vai atravessar, ou null se não for possível
*/
public Vehicle removeVehicle() {
lock.lock();
try {
if (state == TrafficLightState.GREEN && !queue.isEmpty()) {
Vehicle vehicle = queue.poll();
if (vehicle != null) {
totalVehiclesProcessed++;
Long arrivalTime = vehicleArrivalTimes.remove(vehicle.getId());
if (arrivalTime != null) {
double waitTimeSeconds = (System.currentTimeMillis() - arrivalTime) / 1000.0;
vehicle.addWaitingTime(waitTimeSeconds);
}
}
return vehicle;
}
return null;
@@ -83,9 +137,9 @@ public class TrafficLight {
}
/**
* Changes the lights state (ex., RED -> GREEN).
* When the light turns green, waiting threads are notified.
* ¯\_(ツ)_/¯
* Muda o estado do semáforo.
*
* @param newState novo estado (VERDE ou VERMELHO)
*/
public void changeState(TrafficLightState newState) {
lock.lock();
@@ -99,7 +153,12 @@ public class TrafficLight {
}
}
/** Returns how many vehicles are currently queued. */
/**
* Retorna quantos veículos estão atualmente na fila.
* Método thread-safe.
*
* @return tamanho da fila
*/
public int getQueueSize() {
lock.lock();
try {
@@ -109,7 +168,12 @@ public class TrafficLight {
}
}
/** Checks whether there are no vehicles waiting. */
/**
* Verifica se a fila está vazia.
* Método thread-safe.
*
* @return {@code true} se não houver veículos, {@code false} caso contrário
*/
public boolean isQueueEmpty() {
lock.lock();
try {
@@ -119,16 +183,22 @@ public class TrafficLight {
}
}
// --- Getters & Setters ---
/** @return identificador único do semáforo */
public String getId() {
return id;
}
/** @return direção controlada por este semáforo */
public String getDirection() {
return direction;
}
/**
* Obtém o estado atual do semáforo.
* Método thread-safe.
*
* @return estado atual (VERDE ou VERMELHO)
*/
public TrafficLightState getState() {
lock.lock();
try {
@@ -138,43 +208,60 @@ public class TrafficLight {
}
}
/** @return duração configurada do sinal verde em segundos */
public double getGreenTime() {
return greenTime;
}
/**
* Define a duração do sinal verde.
*
* @param greenTime nova duração em segundos
*/
public void setGreenTime(double greenTime) {
this.greenTime = greenTime;
}
/** @return duração configurada do sinal vermelho em segundos */
public double getRedTime() {
return redTime;
}
/**
* Define a duração do sinal vermelho.
*
* @param redTime nova duração em segundos
*/
public void setRedTime(double redTime) {
this.redTime = redTime;
}
/** @return número total de veículos processados por este semáforo */
public int getTotalVehiclesProcessed() {
return totalVehiclesProcessed;
}
/** @return objeto {@link Lock} para sincronização avançada */
public Lock getLock() {
return lock;
}
/** @return condição para adição de veículos */
public Condition getVehicleAdded() {
return vehicleAdded;
}
/** @return condição para semáforo ficar verde */
public Condition getLightGreen() {
return lightGreen;
}
/** @return representação textual do estado atual do semáforo */
@Override
public String toString() {
return String.format(
"TrafficLight{id='%s', direction='%s', state=%s, queueSize=%d}",
id, direction, state, getQueueSize()
id, direction, getState(), getQueueSize()
);
}
}

View File

@@ -1,9 +1,13 @@
package sd.model;
/**
* Enumeration representing the state of a traffic light.
* Estados possíveis de um semáforo ({@link TrafficLight}).
*/
public enum TrafficLightState {
GREEN, // Allows passage
RED // Blocks passage
/** Sinal verde - veículos podem passar */
GREEN,
/** Sinal vermelho - veículos aguardam na fila */
RED
}

View File

@@ -5,27 +5,57 @@ import java.util.ArrayList;
import java.util.List;
/**
* Represents a single vehicle moving through the simulation.
* Representa um veículo que se move pela rede de interseções.
*
* Each vehicle has a route - a sequence of intersections it will pass through -
* and keeps track of how long it has waited and traveled overall.
* <p>Esta classe é o "gémeo digital" de um carro, mota ou camião.
* Mantém toda a informação necessária:</p>
* <ul>
* <li>Identificação e tipo do veículo</li>
* <li>Rota completa a percorrer</li>
* <li>Métricas de tempo (espera, travessia, total)</li>
* </ul>
*
* Serializable so it can be sent between processes or nodes over sockets. type shit
* <p>O objeto é serializado e enviado pela rede à medida que o veículo
* se move entre processos distribuídos.</p>
*/
public class Vehicle implements Serializable {
private static final long serialVersionUID = 1L;
// Identity and configuration
/** Identificador único do veículo (ex: "V1", "V2") */
private final String id;
/** Tipo de veículo (BIKE, LIGHT, HEAVY) */
private final VehicleType type;
private final double entryTime; // When it entered the system
private final List<String> route; // ex., ["Cr1", "Cr3", "S"]
private int currentRouteIndex; // Current position in the route
// Metrics
private double totalWaitingTime; // Total time spent waiting at red lights
private double totalCrossingTime; // Time spent actually moving between intersections
/** Tempo de simulação (em segundos) em que o veículo foi gerado */
private final double entryTime;
/**
* Lista ordenada completa de destinos (IDs de interseções e saída "S").
* Exemplo: ["Cr1", "Cr3", "S"]
*/
private final List<String> route;
/**
* Índice que acompanha o progresso do veículo ao longo da {@link #route}.
* {@code route.get(currentRouteIndex)} é o destino *atual* do veículo.
*/
private int currentRouteIndex;
/** Tempo total acumulado (segundos) que o veículo passou à espera em semáforos vermelhos */
private double totalWaitingTime;
/** Tempo total acumulado (segundos) que o veículo passou a atravessar interseções */
private double totalCrossingTime;
/**
* Cria um novo veículo pronto para se fazer à estrada.
*
* @param id Identificador único (ex: "V1").
* @param type O tipo de veículo (determina velocidade/tamanho).
* @param entryTime Quando este veículo entrou na simulação (segundos).
* @param route A lista ordenada de paragens (Interseções -> Saída).
*/
public Vehicle(String id, VehicleType type, double entryTime, List<String> route) {
this.id = id;
this.type = type;
@@ -37,9 +67,12 @@ public class Vehicle implements Serializable {
}
/**
* Moves the vehicle to the next stop in its route.
* Move o GPS interno do veículo para o próximo destino.
*
* @return true if there are still destinations ahead, false if the route is finished
* Chame isto quando um veículo chega a uma interseção para atualizar para onde
* deve ir a seguir.
*
* @return true se houver mais paragens, false se a viagem terminou.
*/
public boolean advanceRoute() {
currentRouteIndex++;
@@ -47,71 +80,93 @@ public class Vehicle implements Serializable {
}
/**
* Gets the current destination (the next intersection or exit).
* Returns null if the route is already complete.
* Obtém o destino atual (próxima interseção ou saída) para onde o veículo se dirige.
*
* @return ID do destino atual (ex: "Cr1"), ou {@code null} se a rota terminou
*/
public String getCurrentDestination() {
return (currentRouteIndex < route.size()) ? route.get(currentRouteIndex) : null;
}
/** Returns true if the vehicle has completed its entire route. */
/**
* Verifica se o veículo completou toda a sua rota.
*
* @return {@code true} se chegou ao fim da rota, {@code false} caso contrário
*/
public boolean hasReachedEnd() {
return currentRouteIndex >= route.size();
}
// --- Getters and metrics management ---
/** @return identificador único do veículo */
public String getId() {
return id;
}
/** @return tipo do veículo */
public VehicleType getType() {
return type;
}
/** @return tempo de simulação em que o veículo entrou no sistema */
public double getEntryTime() {
return entryTime;
}
/** @return cópia da rota completa do veículo */
public List<String> getRoute() {
return new ArrayList<>(route);
}
/** @return índice atual apontando para o destino do veículo na sua rota */
public int getCurrentRouteIndex() {
return currentRouteIndex;
}
/** @return tempo total acumulado de espera em segundos */
public double getTotalWaitingTime() {
return totalWaitingTime;
}
/**
* Adiciona uma duração ao tempo total de espera do veículo.
* Chamado quando um veículo começa a atravessar uma interseção.
*
* @param time duração (em segundos) a adicionar
*/
public void addWaitingTime(double time) {
totalWaitingTime += time;
}
/** @return tempo total acumulado de travessia em segundos */
public double getTotalCrossingTime() {
return totalCrossingTime;
}
/**
* Adiciona uma duração ao tempo total de travessia do veículo.
* Chamado quando um veículo termina de atravessar uma interseção.
*
* @param time duração (em segundos) a adicionar
*/
public void addCrossingTime(double time) {
totalCrossingTime += time;
}
/**
* Calculates how long the vehicle has been in the system so far.
* Calcula o tempo total que o veículo passou no sistema até agora.
*
* @param currentTime the current simulation time
* @return total elapsed time since the vehicle entered
* @param currentTime tempo atual da simulação
* @return tempo total decorrido (em segundos) desde que o veículo foi gerado
*/
public double getTotalTravelTime(double currentTime) {
return currentTime - entryTime;
}
/** @return representação textual do estado atual do veículo */
@Override
public String toString() {
return String.format(
"Vehicle{id='%s', type=%s, next='%s', route=%s}",
id, type, getCurrentDestination(), route
);
id, type, getCurrentDestination(), route);
}
}

View File

@@ -1,10 +1,19 @@
package sd.model;
/**
* Enumeration representing vehicle types in the simulation.
* Enumeração dos diferentes tipos de veículos na simulação.
*
* <p>Cada tipo pode ter propriedades diferentes como tempo de travessia
* e probabilidade de geração, definidas na {@link sd.config.SimulationConfig}.</p>
*/
public enum VehicleType {
BIKE, // Motorcycle
LIGHT, // Light vehicle (car)
HEAVY // Heavy vehicle (truck, bus)
/** Bicicleta ou motocicleta - tempo de travessia curto */
BIKE,
/** Veículo ligeiro padrão (carro) - tipo mais comum */
LIGHT,
/** Veículo pesado (camião ou autocarro) - tempo de travessia longo */
HEAVY
}

View File

@@ -0,0 +1,45 @@
package sd.protocol;
import java.io.Serializable;
import sd.model.MessageType; // Assuming MessageType is in sd.model or sd.protocol
/**
* Contrato para todas as mensagens trocadas no simulador.
*
* <p>Garante que mensagens podem ser identificadas e encaminhadas.
* Extende Serializable para permitir envio via sockets.
*/
public interface MessageProtocol extends Serializable {
/**
* Tipo da mensagem, indicando o seu propósito.
* @return tipo (ex: VEHICLE_TRANSFER, STATS_UPDATE)
*/
MessageType getType();
/**
* Dados (payload) que esta mensagem transporta.
*
* <p>Tipo depende do MessageType:
* <ul>
* <li>VEHICLE_TRANSFER → objeto Vehicle
* <li>STATS_UPDATE → objeto de estatísticas
* </ul>
*
* @return payload (deve ser Serializable)
*/
Object getPayload();
/**
* ID do nó (processo) que enviou a mensagem.
* @return ID de origem (ex: "Cr1", "Cr5", "S")
*/
String getSourceNode();
/**
* ID do nó de destino.
* @return ID de destino (ex: "Cr2", "DashboardServer")
*/
String getDestinationNode();
}

View File

@@ -0,0 +1,196 @@
package sd.protocol;
import java.io.Closeable;
import java.io.DataInputStream;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.net.ConnectException;
import java.net.Socket;
import java.net.SocketTimeoutException;
import java.net.UnknownHostException;
import java.util.concurrent.TimeUnit;
import sd.serialization.MessageSerializer;
import sd.serialization.SerializationException;
import sd.serialization.SerializerFactory;
/**
* Simplifica comunicação via sockets.
* Inclui lógica de retry para robustez.
*/
public class SocketConnection implements Closeable {
private final Socket socket;
private final OutputStream outputStream;
private final InputStream inputStream;
private final MessageSerializer serializer;
/** Número máximo de tentativas de ligação */
private static final int MAX_RETRIES = 5;
/** Atraso entre tentativas (milissegundos) */
private static final long RETRY_DELAY_MS = 1000;
/**
* Construtor do cliente que inicia a ligação.
* Tenta ligar a um servidor já em escuta, com retry.
*
* @param host endereço do host (ex: "localhost")
* @param port número da porta
* @throws IOException se falhar após todas as tentativas
* @throws UnknownHostException se o host não for encontrado
* @throws InterruptedException se a thread for interrompida
*/
public SocketConnection(String host, int port) throws IOException, UnknownHostException, InterruptedException {
Socket tempSocket = null;
IOException lastException = null;
System.out.printf("[SocketConnection] Attempting to connect to %s:%d...%n", host, port);
// --- Retry Loop ---
for (int attempt = 1; attempt <= MAX_RETRIES; attempt++) {
try {
// Try to establish the connection
tempSocket = new Socket(host, port);
// If successful, break out of the retry loop
System.out.printf("[SocketConnection] Connected successfully on attempt %d.%n", attempt);
lastException = null; // Clear last error on success
break;
} catch (ConnectException | SocketTimeoutException e) {
// These are common errors indicating the server might not be ready.
lastException = e;
System.out.printf("[SocketConnection] Attempt %d/%d failed: %s. Retrying in %d ms...%n",
attempt, MAX_RETRIES, e.getMessage(), RETRY_DELAY_MS);
if (attempt < MAX_RETRIES) {
// Wait before the next attempt
TimeUnit.MILLISECONDS.sleep(RETRY_DELAY_MS);
}
} catch (IOException e) {
// Other IOExceptions might be more permanent, but we retry anyway.
lastException = e;
System.out.printf("[SocketConnection] Attempt %d/%d failed with IOException: %s. Retrying in %d ms...%n",
attempt, MAX_RETRIES, e.getMessage(), RETRY_DELAY_MS);
if (attempt < MAX_RETRIES) {
TimeUnit.MILLISECONDS.sleep(RETRY_DELAY_MS);
}
}
} // --- End of Retry Loop ---
// If after all retries tempSocket is still null, it means connection failed permanently.
if (tempSocket == null) {
System.err.printf("[SocketConnection] Failed to connect to %s:%d after %d attempts.%n", host, port, MAX_RETRIES);
if (lastException != null) {
throw lastException; // Throw the last exception encountered
} else {
// Should not happen if loop ran, but as a fallback
throw new IOException("Failed to connect after " + MAX_RETRIES + " attempts, reason unknown.");
}
}
// If connection was successful, assign to final variable and create streams
this.socket = tempSocket;
this.outputStream = socket.getOutputStream();
this.inputStream = socket.getInputStream();
this.serializer = SerializerFactory.createDefault();
}
/**
* Constructor for the "Server" (who accepts the connection).
* Receives a Socket that has already been accepted by a ServerSocket.
* No retry logic needed here as the connection is already established.
*
* @param acceptedSocket The Socket returned by serverSocket.accept().
* @throws IOException If stream creation fails.
*/
public SocketConnection(Socket acceptedSocket) throws IOException {
this.socket = acceptedSocket;
this.outputStream = socket.getOutputStream();
this.inputStream = socket.getInputStream();
this.serializer = SerializerFactory.createDefault();
}
/**
* Sends (serializes) a MessageProtocol object over the socket.
*
* @param message The "envelope" (which contains the Vehicle) to be sent.
* @throws IOException If writing to the stream fails or socket is not connected.
*/
public synchronized void sendMessage(MessageProtocol message) throws IOException {
if (socket == null || !socket.isConnected()) {
throw new IOException("Socket is not connected");
}
try {
// Serializa para bytes JSON
byte[] data = serializer.serialize(message);
// Write 4-byte length prefix
DataOutputStream dataOut = new DataOutputStream(outputStream);
dataOut.writeInt(data.length);
dataOut.write(data);
dataOut.flush();
} catch (SerializationException e) {
throw new IOException("Failed to serialize message", e);
}
}
/**
* Tries to read (deserialize) a MessageProtocol object from the socket.
*
* @return The "envelope" (MessageProtocol) that was received.
* @throws IOException If the connection is lost, the stream is corrupted, or socket is not connected.
* @throws ClassNotFoundException If the received object is unknown.
*/
public MessageProtocol receiveMessage() throws IOException, ClassNotFoundException {
if (socket == null || !socket.isConnected()) {
throw new IOException("Socket is not connected");
}
try {
// Lê um prefixo de 4 bytes - indicador de tamanho
DataInputStream dataIn = new DataInputStream(inputStream);
int length = dataIn.readInt();
if (length <= 0 || length > 10_000_000) { // Sanity check (10MB max)
throw new IOException("Invalid message length: " + length);
}
// Ler dados da mensagem
byte[] data = new byte[length];
dataIn.readFully(data);
// Deserialize do JSON - use concrete Message class, not interface
return serializer.deserialize(data, sd.model.Message.class);
} catch (SerializationException e) {
throw new IOException("Failed to deserialize message", e);
}
}
/**
* Closes the socket and all streams (Input and Output).
*/
@Override
public void close() throws IOException {
if (inputStream != null) inputStream.close();
if (outputStream != null) outputStream.close();
if (socket != null) socket.close();
}
/**
* @return true if the socket is still connected and not closed.
*/
public boolean isConnected() {
return socket != null && socket.isConnected() && !socket.isClosed();
}
}

View File

@@ -0,0 +1,114 @@
package sd.serialization;
import com.google.gson.Gson;
import com.google.gson.GsonBuilder;
import com.google.gson.JsonSyntaxException;
import java.nio.charset.StandardCharsets;
/**
* JSON-based implementation of {@link MessageSerializer} using Google's Gson library.
*
* This serializer converts objects to JSON format for transmission, providing:
* - Human-readable message format (easy debugging)
* - Cross-platform compatibility
* - Smaller message sizes compared to Java native serialization
* - Better security (no code execution during deserialization)
*
* The serializer is configured with pretty printing disabled by default for
* production use, but can be enabled for debugging purposes.
*
* Thread-safety: This class is thread-safe as Gson instances are thread-safe.
*
* @see MessageSerializer
*/
public class JsonMessageSerializer implements MessageSerializer {
private final Gson gson;
private final boolean prettyPrint;
/**
* Creates a new JSON serializer with default configuration (no pretty printing).
*/
public JsonMessageSerializer() {
this(false);
}
/**
* Creates a new JSON serializer with optional pretty printing.
*
* @param prettyPrint If true, JSON output will be formatted with indentation
*/
public JsonMessageSerializer(boolean prettyPrint) {
this.prettyPrint = prettyPrint;
GsonBuilder builder = new GsonBuilder();
if (prettyPrint) {
builder.setPrettyPrinting();
}
// Register custom type adapters here if needed
// builder.registerTypeAdapter(Vehicle.class, new VehicleAdapter());
this.gson = builder.create();
}
@Override
public byte[] serialize(Object object) throws SerializationException {
if (object == null) {
throw new IllegalArgumentException("Cannot serialize null object");
}
try {
String json = gson.toJson(object);
return json.getBytes(StandardCharsets.UTF_8);
} catch (Exception e) {
throw new SerializationException(
"Failed to serialize object of type " + object.getClass().getName(), e);
}
}
@Override
public <T> T deserialize(byte[] data, Class<T> clazz) throws SerializationException {
if (data == null) {
throw new IllegalArgumentException("Cannot deserialize null data");
}
if (clazz == null) {
throw new IllegalArgumentException("Class type cannot be null");
}
try {
String json = new String(data, StandardCharsets.UTF_8);
return gson.fromJson(json, clazz);
} catch (JsonSyntaxException e) {
throw new SerializationException(
"Failed to parse JSON for type " + clazz.getName(), e);
} catch (Exception e) {
throw new SerializationException(
"Failed to deserialize object of type " + clazz.getName(), e);
}
}
@Override
public String getName() {
return "JSON (Gson)";
}
/**
* Returns the underlying Gson instance for advanced usage.
*
* @return The Gson instance
*/
public Gson getGson() {
return gson;
}
/**
* Checks if pretty printing is enabled.
*
* @return true if pretty printing is enabled
*/
public boolean isPrettyPrint() {
return prettyPrint;
}
}

View File

@@ -0,0 +1,48 @@
package sd.serialization;
/**
* Interface for serializing and deserializing objects for network transmission.
*
* This interface provides a common abstraction for different serialization strategies
* allowing the system to switch between implementations without changing the communication layer.
*
* Implementations must ensure:
* - Thread-safety if used in concurrent contexts
* - Proper exception handling with meaningful error messages
* - Preservation of object state during round-trip serialization
*
* @see JsonMessageSerializer
*/
public interface MessageSerializer {
/**
* Serializes an object into a byte array for transmission.
*
* @param object The object to serialize (must not be null)
* @return A byte array containing the serialized representation
* @throws SerializationException If serialization fails
* @throws IllegalArgumentException If object is null
*/
byte[] serialize(Object object) throws SerializationException;
/**
* Deserializes a byte array back into an object of the specified type.
*
* @param <T> The expected type of the deserialized object
* @param data The byte array containing serialized data (must not be null)
* @param clazz The class of the expected object type (must not be null)
* @return The deserialized object
* @throws SerializationException If deserialization fails
* @throws IllegalArgumentException If data or clazz is null
*/
<T> T deserialize(byte[] data, Class<T> clazz) throws SerializationException;
/**
* Gets the name of this serialization strategy (e.g., "JSON", "Java Native").
* Useful for logging and debugging.
*
* @return The serializer name
*/
String getName();
}

View File

@@ -0,0 +1,41 @@
package sd.serialization;
/**
* Exception thrown when serialization or deserialization operations fail.
*
* This exception wraps underlying errors (I/O exceptions, parsing errors, etc.)
* and provides context about what went wrong during the serialization process.
*/
public class SerializationException extends Exception {
private static final long serialVersionUID = 1L; // Long(64bits) instead of int(32bits)
/**
* Constructs a new serialization exception with the specified detail message.
*
* @param message The detail message
*/
public SerializationException(String message) {
super(message);
}
/**
* Constructs a new serialization exception with the specified detail message
* and cause.
*
* @param message The detail message
* @param cause The cause of this exception
*/
public SerializationException(String message, Throwable cause) {
super(message, cause);
}
/**
* Constructs a new serialization exception with the specified cause.
*
* @param cause The cause of this exception
*/
public SerializationException(Throwable cause) {
super(cause);
}
}

View File

@@ -0,0 +1,66 @@
package sd.serialization;
/**
* Factory for creating {@link MessageSerializer} instances.
*
* This factory provides a centralized way to create and configure JSON serializers
* using Gson, making it easy to configure serialization throughout the application.
*
* The factory can be configured via system properties for easy deployment configuration.
*
* Example usage:
* <pre>
* MessageSerializer serializer = SerializerFactory.createDefault();
* byte[] data = serializer.serialize(myObject);
* </pre>
*/
public class SerializerFactory {
/**
* System property key for enabling pretty-print in JSON serialization.
* Set to "true" for debugging, "false" for production.
*/
public static final String JSON_PRETTY_PRINT_PROPERTY = "sd.serialization.json.prettyPrint";
// Default configuration
private static final boolean DEFAULT_JSON_PRETTY_PRINT = false;
/**
* Private constructor to prevent instantiation.
*/
private SerializerFactory() {
throw new UnsupportedOperationException("Factory class cannot be instantiated");
}
/**
* Creates a JSON serializer based on system configuration.
*
* Pretty-print is determined by checking the system property
* {@value #JSON_PRETTY_PRINT_PROPERTY}. If not set, defaults to false.
*
* @return A configured JsonMessageSerializer instance
*/
public static MessageSerializer createDefault() {
boolean prettyPrint = Boolean.getBoolean(JSON_PRETTY_PRINT_PROPERTY);
return new JsonMessageSerializer(prettyPrint);
}
/**
* Creates a JSON serializer with default configuration (no pretty printing).
*
* @return A JsonMessageSerializer instance
*/
public static MessageSerializer createSerializer() {
return createSerializer(DEFAULT_JSON_PRETTY_PRINT);
}
/**
* Creates a JSON serializer with specified pretty-print setting.
*
* @param prettyPrint Whether to enable pretty printing
* @return A JsonMessageSerializer instance
*/
public static MessageSerializer createSerializer(boolean prettyPrint) {
return new JsonMessageSerializer(prettyPrint);
}
}

View File

@@ -3,64 +3,98 @@ package sd.util;
import java.util.Random;
/**
* Utility class for generating random values used throughout the simulation.
* Utilitário para gerar valores aleatórios usados na simulação.
*
* Includes helpers for exponential distributions (for vehicle arrivals),
* uniform randoms, and probability-based decisions.
* <p>Fornece métodos estáticos para:</p>
* <ul>
* <li>Gerar intervalos exponencialmente distribuídos (processos de Poisson)</li>
* <li>Gerar inteiros e doubles aleatórios num intervalo</li>
* <li>Tomar decisões baseadas em probabilidade</li>
* <li>Escolher elementos aleatórios de um array</li>
* </ul>
*
* <p>Usa uma única instância estática de {@link Random}.</p>
*/
public class RandomGenerator {
/** Instância partilhada de Random para toda a simulação */
private static final Random random = new Random();
/**
* Returns a random time interval that follows an exponential distribution.
* Retorna um intervalo de tempo que segue uma distribuição exponencial.
*
* Useful for modeling inter-arrival times in a Poisson process.
* <p>Componente essencial para modelar processos de Poisson, onde os
* tempos entre chegadas seguem uma distribuição exponencial.</p>
*
* @param lambda the arrival rate (λ)
* @return the time interval until the next arrival
* <p>Fórmula: {@code Time = -ln(1 - U) / λ}<br>
* onde U é um número aleatório uniforme [0, 1) e λ (lambda) é a taxa média de chegada.</p>
*
* @param lambda taxa média de chegada λ (ex: 0.5 veículos por segundo)
* @return intervalo de tempo (segundos) até à próxima chegada
*/
public static double generateExponentialInterval(double lambda) {
return Math.log(1 - random.nextDouble()) / -lambda;
}
/**
* Returns a random integer between {@code min} and {@code max}, inclusive.
* Retorna um inteiro aleatório entre {@code min} e {@code max}, inclusive.
*
* @param min valor mínimo possível
* @param max valor máximo possível
* @return inteiro aleatório no intervalo [min, max]
*/
public static int generateRandomInt(int min, int max) {
return random.nextInt(max - min + 1) + min;
}
/**
* Returns a random double between {@code min} (inclusive) and {@code max} (exclusive).
* Retorna um double aleatório entre {@code min} (inclusive) e {@code max} (exclusivo).
*
* @param min valor mínimo possível
* @param max valor máximo possível
* @return double aleatório no intervalo [min, max)
*/
public static double generateRandomDouble(double min, double max) {
return min + (max - min) * random.nextDouble();
}
/**
* Returns {@code true} with the given probability.
* Retorna {@code true} com uma dada probabilidade.
*
* @param probability a value between 0.0 and 1.0
* <p>Útil para tomar decisões ponderadas. Por exemplo,
* {@code occursWithProbability(0.3)} retorna {@code true}
* aproximadamente 30% das vezes.</p>
*
* @param probability valor entre 0.0 (nunca) e 1.0 (sempre)
* @return {@code true} ou {@code false}, baseado na probabilidade
*/
public static boolean occursWithProbability(double probability) {
return random.nextDouble() < probability;
}
/**
* Picks a random element from the given array.
* Escolhe um elemento aleatório do array fornecido.
*
* @throws IllegalArgumentException if the array is empty
* @param <T> tipo genérico do array
* @param array array de onde escolher
* @return elemento selecionado aleatoriamente
* @throws IllegalArgumentException se o array for null ou vazio
*/
public static <T> T chooseRandom(T[] array) {
if (array.length == 0) {
throw new IllegalArgumentException("Array cannot be empty.");
if (array == null || array.length == 0) {
throw new IllegalArgumentException("Array cannot be null or empty.");
}
return array[random.nextInt(array.length)];
}
/**
* Sets the random generators seed, allowing reproducible results.
* Define a seed do gerador de números aleatórios partilhado.
*
* <p>Extremamente útil para debugging e testes, pois permite executar
* a simulação múltiplas vezes com a mesma sequência de eventos "aleatórios",
* tornando os resultados reproduzíveis.</p>
*
* @param seed seed a usar
*/
public static void setSeed(long seed) {
random.setSeed(seed);

View File

@@ -0,0 +1,230 @@
package sd.util;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import sd.config.SimulationConfig;
import sd.model.Vehicle;
import sd.model.VehicleType;
/**
* Gera veículos para a simulação.
*
* <p>Esta classe é responsável por duas tarefas principais:</p>
* <ol>
* <li>Determinar <em>quando</em> o próximo veículo deve chegar, baseado no
* modelo de chegada (POISSON ou FIXED) da {@link SimulationConfig}</li>
* <li>Criar um novo objeto {@link Vehicle} com tipo e rota selecionados aleatoriamente</li>
* </ol>
*
* <p>As rotas são predefinidas e organizadas por ponto de entrada (E1, E2, E3).</p>
*/
public class VehicleGenerator {
private final SimulationConfig config;
private final String arrivalModel;
/** Lambda (λ) para modelo POISSON */
private final double arrivalRate;
/** Intervalo para modelo FIXED */
private final double fixedInterval;
/** Rotas possíveis a partir do ponto de entrada E1 */
private final List<RouteWithProbability> e1Routes;
/** Rotas possíveis a partir do ponto de entrada E2 */
private final List<RouteWithProbability> e2Routes;
/** Rotas possíveis a partir do ponto de entrada E3 */
private final List<RouteWithProbability> e3Routes;
/**
* Cria um novo gerador de veículos.
* Lê a configuração necessária e inicializa as rotas predefinidas.
*
* @param config objeto de {@link SimulationConfig}
*/
public VehicleGenerator(SimulationConfig config) {
this.config = config;
// Cache configuration values for performance
this.arrivalModel = config.getArrivalModel();
this.arrivalRate = config.getArrivalRate();
this.fixedInterval = config.getFixedArrivalInterval();
// Initialize route lists
this.e1Routes = new ArrayList<>();
this.e2Routes = new ArrayList<>();
this.e3Routes = new ArrayList<>();
initializePossibleRoutes();
}
/**
* Define todas as rotas possíveis que os veículos podem tomar.
* As rotas são organizadas por ponto de entrada (E1, E2, E3).
* Cada rota tem uma probabilidade que determina a frequência com que é escolhida.
*/
private void initializePossibleRoutes() {
e1Routes.add(new RouteWithProbability(
Arrays.asList("Cr1", "Cr4", "Cr5", "S"), 0.34));
e1Routes.add(new RouteWithProbability(
Arrays.asList("Cr1", "Cr2", "Cr5", "S"), 0.33));
e1Routes.add(new RouteWithProbability(
Arrays.asList("Cr1", "Cr2", "Cr3", "S"), 0.33));
e2Routes.add(new RouteWithProbability(
Arrays.asList("Cr2", "Cr5", "S"), 0.34));
e2Routes.add(new RouteWithProbability(
Arrays.asList("Cr2", "Cr3", "S"), 0.33));
e2Routes.add(new RouteWithProbability(
Arrays.asList("Cr2", "Cr1", "Cr4", "Cr5", "S"), 0.33));
e3Routes.add(new RouteWithProbability(
Arrays.asList("Cr3", "S"), 0.34));
e3Routes.add(new RouteWithProbability(
Arrays.asList("Cr3", "Cr2", "Cr5", "S"), 0.33));
e3Routes.add(new RouteWithProbability(
Arrays.asList("Cr3", "Cr2", "Cr1", "Cr4", "Cr5", "S"), 0.33));
}
/**
* Calcula o tempo <em>absoluto</em> da próxima chegada de veículo
* baseado no modelo configurado.
*
* @param currentTime tempo atual da simulação, usado como base
* @return tempo absoluto (ex: {@code currentTime + intervalo})
* em que o próximo veículo deve ser gerado
*/
public double getNextArrivalTime(double currentTime) {
if ("POISSON".equalsIgnoreCase(arrivalModel)) {
double interval = RandomGenerator.generateExponentialInterval(arrivalRate);
return currentTime + interval;
} else {
return currentTime + fixedInterval;
}
}
/**
* Gera um novo objeto {@link Vehicle}.
*
* <p>Passos executados:</p>
* <ol>
* <li>Seleciona um {@link VehicleType} aleatório baseado em probabilidades</li>
* <li>Seleciona uma rota aleatória (ponto de entrada + caminho)</li>
* </ol>
*
* @param vehicleId identificador único do novo veículo (ex: "V123")
* @param entryTime tempo de simulação em que o veículo é criado
* @return novo objeto {@link Vehicle} configurado
*/
public Vehicle generateVehicle(String vehicleId, double entryTime) {
VehicleType type = selectVehicleType();
List<String> route = selectRandomRoute();
return new Vehicle(vehicleId, type, entryTime, route);
}
/**
* Seleciona um {@link VehicleType} (BIKE, LIGHT, HEAVY) baseado nas
* probabilidades definidas na {@link SimulationConfig}.
*
* <p>Usa técnica de "probabilidade cumulativa":</p>
* <ol>
* <li>Obtém número aleatório {@code rand} de [0, 1)</li>
* <li>Se {@code rand < P(Bike)}, retorna BIKE</li>
* <li>Senão se {@code rand < P(Bike) + P(Light)}, retorna LIGHT</li>
* <li>Caso contrário, retorna HEAVY</li>
* </ol>
*
* @return tipo de veículo selecionado
*/
private VehicleType selectVehicleType() {
double bikeProbability = config.getBikeVehicleProbability();
double lightProbability = config.getLightVehicleProbability();
double heavyProbability = config.getHeavyVehicleProbability();
double total = bikeProbability + lightProbability + heavyProbability;
if (total == 0) return VehicleType.LIGHT; // Avoid division by zero
bikeProbability /= total;
lightProbability /= total;
double rand = Math.random();
if (rand < bikeProbability) {
return VehicleType.BIKE;
} else if (rand < bikeProbability + lightProbability) {
return VehicleType.LIGHT;
} else {
return VehicleType.HEAVY;
}
}
/**
* Selects a random route for a new vehicle.
* This is a two-step process:
* 1. Randomly select an entry point (E1, E2, or E3) with equal probability.
* 2. From the chosen entry point's list of routes, select one
* based on their defined probabilities (using cumulative probability).
*
* @return A {@link List} of strings representing the chosen route (e.g., ["Cr1", "Cr4", "S"]).
*/
private List<String> selectRandomRoute() {
// Step 1: Randomly select an entry point (E1, E2, or E3)
double entryRandom = Math.random();
List<RouteWithProbability> selectedRoutes;
if (entryRandom < 0.333) {
selectedRoutes = e1Routes;
} else if (entryRandom < 0.666) {
selectedRoutes = e2Routes;
} else {
selectedRoutes = e3Routes;
}
// Step 2: Select a route from the chosen list based on cumulative probabilities
double routeRand = Math.random();
double cumulative = 0.0;
for (RouteWithProbability routeWithProb : selectedRoutes) {
cumulative += routeWithProb.probability;
if (routeRand <= cumulative) {
// Return a *copy* of the route to prevent modification
return new ArrayList<>(routeWithProb.route);
}
}
// Fallback: This should only be reached if probabilities don't sum to 1
// (due to floating point errors)
return new ArrayList<>(selectedRoutes.get(0).route);
}
/**
* @return A string providing information about the generator's configuration.
*/
public String getInfo() {
int totalRoutes = e1Routes.size() + e2Routes.size() + e3Routes.size();
return String.format(
"VehicleGenerator{model=%s, rate=%.2f, interval=%.2f, routes=%d (E1:%d, E2:%d, E3:%d)}",
arrivalModel, arrivalRate, fixedInterval, totalRoutes,
e1Routes.size(), e2Routes.size(), e3Routes.size()
);
}
/**
* A private inner "struct-like" class to hold a route (a List of strings)
* and its associated selection probability.
*/
private static class RouteWithProbability {
final List<String> route;
final double probability;
/**
* Constructs a new RouteWithProbability pair.
* @param route The list of intersection IDs.
* @param probability The probability (0.0 to 1.0) of this route
* being chosen *from its entry group*.
*/
RouteWithProbability(List<String> route, double probability) {
this.route = route;
this.probability = probability;
}
}
}

View File

@@ -0,0 +1,142 @@
/* Global Styles */
.root {
-fx-background-color: #f4f7f6;
-fx-font-family: 'Segoe UI', sans-serif;
}
/* Header */
.header {
-fx-background-color: linear-gradient(to right, #2c3e50, #4ca1af);
-fx-padding: 20;
-fx-effect: dropshadow(three-pass-box, rgba(0,0,0,0.2), 10, 0, 0, 5);
}
.header-title {
-fx-font-size: 28px;
-fx-font-weight: bold;
-fx-text-fill: white;
}
.header-subtitle {
-fx-font-size: 16px;
-fx-text-fill: #ecf0f1;
}
/* Buttons */
.button-start {
-fx-background-color: #2ecc71;
-fx-text-fill: white;
-fx-font-weight: bold;
-fx-padding: 10 20;
-fx-background-radius: 5;
-fx-cursor: hand;
-fx-effect: dropshadow(three-pass-box, rgba(0,0,0,0.1), 5, 0, 0, 2);
}
.button-start:hover {
-fx-background-color: #27ae60;
}
.button-start:disabled {
-fx-background-color: #95a5a6;
-fx-opacity: 0.7;
}
.button-stop {
-fx-background-color: #e74c3c;
-fx-text-fill: white;
-fx-font-weight: bold;
-fx-padding: 10 20;
-fx-background-radius: 5;
-fx-cursor: hand;
-fx-effect: dropshadow(three-pass-box, rgba(0,0,0,0.1), 5, 0, 0, 2);
}
.button-stop:hover {
-fx-background-color: #c0392b;
}
.button-stop:disabled {
-fx-background-color: #95a5a6;
-fx-opacity: 0.7;
}
/* Cards / Panels */
.card {
-fx-background-color: white;
-fx-background-radius: 8;
-fx-effect: dropshadow(three-pass-box, rgba(0,0,0,0.05), 10, 0, 0, 2);
-fx-padding: 0;
}
.card-header {
-fx-background-color: #ecf0f1;
-fx-background-radius: 8 8 0 0;
-fx-padding: 10 15;
-fx-border-color: #bdc3c7;
-fx-border-width: 0 0 1 0;
}
.card-title {
-fx-font-size: 16px;
-fx-font-weight: bold;
-fx-text-fill: #2c3e50;
}
.card-content {
-fx-padding: 15;
}
/* Statistics Grid */
.stat-label {
-fx-font-size: 14px;
-fx-text-fill: #7f8c8d;
}
.stat-value {
-fx-font-size: 20px;
-fx-font-weight: bold;
-fx-text-fill: #2980b9;
}
/* Tables */
.table-view {
-fx-background-color: transparent;
-fx-border-color: transparent;
}
.table-view .column-header-background {
-fx-background-color: #ecf0f1;
-fx-border-color: #bdc3c7;
-fx-border-width: 0 0 1 0;
}
.table-view .column-header .label {
-fx-text-fill: #2c3e50;
-fx-font-weight: bold;
}
.table-row-cell {
-fx-background-color: white;
-fx-border-color: transparent;
}
.table-row-cell:odd {
-fx-background-color: #f9f9f9;
}
.table-row-cell:selected {
-fx-background-color: #3498db;
-fx-text-fill: white;
}
/* Footer */
.footer {
-fx-background-color: #34495e;
-fx-padding: 10 20;
}
.footer-text {
-fx-text-fill: #ecf0f1;
-fx-font-size: 12px;
}

View File

@@ -0,0 +1,46 @@
{
"intersections": [
{
"id": "Cr1",
"lights": ["East", "South"],
"routes": {
"Cr2": "East",
"Cr4": "South"
}
},
{
"id": "Cr2",
"lights": ["West", "East", "South"],
"routes": {
"Cr1": "West",
"Cr3": "East",
"Cr5": "South"
}
},
{
"id": "Cr3",
"lights": ["West", "South"],
"routes": {
"Cr2": "West",
"S": "South"
}
},
{
"id": "Cr4",
"lights": ["East", "West"],
"routes": {
"Cr1": "North",
"Cr5": "East"
}
},
{
"id": "Cr5",
"lights": ["East", "West", "North"],
"routes": {
"Cr2": "North",
"Cr4": "West",
"S": "East"
}
}
]
}

View File

@@ -0,0 +1,117 @@
# =========================================================
# Traffic Simulation Configuration - HIGH LOAD SCENARIO
# ---------------------------------------------------------
# High traffic scenario for testing system under heavy load.
# Expected: Significant congestion, large queues, system stress test
# =========================================================
# === NETWORK CONFIGURATION ===
# Intersections (each with its host and port)
intersection.Cr1.host=localhost
intersection.Cr1.port=8001
intersection.Cr2.host=localhost
intersection.Cr2.port=8002
intersection.Cr3.host=localhost
intersection.Cr3.port=8003
intersection.Cr4.host=localhost
intersection.Cr4.port=8004
intersection.Cr5.host=localhost
intersection.Cr5.port=8005
# Exit node
exit.host=localhost
exit.port=9001
# Dashboard server
dashboard.host=localhost
dashboard.port=9000
# === SIMULATION CONFIGURATION ===
# Total duration in seconds (1800 = 30 minutes)
simulation.duration=1800
# Vehicle arrival model: FIXED or POISSON
simulation.arrival.model=POISSON
# λ (lambda): HIGH LOAD = 1.0 vehicle per second (60 vehicles/minute, 3600 vehicles/hour)
# This is 2x medium load - tests system capacity limits
simulation.arrival.rate=1.0
# Fixed interval between arrivals (only used if model=FIXED)
simulation.arrival.fixed.interval=1.0
# === TRAFFIC LIGHT TIMINGS ===
# Format: trafficlight.<intersection>.<direction>.<state>=<seconds>
# Aggressive timings to maximize throughput under high load
# Intersection 1 (Entry point - longer greens to prevent early backup)
trafficlight.Cr1.South.green=60.0
trafficlight.Cr1.South.red=3.0
trafficlight.Cr1.East.green=60.0
trafficlight.Cr1.East.red=3.0
# Intersection 2 (Main hub - CRITICAL BOTTLENECK, maximum green times)
# This is the most critical intersection - all routes converge here
trafficlight.Cr2.South.green=70.0
trafficlight.Cr2.South.red=3.0
trafficlight.Cr2.East.green=80.0
trafficlight.Cr2.East.red=3.0
trafficlight.Cr2.West.green=70.0
trafficlight.Cr2.West.red=3.0
# Intersection 3 (Path to exit - maximize East throughput to exit)
trafficlight.Cr3.South.green=50.0
trafficlight.Cr3.South.red=3.0
trafficlight.Cr3.West.green=40.0
trafficlight.Cr3.West.red=3.0
# Intersection 4 (High throughput needed toward Cr5)
trafficlight.Cr4.East.green=70.0
trafficlight.Cr4.East.red=3.0
# Intersection 5 (Near exit - MAJOR BOTTLENECK, longest green time)
# All routes funnel through here before exit
trafficlight.Cr5.East.green=90.0
trafficlight.Cr5.East.red=3.0
# === VEHICLE CONFIGURATION ===
# Probability distribution for vehicle types (must sum to 1.0)
vehicle.probability.bike=0.2
vehicle.probability.light=0.6
vehicle.probability.heavy=0.2
# Average crossing times (in seconds)
vehicle.crossing.time.bike=1.0
vehicle.crossing.time.light=2.0
vehicle.crossing.time.heavy=4.0
# Travel times between intersections (in seconds)
# Base time for light vehicles (cars)
vehicle.travel.time.base=1.0
# Bike travel time = 0.5 × car travel time
vehicle.travel.time.bike.multiplier=0.5
# Heavy vehicle travel time = 4.0 x base travel time
vehicle.travel.time.heavy.multiplier=4.0
# === STATISTICS ===
# Interval between dashboard updates (seconds)
statistics.update.interval=10.0
# === EXPECTED BEHAVIOR - HIGH LOAD ===
# - Average system time: 200-400+ seconds (3-7+ minutes)
# - Maximum queue sizes: 15-30+ vehicles at Cr2 and Cr5
# - Average queue sizes: 8-15+ vehicles
# - Severe congestion at Cr2 (main convergence point)
# - Severe congestion at Cr5 (pre-exit bottleneck)
# - System utilization: ~80-95%
# - Many vehicles will remain in system at simulation end
# - Queue growth may be unbounded if arrival rate exceeds service rate
# - Primary bottlenecks: Cr2 (3-way convergence) and Cr5 (final funnel)
# - This scenario tests maximum system capacity and traffic light optimization
# - Expected to demonstrate need for adaptive traffic light policies

View File

@@ -0,0 +1,111 @@
# =========================================================
# Traffic Simulation Configuration - LOW LOAD SCENARIO
# ---------------------------------------------------------
# Low traffic scenario for testing system under light load.
# Expected: No congestion, minimal queues, fast vehicle throughput
# =========================================================
# === NETWORK CONFIGURATION ===
# Intersections (each with its host and port)
intersection.Cr1.host=localhost
intersection.Cr1.port=8001
intersection.Cr2.host=localhost
intersection.Cr2.port=8002
intersection.Cr3.host=localhost
intersection.Cr3.port=8003
intersection.Cr4.host=localhost
intersection.Cr4.port=8004
intersection.Cr5.host=localhost
intersection.Cr5.port=8005
# Exit node
exit.host=localhost
exit.port=9001
# Dashboard server
dashboard.host=localhost
dashboard.port=9000
# === SIMULATION CONFIGURATION ===
# Total duration in seconds (1800 = 30 minutes)
simulation.duration=1800
# Vehicle arrival model: FIXED or POISSON
simulation.arrival.model=POISSON
# λ (lambda): LOW LOAD = 0.2 vehicles per second (12 vehicles/minute, 720 vehicles/hour)
# This is approximately 40% of medium load
simulation.arrival.rate=0.2
# Fixed interval between arrivals (only used if model=FIXED)
simulation.arrival.fixed.interval=5.0
# === TRAFFIC LIGHT TIMINGS ===
# Format: trafficlight.<intersection>.<direction>.<state>=<seconds>
# Standard timings - should be more than adequate for low load
# Intersection 1 (Entry point - balanced)
trafficlight.Cr1.South.green=30.0
trafficlight.Cr1.South.red=5.0
trafficlight.Cr1.East.green=30.0
trafficlight.Cr1.East.red=5.0
# Intersection 2 (Main hub - shorter cycles, favor East-West)
trafficlight.Cr2.South.green=30.0
trafficlight.Cr2.South.red=5.0
trafficlight.Cr2.East.green=30.0
trafficlight.Cr2.East.red=5.0
trafficlight.Cr2.West.green=30.0
trafficlight.Cr2.West.red=5.0
# Intersection 3 (Path to exit - favor East)
trafficlight.Cr3.South.green=30.0
trafficlight.Cr3.South.red=5.0
trafficlight.Cr3.West.green=30.0
trafficlight.Cr3.West.red=5.0
# Intersection 4 (Favor East toward Cr5)
trafficlight.Cr4.East.green=30.0
trafficlight.Cr4.East.red=5.0
# Intersection 5 (Near exit - favor East)
trafficlight.Cr5.East.green=30.0
trafficlight.Cr5.East.red=5.0
# === VEHICLE CONFIGURATION ===
# Probability distribution for vehicle types (must sum to 1.0)
vehicle.probability.bike=0.2
vehicle.probability.light=0.6
vehicle.probability.heavy=0.2
# Average crossing times (in seconds)
vehicle.crossing.time.bike=1.0
vehicle.crossing.time.light=2.0
vehicle.crossing.time.heavy=4.0
# Travel times between intersections (in seconds)
# Base time for light vehicles (cars)
vehicle.travel.time.base=1.0
# Bike travel time = 0.5 × car travel time
vehicle.travel.time.bike.multiplier=0.5
# Heavy vehicle travel time = 4.0 x base travel time
vehicle.travel.time.heavy.multiplier=4.0
# === STATISTICS ===
# Interval between dashboard updates (seconds)
statistics.update.interval=10.0
# === EXPECTED BEHAVIOR - LOW LOAD ===
# - Average system time: 40-80 seconds
# - Maximum queue sizes: 1-3 vehicles
# - Average queue sizes: < 1 vehicle
# - Vehicles should flow smoothly through the system
# - Minimal waiting at traffic lights (mostly travel time)
# - System utilization: ~20-30%
# - All vehicles should exit within simulation time

View File

@@ -0,0 +1,112 @@
# =========================================================
# Traffic Simulation Configuration - MEDIUM LOAD SCENARIO
# ---------------------------------------------------------
# Medium traffic scenario for testing system under normal load.
# Expected: Moderate queues, some congestion at peak intersections
# =========================================================
# === NETWORK CONFIGURATION ===
# Intersections (each with its host and port)
intersection.Cr1.host=localhost
intersection.Cr1.port=8001
intersection.Cr2.host=localhost
intersection.Cr2.port=8002
intersection.Cr3.host=localhost
intersection.Cr3.port=8003
intersection.Cr4.host=localhost
intersection.Cr4.port=8004
intersection.Cr5.host=localhost
intersection.Cr5.port=8005
# Exit node
exit.host=localhost
exit.port=9001
# Dashboard server
dashboard.host=localhost
dashboard.port=9000
# === SIMULATION CONFIGURATION ===
# Total duration in seconds (1800 = 30 minutes)
simulation.duration=1800
# Vehicle arrival model: FIXED or POISSON
simulation.arrival.model=POISSON
# λ (lambda): MEDIUM LOAD = 0.5 vehicles per second (30 vehicles/minute, 1800 vehicles/hour)
# This represents normal traffic conditions
simulation.arrival.rate=0.5
# Fixed interval between arrivals (only used if model=FIXED)
simulation.arrival.fixed.interval=2.0
# === TRAFFIC LIGHT TIMINGS ===
# Format: trafficlight.<intersection>.<direction>.<state>=<seconds>
# Optimized timings for medium load
# Intersection 1 (Entry point - balanced)
trafficlight.Cr1.South.green=40.0
trafficlight.Cr1.South.red=5.0
trafficlight.Cr1.East.green=40.0
trafficlight.Cr1.East.red=5.0
# Intersection 2 (Main hub - CRITICAL BOTTLENECK, longer green times)
trafficlight.Cr2.South.green=45.0
trafficlight.Cr2.South.red=5.0
trafficlight.Cr2.East.green=50.0
trafficlight.Cr2.East.red=5.0
trafficlight.Cr2.West.green=45.0
trafficlight.Cr2.West.red=5.0
# Intersection 3 (Path to exit - favor East toward exit)
trafficlight.Cr3.South.green=40.0
trafficlight.Cr3.South.red=5.0
trafficlight.Cr3.West.green=35.0
trafficlight.Cr3.West.red=5.0
# Intersection 4 (Favor East toward Cr5)
trafficlight.Cr4.East.green=40.0
trafficlight.Cr4.East.red=5.0
# Intersection 5 (Near exit - POTENTIAL BOTTLENECK, longer green)
trafficlight.Cr5.East.green=50.0
trafficlight.Cr5.East.red=5.0
# === VEHICLE CONFIGURATION ===
# Probability distribution for vehicle types (must sum to 1.0)
vehicle.probability.bike=0.2
vehicle.probability.light=0.6
vehicle.probability.heavy=0.2
# Average crossing times (in seconds)
vehicle.crossing.time.bike=1.0
vehicle.crossing.time.light=2.0
vehicle.crossing.time.heavy=4.0
# Travel times between intersections (in seconds)
# Base time for light vehicles (cars)
vehicle.travel.time.base=1.0
# Bike travel time = 0.5 × car travel time
vehicle.travel.time.bike.multiplier=0.5
# Heavy vehicle travel time = 4.0 x base travel time
vehicle.travel.time.heavy.multiplier=4.0
# === STATISTICS ===
# Interval between dashboard updates (seconds)
statistics.update.interval=10.0
# === EXPECTED BEHAVIOR - MEDIUM LOAD ===
# - Average system time: 80-150 seconds
# - Maximum queue sizes: 5-10 vehicles at Cr2 and Cr5
# - Average queue sizes: 2-5 vehicles
# - Moderate congestion at Cr2 (main hub) and Cr5 (pre-exit)
# - System utilization: ~50-60%
# - Most vehicles should exit, some may remain at simulation end
# - Cr2 is the primary bottleneck (3 directions converge)
# - Cr5 is secondary bottleneck (all routes pass through)

View File

@@ -31,7 +31,11 @@ dashboard.port=9000
# === SIMULATION CONFIGURATION ===
# Total duration in seconds (3600 = 1 hour)
simulation.duration=3600.0
simulation.duration=300
# Time scaling factor for visualization (real_seconds = sim_seconds * scale)
# 0 = instant (pure DES), 0.01 = 100x speed, 0.1 = 10x speed, 1.0 = real-time
simulation.time.scale=0.01
# Vehicle arrival model: FIXED or POISSON
simulation.arrival.model=POISSON
@@ -46,55 +50,34 @@ simulation.arrival.fixed.interval=2.0
# === TRAFFIC LIGHT TIMINGS ===
# Format: trafficlight.<intersection>.<direction>.<state>=<seconds>
# Intersection 1
trafficlight.Cr1.North.green=30.0
trafficlight.Cr1.North.red=30.0
trafficlight.Cr1.South.green=30.0
trafficlight.Cr1.South.red=30.0
trafficlight.Cr1.East.green=30.0
trafficlight.Cr1.East.red=30.0
trafficlight.Cr1.West.green=30.0
trafficlight.Cr1.West.red=30.0
# Intersection 1 (Entry point - balanced)
trafficlight.Cr1.South.green=60.0
trafficlight.Cr1.South.red=5.0
trafficlight.Cr1.East.green=60.0
trafficlight.Cr1.East.red=5.0
# Intersection 2
trafficlight.Cr2.North.green=25.0
trafficlight.Cr2.North.red=35.0
trafficlight.Cr2.South.green=25.0
trafficlight.Cr2.South.red=35.0
trafficlight.Cr2.East.green=35.0
trafficlight.Cr2.East.red=25.0
trafficlight.Cr2.West.green=35.0
trafficlight.Cr2.West.red=25.0
# Intersection 2 (Main hub - shorter cycles, favor East-West)
trafficlight.Cr2.South.green=60.0
trafficlight.Cr2.South.red=5.0
trafficlight.Cr2.East.green=60.0
trafficlight.Cr2.East.red=5.0
trafficlight.Cr2.West.green=60.0
trafficlight.Cr2.West.red=5.0
# Intersection 3
trafficlight.Cr3.North.green=30.0
trafficlight.Cr3.North.red=30.0
trafficlight.Cr3.South.green=30.0
trafficlight.Cr3.South.red=30.0
trafficlight.Cr3.East.green=30.0
trafficlight.Cr3.East.red=30.0
trafficlight.Cr3.West.green=30.0
trafficlight.Cr3.West.red=30.0
# Intersection 3 (Path to exit - favor East)
trafficlight.Cr3.South.green=60.0
trafficlight.Cr3.South.red=5.0
trafficlight.Cr3.West.green=60.0
trafficlight.Cr3.West.red=5.0
# Intersection 4
trafficlight.Cr4.North.green=30.0
trafficlight.Cr4.North.red=30.0
trafficlight.Cr4.South.green=30.0
trafficlight.Cr4.South.red=30.0
trafficlight.Cr4.East.green=30.0
trafficlight.Cr4.East.red=30.0
trafficlight.Cr4.West.green=30.0
trafficlight.Cr4.West.red=30.0
# Intersection 4 (Favor East toward Cr5)
trafficlight.Cr4.East.green=60.0
trafficlight.Cr4.East.red=5.0
# Intersection 5 (Near exit - favor East)
trafficlight.Cr5.East.green=60.0
trafficlight.Cr5.East.red=5.0
# Intersection 5
trafficlight.Cr5.North.green=30.0
trafficlight.Cr5.North.red=30.0
trafficlight.Cr5.South.green=30.0
trafficlight.Cr5.South.red=30.0
trafficlight.Cr5.East.green=30.0
trafficlight.Cr5.East.red=30.0
trafficlight.Cr5.West.green=30.0
trafficlight.Cr5.West.red=30.0
# === VEHICLE CONFIGURATION ===
# Probability distribution for vehicle types (must sum to 1.0)
@@ -103,11 +86,19 @@ vehicle.probability.light=0.6
vehicle.probability.heavy=0.2
# Average crossing times (in seconds)
vehicle.crossing.time.bike=1.5
vehicle.crossing.time.bike=1.0
vehicle.crossing.time.light=2.0
vehicle.crossing.time.heavy=4.0
# Travel times between intersections (in seconds)
# Base time for light vehicles (cars)
vehicle.travel.time.base=1.0
# Bike travel time = 0.5 × car travel time
vehicle.travel.time.bike.multiplier=0.5
# Heavy vehicle travel time = 4.0 x base travel time
vehicle.travel.time.heavy.multiplier=4.0
# === STATISTICS ===
# Interval between dashboard updates (seconds)
statistics.update.interval=10.0
statistics.update.interval=0.1

60
main/start.sh Executable file
View File

@@ -0,0 +1,60 @@
#!/bin/bash
# Distributed Traffic Simulation Startup Script
# kill java
echo "-> Cleaning up existing processes..."
pkill -9 java 2>/dev/null
sleep 2
# build
echo "-> Building project..."
cd "$(dirname "$0")"
mvn package -DskipTests -q
if [ $? -ne 0 ]; then
echo "XXX Build failed! XXX"
exit 1
fi
echo "-> Build complete"
echo ""
# start gui
echo "-> Starting JavaFX Dashboard..."
mvn javafx:run &
DASHBOARD_PID=$!
sleep 3
# acho que é assim idk
echo "-> Starting 5 Intersection processes..."
for id in Cr1 Cr2 Cr3 Cr4 Cr5; do
java -cp target/classes:target/main-1.0-SNAPSHOT.jar sd.IntersectionProcess $id > /tmp/$(echo $id | tr '[:upper:]' '[:lower:]').log 2>&1 &
echo "[SUCCESS] Started $id"
done
sleep 2
# exit
echo "-> Starting Exit Node..."
java -cp target/classes:target/main-1.0-SNAPSHOT.jar sd.ExitNodeProcess > /tmp/exit.log 2>&1 &
sleep 1
# coordinator
echo "-> Starting Coordinator..."
java -cp target/classes:target/main-1.0-SNAPSHOT.jar sd.coordinator.CoordinatorProcess > /tmp/coordinator.log 2>&1 &
sleep 1
echo ""
echo "-> All processes started!"
echo ""
echo "-> System Status:"
ps aux | grep "java.*sd\." | grep -v grep | wc -l | xargs -I {} echo " {} Java processes running"
echo ""
echo " IMPORTANT: Keep the JavaFX Dashboard window OPEN for 60+ seconds"
echo " to see live updates! The simulation runs for 60 seconds."
echo ""
echo "-> Logs available at:"
echo " Dashboard: Check JavaFX window (live updates)"
echo " Intersections: /tmp/cr*.log"
echo " Exit Node: /tmp/exit.log"
echo " Coordinator: /tmp/coordinator.log"
echo ""
echo "-> To stop all processes: pkill -9 java"
echo ""

1055
main/testing.txt Normal file

File diff suppressed because it is too large Load Diff